
Project 3:
Directories

COP 4610 / CGS 5765

Principles of Operating Systems

Outline

 File/Directory Names

 Creating Directories

 Undelete

 Problem of orphaned data

 File removal walkthrough

 Directory removal walkthrough

2

File/Directory Names

 <main_part (8 bytes)>.<extension (3 bytes)>

 Each part is padded with trailing spaces

 DIR_Name[0] may not equal 0x20
 There is an implied “.” character between the main part of

the name and the extension part of the name that is not
present in DIR_Name

 Lower case characters are not allowed in DIR_Name (i.e.,
in the record entry)

 Cannot contain
 spaces (0x20)
 . (0x2E)
 …

Creating Directories

 ATTR_DIRECTORY bit set
 DIR_FileSize set to 0
 Allocate one cluster

 Set DIR_FstClusLO and DIR_FstClusHI

 EOC mark in FAT

 Create dot and dotdot special entries
 dot – points to itself
 dotdot – points to starting cluster of parent
 root directory does not contain dot and dotdot files

as the first two directory entries in the directory

UNDELETE

Undelete

 Find information not overwritten

 Example:

 Find records marked with 0xE5

 Cluster number

 Size

 Partial file name

name cluster # size E5 ...

17 19 14 0 0 0 25

17 19 14 7 8 EoC 25

Allocate

Undelete

 Recover first cluster

 Subsequent clusters

 Based on file size

 Return next unallocated clusters

 Allocated clusters are very likely not part of
the deleted file

Undelete

17 19 14 0 0 25 0

17 19 14 7 9 25 EoC

Allocate

Example Sequence

time

delete create write

fatB fatA fatA

fatX – state of FAT

τa

Undelete

 System state at τa
 File data available

 What is deleted?
 Assume

 Cluster data is not deleted
 FAT entries corresponding to file clusters are marked as free
 First byte of directory record is overwritten with 0xE5

 File’s data clusters
 Set of clusters

 Difference between fatA and fatB

 Cluster order (linked list)
 Same as allocation

13

ORPHANS

What is orphaned data?

 Orphaned data – data marked as valid but

unreached through standard filesystem

operations

 How could this ever happen?

14

Orphan Example

 Suppose we want to delete a file

 It has

 directory entry with a first cluster number

 Data clusters

 FAT entries

15

DATA

DATA

16

FAT

 1 2 3 4 5 6 7

Dir Entry: First Cluster # 3

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

Our sample file

starts at cluster 3

and continues to

cluster 4.

Orphan Example

 Locating a file’s contents begins by reading

its directory entry contents

 What if we start deleting there?

17

Orphan Example

DATA

DATA

Orphan Example

18

FAT

 1 2 3 4 5 6 7

Dir Entry: First Cluster # 3

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

Step 1: Read the

file’s first cluster

number into

memory.

DATA

DATA

Orphan Example

19

FAT

 1 2 3 4 5 6 7

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

Step 2: Delete the

file’s directory

entry.

DATA

DATA

Orphan Example

20

FAT

 1 2 3 4 5 6 7

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

Step 3: Look up

cluster 3 in the

FAT.

DATA

DATA

Orphan Example

21

FAT

 1 2 3 4 5 6 7

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

Step 4: Read the

file’s next cluster

number into

memory (4).

DATA

DATA

Orphan Example

22

FAT

 1 2 3 4 5 6 7

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

Crash!

Orphan Example

 System crashed requiring a reboot

 Is the data we were deleting reachable

through filesystem operations?

23

DATA

DATA

Orphan Example

24

FAT

 1 2 3 4 5 6 7

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

No starting point

to reach

remaining data

of delete

operation…

DATA

DATA

Orphan Example

25

FAT

 1 2 3 4 5 6 7

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

Leftover entries

in the FAT that

will not be

reclaimed…

Allocated disk

space never

reclaimed…

Preventing Orphans

 How can we avoid the chance of orphans

from a delete?

 Answer: delete starting with the end of the

linked list (backwards)!

26

DATA

DATA

Preventing Orphans

27

FAT

 1 2 3 4 5 6 7

Dir Entry: First Cluster # 3

3

4

4 EoC

Index

Next Cluster

Cluster

numbers

Step 1: Read through

entire file until we

find the last cluster

entry for the file in

the FAT

DATA

DATA

Preventing Orphans

28

FAT

 1 2 3 4 5 6 7

Dir Entry: First Cluster # 3

3

4

4

Index

Next Cluster

Cluster

numbers

Step 2: Mark the last

cluster as free. What

happens if we crash

here?

DATA

DATA

Preventing Orphans

29

FAT

 1 2 3 4 5 6 7

Dir Entry: First Cluster # 3

3

4

4

Index

Next Cluster

Cluster

numbers

Step 3: Find the new

last file cluster in the

FAT.

DATA

DATA

Preventing Orphans

30

FAT

 1 2 3 4 5 6 7

Dir Entry: First Cluster # 3

3

4

Index

Next Cluster

Cluster

numbers

Step 4: Mark the last

cluster as free.

DATA

DATA

Preventing Orphans

31

FAT

 1 2 3 4 5 6 7

3

4

Index

Next Cluster

Cluster

numbers

Step 5: Finally, if all

the FAT entries for

the file are marked

free, delete the

directory entry.

DATA

DATA

Preventing Orphans

32

FAT

 1 2 3 4 5 6 7

3

4

Index

Next Cluster

Cluster

numbers

Why don’t we zero

out the file’s data?

File Data Leftovers

 Most file systems only update metadata upon

deletion and leave old data as it was. Why?

 Old data will just be overwritten later

 Not accessible through filesystem operations

 It can take a significant amount of time to zero

over large amounts of file data

 May cause extra wear on the device

33

File Data Leftovers

 File recovery utilities leverage this situation

 Scans the file system for data clusters that are not

currently allocated

34

35

FILE DELETION

File Deletion : rm

1. Check that the file to removed is a file and does

exist

 Cannot use this utility command to delete a directory

2. Seek to the last cluster entry in the FAT

3. Mark the last cluster entry in the FAT with the

free mark of 0x00000000

4. Repeat 2 and 3 until there are no more cluster

entries in the FAT

5. Delete the file’s directory entry

36

Deleting a Directory Entry

 Can just mark the first byte in the directory

entry to symbolize deletion

 If DIR_Name[0] == 0xE5, then the directory entry

is free (no file or directory name in this entry)

 If DIR_Name[0] == 0x00, then the directory entry

is free (same as for 0xE5), and there are no

allocated directory entries after this one

37

rm Use Cases

 Successful rm

/DIR/] ls

. .. CONST.TXT EMPTY.TXT HELLO.TXT

/DIR/] rm HELLO.TXT

/DIR/]

 Unsuccessful rm

/DIR/] rm NOTHERE.TXT

Error: ‘NOTHERE.TXT’ does not exist

/DIR/]

38

39

DIRECTORY DELETION

Directory Deletion: rmdir

1. Check that directory to be removed is empty

and is actually a directory

2. Go to step #2 for rm

 Rest of directions just like deleting a file!

40

rmdir Use Cases

 Successful rmdir

/DIRS/] rmdir A

/DIRS/]

 Unsuccessful rmdir

/DIRS/] rmdir B

Error: directory not empty

/DIRS/]

41

rmdir Use Cases

 Unsuccessful rmdir

/DIR/] cd ..

/] rmdir FATINFO.TXT

Error: not a directory

/]

42

