
Slide 1U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Fast, good, and repeatable: 
summations, vectorization, and 

reproducibility

Brett Neuman, Laura Monroe, Andy 
DuBois, Bob Robey

Los Alamos National Laboratory
11/17/2019

LA-UR-19-29774



Slide 2U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Performance at exascale

• Exascale computing metrics are focused on performance (FLOPs)
• How do we achieve performance beyond Moore’s law?
• Areas of focus for exascale performance:

– Parallelism
– Vectorization
– Multithreading
– Multicore

• Exascale will have a larger variety of precisions
• Are there any drawbacks to increasing performance through more 

parallelism?



Slide 3U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Reproducibility at exascale

• Increased parallelism will also increase reproducibility issues
• The same parallel techniques for performance will lead to lower 

reproducibility
• Larger problem sizes are likely to lead to lower reproducibility
• Global summations run in parallel may be non-deterministic
• What are the major sources of reproducibility in scientific codes?



Slide 4U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Global summations and rounding errors

• Rounding errors are a fundamental issue with reproducibility in large 
parallel codes
– Global summations shown to be major sources of non-

reproducible results 
§ In a fluid dynamics simulation the global sum was a major 

source of inconsistency in mass and energy sums
R. W. Robey, J. M. Robey, and R. Aulwes, “In search of numerical consistency in parallel programming,” Parallel Computing, vol. 37, no. 4-5, pp. 217–
229, 2011.

– Currently, there are no community standards for acceptable 
reproducibility thresholds on exascale systems

L. Pouchard, S. Baldwin, T. Elsethagen, J. Shantenu, B. Raju, E. Stephan, L. Tang, and K. Kleese Van Dam, “Computational reproducibility of scientific 
workflows at extreme scales,” The International Journal of High Performance Computing Applications, pp. 1–14, 2019.



Slide 5U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Improving reproducibility with minimal impact 
to performance
Global summation reproducibility is a concern..

– Enhanced-precision sum is a good solution for reproducibility
– Additional floating point operations are bad for performance
– Compiler can’t automatically vectorize enhanced-precision which is bad
– Naïve vectorization is bad for reproducibility
– Combine vectorization and enhanced-precision sum - all good!
– Better reproducibility at little to no cost is good



Slide 6U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Prior work on summations

• Prior work to reduce global summation reproducibility issues:
– Serial efforts

§ Pairwise method work performed by MacCracken
D. D. MacCracken and W. S. Dorn, Numerical methods and fortran programming: with applications in engineering and science. J. Wiley, 1964.

§ High precision libraries by David Bailey
D. H. Bailey, “High-precision floating-point arithmetic in scientific computation,” Computing in Science Engineering, vol. 7, no. 3, pp. 54–61, 
May 2005

§ Basic Linear Algebra Subprograms (BLAS)
- ReproBLAS at UC Berkeley

J. Demmel, H. D. Nguyen, and P. Ahrens, “Cost of floating-point reproducibility,” 
https://www.nist.gov/sites/default/files/documents/itl/ssd/is/NRE-2015-07-Nguyen slides.pdf, Nov 2015.
P. Ahrens, H. D. Nguyen, and J. Demmel, “Efficient reproducible floating point summation and BLAS,” EECS Department, University of 
California, Berkeley, Tech. Rep. UCB/EECS-2015-229, 2015

- ExBLAS at KTH Royal Institute of Technology, Sweden
R. Iakymchuk, S. Collange, D. Defour, and S. Graillat, “ExBLAS: Reproducible and accurate BLAS library,” 2015.
S. Collange, D. Defour, S. Graillat, and R. Iakymchuk, “Numerical reproducibility for the parallel reduction on multi- and manycore 
architectures,” Parallel Computing, vol. 49, pp. 83 – 97, 2015. [Online]. Available: 
http://www.sciencedirect.com/science/article/pii/S0167819115001155
R. Iakymchuk, S. Collange, D. Defour, and S. Graillat, “ExBLAS: Reproducible and accurate BLAS library,” 
https://www.nist.gov/sites/default/files/documents/itl/ssd/is/NRE-2015-04-iakymchuk.pdf, Nov 2015.



Slide 7U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Prior work on summations (cont.)

• Prior work to reduce global summation 
reproducibility issues:
– Serial efforts

§ Compensated-summation techniques 
Kahan [1] and Knuth [2]

§ Carries a remainder value in a second 
variable

§ Includes the part of the number which 
cannot be represented in standard 
finite-precision
- Kahan: Assumes one operand is larger 

in magnitude
- Knuth: Computes correction term for 

both operands

§ Kahan and Knuth require additional 
floating point operations..



Slide 8U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Exploiting parallelism for reproducibility?

• Let’s apply some parallel techniques and exploit 
parallelism for reproducibility to offset the additional 
FLOPs of Kahan and Knuth summations. How about 
vectorization?
– Vectorization can improve performance

§ Naive vectorization would hurt reproducibility
– Enhanced-precision summation algorithms are ideal 

candidates for vectorization because the FLOPs increase 
but loads remain the same

• Can the compiler automatically handle vectorizing Kahan 
and Knuth algorithms?



Slide 9U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Vectorizing enhanced-precision algorithms

• No.. enhanced-precision sum has a loop-carried dependency that 
can never be automatically vectorized by a compiler

• Can we vectorize the operations within the algorithm manually?
• Yes, using vector intrinsics:

– Architecture and compiler determines vector intrinsics that can be 
used

– Vector intrinsics:
§ Intel x86 (x86-64)

- Run on both Intel and AMD

§ GCC vector extensions
- Using GCC compiler on a variety of architectures

§ Agner Fog vector class library
- Implementations in C++



Slide 10U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Vector Intrinsics and portability

• Vector intrinsics provide performance benefits at the cost of portability
– Designer should plan for the minimum set of vector intrinsics based on 

performance and portability needs for their platform

Vector Intrinsics

256-bit Compatibility      512-bit Compatibility

P
O

Works

Does not work

Not Available on Architecture



Slide 11U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Portability chart

TABLE I: Portability of vector intrinsic 
implementations. The first of the two 
marks in each cell indicates the 256-bit 
implementation and the second is the 
512-bit version. 

A check mark indicates the vector 
intrinsics work and the X means that it 
does not. 

Blank cells indicate that the compiler is 
not available for that architecture.

256-bit implementations are supported 
by more platforms but 512-bit offers best 
performance.



Slide 12U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Implementation

Vector Implementations of Reproducible 
Sums

1. Load four values from a standard array 
into a vector variable

2. The standard Kahan or Knuth operation 
is done on all four-wide vector variables

3. Store the four vector lanes into a regular, 
aligned array of four values

4. Sum the four sums from the four vector 
lanes using scalar variables

Fig. 1: Vector aligned summation



Slide 13U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Platforms – Can we achieve more from 512-bit 
vector units
• Two clusters were used to test scalability up to 512-bit vector unit 

supported architecture:
– Potatohead: Heterogeneous experimental cluster 

§ Intel Xeon E5-2650 Sandy Bridge
§ AVX2
§ Used for 256-bit vector units

– Darwin: Experimental cluster with various CPUs and GPUs
§ Skylake-Gold 6152 
§ AVX-512
§ Used for 512-bit vector units



Slide 14U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

256-bit performance and reproducibility –
Sandy Bridge 

Fig. 2: For the Sandy Bridge CPU, the vectorized Kahan and Knuth summations 
speedup the enhanced precision methods by over 3x to almost the runtimes of 
the serial sums.

TABLE II: Results of different summation methods on a 256-
bit vector unit (Sandy Bridge)

X-Axis: Serial (non-vectorized), Serial OpenMP is pragma simd, then 256 or 512 bit vector lengths for Kahan or Knuth
– *If the graph label has (GCC / Fog ) then the results of that vector intrinsic differ from the others. If there is no label, then the 

results were the same across all vector intrinsics
Y-Axis: Total runtime for summation (lower is better)



Slide 15U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

256-bit performance and reproducibility –
Sandy Bridge 
Kahan implementation has 3.4x speedup compared to serial Kahan

Faster than non-vectorized serial sum

Fig. 2: For the Sandy Bridge CPU, the vectorized Kahan and Knuth summations 
speedup the enhanced precision methods by over 3x to almost the runtimes of 
the serial sums.

TABLE II: Results of different summation methods on a 256-
bit vector unit (Sandy Bridge)



Slide 16U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

256-bit performance and reproducibility –
Sandy Bridge 
Knuth implementation has 3.6x speedup compared to serial Knuth

Fig. 2: For the Sandy Bridge CPU, the vectorized Kahan and Knuth summations 
speedup the enhanced precision methods by over 3x to almost the runtimes of 
the serial sums.

TABLE II: Results of different summation methods on a 256-
bit vector unit (Sandy Bridge)



Slide 17U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

256-bit performance and reproducibility –
Sandy Bridge 
GCC and Fog handle 256-bit conversion to 512-bit vector units.  Fog shows improvement (4.5x 
Kahan, 6.3x Knuth), GCC not so much (0x Kahan, 2.1x Knuth)

Fig. 2: For the Sandy Bridge CPU, the vectorized Kahan and Knuth summations 
speedup the enhanced precision methods by over 3x to almost the runtimes of 
the serial sums.

TABLE II: Results of different summation methods on a 256-
bit vector unit (Sandy Bridge)



Slide 18U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

256-bit performance and reproducibility –
Sandy Bridge 
Relative difference of zero between analytical and calculated value

Fig. 2: For the Sandy Bridge CPU, the vectorized Kahan and Knuth summations 
speedup the enhanced precision methods by over 3x to almost the runtimes of 
the serial sums.

TABLE II: Results of different summation methods on a 256-
bit vector unit (Sandy Bridge)



Slide 19U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

512-bit performance and reproducibility -
Skylake

Fig. 3: On the Skylake CPU, the 512-bit vectorized Kahan implementations 
are as fast as the regular serial summation!

TABLE II: Results of different summation methods on a 512-
bit vector unit (Skylake-Gold 6152)

X-Axis: Serial (non-vectorized), Serial OpenMP is pragma simd, then 256 or 512 bit vector lengths for Kahan/Knuth
– *If the graph label has (GCC / Fog ) then the results of that vector intrinsic differ from the others. If there is no label, then the 

results were the same across all vector intrinsics
Y-Axis: Total runtime for summation (lower is better)



Slide 20U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

512-bit performance and reproducibility -
Skylake
Kahan implementation is as fast as the regular serial summation

Fig. 3: On the Skylake CPU, the 512-bit vectorized Kahan implementations 
are as fast as the regular serial summation!

TABLE II: Results of different summation methods on a 512-
bit vector unit (Skylake-Gold 6152)



Slide 21U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

512-bit performance and reproducibility -
Skylake
More consistent performance across all compilers

Fig. 3: On the Skylake CPU, the 512-bit vectorized Kahan implementations 
are as fast as the regular serial summation!

TABLE II: Results of different summation methods on a 512-
bit vector unit (Skylake-Gold 6152)



Slide 22U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

512-bit performance and reproducibility -
Skylake
Kahan and Knuth performance improved for GCC

Fig. 3: On the Skylake CPU, the 512-bit vectorized Kahan implementations 
are as fast as the regular serial summation!

TABLE II: Results of different summation methods on a 512-
bit vector unit (Skylake-Gold 6152)



Slide 23U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

512-bit performance and reproducibility -
Skylake
GCC would need different vectorized versions for 256 and 512 bit.  Fog 
would be best as single 512-bit vector version on both 256-bit and 512-
bit hardware

Fig. 3: On the Skylake CPU, the 512-bit vectorized Kahan implementations 
are as fast as the regular serial summation!

TABLE II: Results of different summation methods on a 512-
bit vector unit (Skylake-Gold 6152)



Slide 24U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Error in summation

• The errors of the enhanced precision sums appear to be 
zero but are not perfect

• But there is a reduction in error by five to six orders of 
magnitude which will be extremely helpful at improving 
reproducibility

• Two example source codes are available to see how 
various vector intrinsics run on your set of architectures 
and compilers
– https://github.com/LANL/GlobalSums [23]
– https://github.com/EssentialsofParallelComputing/Chapter6 [24]



Slide 25U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Conclusions

• Vector intrinsics can be used for global sums to offset 
additional floating point operations of Kahan and Knuth 
algorithms while retaining the rounding error resilience of 
these algorithms

• Portability is the trade-off for the performance and 
reproducibility gains

• Our implementation provides additional parallelism that 
gives designers another tool to use when balancing 
reproducibility and performance



Slide 26U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Future Work

• Determining the best precision to use throughout the application
• Higher precision with reproducible global sums opens up 

possibilities for lowering precision in other parts of the application
– Exascale architecture may have additional lower precision 

capabilities
• Best ways to vectorize for improved GPU single precision 

capabilities and improved CPU vector units
• Better code profiling to identify areas within codes that benefit from 

vectorization



Slide 27U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Questions



Slide 28U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

References
[1] W. Kahan, “Further remarks on reducing truncation errors,” Communications of the ACM, vol. Vol. 8, no. 1, p. 40, 1965.

[2] D. E. Knuth, The Art of Computer Programming. Addison-Wesley Press, 1969, vol. 2, chap. 4.

[5] L. Pouchard, S. Baldwin, T. Elsethagen, J. Shantenu, B. Raju, E. Stephan, L. Tang, and K. Kleese Van Dam, “Computational reproducibility of scientific 
workflows at extreme scales,” The International Journal of High Performance Computing Applications, pp. 1–14, 2019.

[10] D. D. MacCracken and W. S. Dorn, Numerical methods and fortran programming: with applications in engineering and science. J. Wiley, 1964.

[11] D. H. Bailey, “High-precision floating-point arithmetic in scientific computation,” Computing in Science Engineering, vol. 7, no. 3, pp. 54–61, May 2005.

[17] J. Demmel, H. D. Nguyen, and P. Ahrens, “Cost of floating-point reproducibility,” https://www.nist.gov/sites/default/files/documents/itl/ssd/is/NRE-
2015-07-Nguyen slides.pdf, Nov 2015.

[18] P. Ahrens, H. D. Nguyen, and J. Demmel, “Efficient reproducible floating point summation and BLAS,” EECS Department, University of California, 
Berkeley, Tech. Rep. UCB/EECS-2015-229, 2015.

[19] R. Iakymchuk, S. Collange, D. Defour, and S. Graillat, “ExBLAS: Reproducible and accurate BLAS library,” 2015.

[20] S. Collange, D. Defour, S. Graillat, and R. Iakymchuk, “Numerical reproducibility for the parallel reduction on multi- and manycore architectures,” 
Parallel Computing, vol. 49, pp. 83 – 97, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167819115001155

[21] R. Iakymchuk, S. Collange, D. Defour, and S. Graillat, “ExBLAS: Reproducible and accurate BLAS library,” 
https://www.nist.gov/sites/default/files/documents/itl/ssd/is/NRE-2015-04-iakymchuk.pdf, Nov 2015.

[22] R. W. Robey, J. M. Robey, and R. Aulwes, “In search of numerical consistency in parallel programming,” Parallel Computing, vol. 37, no. 4-5, pp. 217–
229, 2011.

[23] R. Robey, “Global sum examples,” https://github.com/LANL/GlobalSums, 2019.

[24] R. Robey and Y. Zamora, “Vectorization examples,” https://github.com/EssentialsofParallelComputing/Chapter6, 2019.



Slide 29U N C L A S S I F I E D
Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Kahan Vectorized


