
Project 3:
Directories

COP 4610 / CGS 5765

Principles of Operating Systems

Outline

 File/Directory Names

 Creating Directories

 Undelete

 Problem of orphaned data

 File removal walkthrough

 Directory removal walkthrough

2

File/Directory Names

 <main_part (8 bytes)>.<extension (3 bytes)>

 Each part is padded with trailing spaces

 DIR_Name[0] may not equal 0x20
 There is an implied “.” character between the main part of

the name and the extension part of the name that is not
present in DIR_Name

 Lower case characters are not allowed in DIR_Name (i.e.,
in the record entry)

 Cannot contain
 spaces (0x20)
 . (0x2E)
 …

Creating Directories

 ATTR_DIRECTORY bit set
 DIR_FileSize set to 0
 Allocate one cluster

 Set DIR_FstClusLO and DIR_FstClusHI

 EOC mark in FAT

 Create dot and dotdot special entries
 dot – points to itself
 dotdot – points to starting cluster of parent
 root directory does not contain dot and dotdot files

as the first two directory entries in the directory

UNDELETE

Undelete

 Find information not overwritten

 Example:

 Find records marked with 0xE5

 Cluster number

 Size

 Partial file name

name cluster # size E5 ...

17 19 14 0 0 0 25

17 19 14 7 8 EoC 25

Allocate

Undelete

 Recover first cluster

 Subsequent clusters

 Based on file size

 Return next unallocated clusters

 Allocated clusters are very likely not part of
the deleted file

Undelete

17 19 14 0 0 25 0

17 19 14 7 9 25 EoC

Allocate

Example Sequence

time

delete create write

fatB fatA fatA

fatX – state of FAT

τa

Undelete

 System state at τa
 File data available

 What is deleted?
 Assume

 Cluster data is not deleted
 FAT entries corresponding to file clusters are marked as free
 First byte of directory record is overwritten with 0xE5

 File’s data clusters
 Set of clusters

 Difference between fatA and fatB

 Cluster order (linked list)
 Same as allocation

13

ORPHANS

What is orphaned data?

 Orphaned data – data marked as valid but

unreached through standard filesystem

operations

 How could this ever happen?

14

Orphan Example

 Suppose we want to delete a file

 It has

 directory entry with a first cluster number

 Data clusters

 FAT entries

15

DATA

DATA

16

FAT

 1 2 3 4 5 6 7

Dir Entry: First Cluster # 3

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

Our sample file

starts at cluster 3

and continues to

cluster 4.

Orphan Example

 Locating a file’s contents begins by reading

its directory entry contents

 What if we start deleting there?

17

Orphan Example

DATA

DATA

Orphan Example

18

FAT

 1 2 3 4 5 6 7

Dir Entry: First Cluster # 3

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

Step 1: Read the

file’s first cluster

number into

memory.

DATA

DATA

Orphan Example

19

FAT

 1 2 3 4 5 6 7

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

Step 2: Delete the

file’s directory

entry.

DATA

DATA

Orphan Example

20

FAT

 1 2 3 4 5 6 7

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

Step 3: Look up

cluster 3 in the

FAT.

DATA

DATA

Orphan Example

21

FAT

 1 2 3 4 5 6 7

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

Step 4: Read the

file’s next cluster

number into

memory (4).

DATA

DATA

Orphan Example

22

FAT

 1 2 3 4 5 6 7

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

Crash!

Orphan Example

 System crashed requiring a reboot

 Is the data we were deleting reachable

through filesystem operations?

23

DATA

DATA

Orphan Example

24

FAT

 1 2 3 4 5 6 7

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

No starting point

to reach

remaining data

of delete

operation…

DATA

DATA

Orphan Example

25

FAT

 1 2 3 4 5 6 7

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

Leftover entries

in the FAT that

will not be

reclaimed…

Allocated disk

space never

reclaimed…

Preventing Orphans

 How can we avoid the chance of orphans

from a delete?

 Answer: delete starting with the end of the

linked list (backwards)!

26

DATA

DATA

Preventing Orphans

27

FAT

 1 2 3 4 5 6 7

Dir Entry: First Cluster # 3

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

Step 1: Read through

entire file until we

find the last cluster

entry for the file in

the FAT

DATA

DATA

Preventing Orphans

28

FAT

 1 2 3 4 5 6 7

Dir Entry: First Cluster # 3

3

4

4

Index

Next Cluster

Cluster

numbers

Step 2: Mark the last

cluster as free. What

happens if we crash

here?

DATA

DATA

Preventing Orphans

29

FAT

 1 2 3 4 5 6 7

Dir Entry: First Cluster # 3

3

4

4

Index

Next Cluster

Cluster

numbers

Step 3: Find the new

last file cluster in the

FAT.

DATA

DATA

Preventing Orphans

30

FAT

 1 2 3 4 5 6 7

Dir Entry: First Cluster # 3

3

4

Index

Next Cluster

Cluster

numbers

Step 4: Mark the last

cluster as free.

DATA

DATA

Preventing Orphans

31

FAT

 1 2 3 4 5 6 7

3

4

Index

Next Cluster

Cluster

numbers

Step 5: Finally, if all

the FAT entries for

the file are marked

free, delete the

directory entry.

DATA

DATA

Preventing Orphans

32

FAT

 1 2 3 4 5 6 7

3

4

Index

Next Cluster

Cluster

numbers

Why don’t we zero

out the file’s data?

File Data Leftovers

 Most file systems only update metadata upon

deletion and leave old data as it was. Why?

 Old data will just be overwritten later

 Not accessible through filesystem operations

 It can take a significant amount of time to zero

over large amounts of file data

 May cause extra wear on the device

33

File Data Leftovers

 File recovery utilities leverage this situation

 Scans the file system for data clusters that are not

currently allocated

34

35

FILE DELETION

File Deletion : rm

1. Check that the file to removed is a file and does

exist

 Cannot use this utility command to delete a directory

2. Seek to the last cluster entry in the FAT

3. Mark the last cluster entry in the FAT with the

free mark of 0x00000000

4. Repeat 2 and 3 until there are no more cluster

entries in the FAT

5. Delete the file’s directory entry

36

Deleting a Directory Entry

 Can just mark the first byte in the directory

entry to symbolize deletion

 If DIR_Name[0] == 0xE5, then the directory entry

is free (no file or directory name in this entry)

 If DIR_Name[0] == 0x00, then the directory entry

is free (same as for 0xE5), and there are no

allocated directory entries after this one

37

rm Use Cases

 Successful rm

/DIR/] ls

. .. CONST.TXT EMPTY.TXT HELLO.TXT

/DIR/] rm HELLO.TXT

/DIR/]

 Unsuccessful rm

/DIR/] rm NOTHERE.TXT

Error: ‘NOTHERE.TXT’ does not exist

/DIR/]

38

39

DIRECTORY DELETION

Directory Deletion: rmdir

1. Check that directory to be removed is empty

and is actually a directory

2. Go to step #2 for rm

 Rest of directions just like deleting a file!

40

rmdir Use Cases

 Successful rmdir

/DIRS/] rmdir A

/DIRS/]

 Unsuccessful rmdir

/DIRS/] rmdir B

Error: directory not empty

/DIRS/]

41

rmdir Use Cases

 Unsuccessful rmdir

/DIR/] cd ..

/] rmdir FATINFO.TXT

Error: not a directory

/]

42

