
Project 3:
An Introduction to File Systems

COP 4610 / CGS 5765

Principles of Operating Systems

Introduction

 Project 3 learning objectives

 File system design and implementation

 File system testing

 Data serialization/de-serialization

Project 3 Expectations

 Teams of 2

 Partner is required

 Program executes in user-space, not kernel

 Source code

 C/C++ only

 Standard C/C++ libraries only

Project 3 Expectations

 Testing environment for grading

 MCH 202 lab machines

 You may develop on another machine just make
sure your program works on the machines in the
lab

 May require a demo

OVERVIEW

Typical Goals of File System Design

 Means for users (e.g., apps) to access data

 Store data

 Locate and retrieve data

 Uses persistent media (e.g., SSD, hard disks)

 Consistency (e.g., after power failure)

 Good performance

Persistent Storage

 Typically accessed as 1-dimenstional array of
data units

0 1 n - 2 n - 1 …

http://download.intel.com/pressroom/images/InsideHDDSSD.jpg

Design Questions

 How best to use persistent storage?
 Where to store data

 Fragmentation
 Performance

 What abstract data structure to use?
 Timing characteristics of storage device

 Additional information (metadata)
 User

 E.g., name of file, date stamps

 Filesystem
 E.g., pointers to locate specific data, journal

 Other considerations
 Guarantees to user

 E.g., data recoverable when file closed

 Media corruption/failure
 E.g., duplication

REAL-WORLD EXAMPLE

Running out of storage space?

 At least 64MB free plus space for your source

code

 To see how much storage space you have

remaining, issue the following command:

$> df -h

10

df -h

 /dev/sda1

 root file system (mounted at “/”)

 2.2GB currently available

12

MOUNTING FILE SYSTEMS

Unix File Hierarchy

 All files accessible in a UNIX system are

arranged in one big tree

 Also called the file hierarchy

 Tree is rooted (starts) at /

 Files may be spread across several devices

 The mount utility serves to attach a

filesystem to the file hierarchy

 E.g., mount filesystem on usb device

13

‘mount’ utility

 mount

 mount <device> <mount directory>

 ‘mount’ without arguments

 What device (e.g., partition) is mounted and
where

 Second example attaches a device or
partition to a directory

 May require root privileges

Mount Example

15

/dev/sda1

Mount point

The device sda partition 1 is mounted at “/”. All

files and dirs below “/” come from this device.

Mount Example

 Type command ‘mount’ without any

arguments to see what is mounted and where

16

Root “/” file

system

mounted

Mount Example

17

/dev/sda1
Now suppose we want our thumb

drive files accessible under

/mnt… /dev/sdb1

File Hierarchy Example

18

/dev/sda1

Mount point

Files from the thumb drive are

now accessible under /mnt
/dev/sdb1

Mount Example

 The ‘mount’ utility dynamically attaches

filesystems to the existing hierarchy

19

Mount Example

 The ‘mount’ command can dynamically

attach new devices to new mount points

20

Thumb drive

mounted

here

Unmounting

 umount <dir>

 In our example, the thumb drive was

mounted at /mnt, to unmount

 $> umount /mnt

 May require root privileges

21

System Configuration

 /etc/fstab

 List of filesystems and mount locations

 Mounting options
 auto-mount during boot

 read-only

 ...

 View output of dmesg when plugging in
device

Project 3

 You will create a user-space utility to
manipulate a FAT32 file system image

 No more kernel programming!

 Utility must provide a few basic operations on
a given FAT32 filesystem

 Must not corrupt the filesystem (i.e., deviate
from the specifications)

FAT32 Manipulation Utility

 open

 close

 create

 rm

 size

 fsinfo

 cd

 ls

 mkdir

 rmdir

 read

 write

24

Utility only recognizes the following built-in

commands:

File System Image

 Manipulation utility will work on a pre-

configured FAT32 file system image

 Raw FAT32 data structures

 Just like looking at the raw bytes of a disk partition

25

File System Image

 Your FAT32 manipulation utility will have to

 Open the FAT32 file system image

 Read parts of the FAT32 file system image and

interpret the raw bytes inside to service your

utility’s file system commands…

…just like a file system!

26

File System Image

 Sometimes you may want to check that you

haven’t corrupted your file system image, or

that you can add or write files successfully

 Mount your file system image with the OS FAT32

driver

 Just like the file system image is a device

27

File System Image Mount Example

28

File System Image Mount Example

29

File that contains a raw

image of a file system

File System Image Mount Example

30

Mount image onto /mnt

to read files in image

File System Image Mount Example

$> sudo mount -o loop fat32.img /mnt

$> cd /mnt

 fat32.img is your image file

 /mnt is your mounting directory

 Once the file is mounted, you can go into the

/mnt directory and issue all your normal file

system commands like:

 ls, cat, cd, …

 31

32

FAT32 DATA STRUCTURES

Terminology

 Byte
 8 bits
 Smallest addressable unit of processor

 Sector
 Smallest addressable unit of persistent storage device
 Typically 512 or 4096 bytes

 Cluster
 Group of sectors representing a chunk of data
 FAT32-specific

 FAT
 File Allocation Table
 Mapping of files to data

 3 main regions…

FAT32 Disk Layout

Reserved

Region

FAT

Region

Data

Region

Reserved Region

 Reserved Region – Includes the boot

sector, the extended boot sector, the file

system information sector, and a other

reserved sectors

Reserved

Region

FAT

Region

Data

Region

Boot Sector
FS Information

Sector

Additional
Reserved Sectors

(Optional)

FAT Region

 FAT Region – A map used to traverse the

data region. Contains mappings from cluster

locations to cluster locations

Reserved

Region

FAT

Region

Data

Region

File Allocation Table #1
Copy of File Allocation

Table #1

Data Region

 Data Region – Using the addresses from

the FAT region, contains actual file/directory

data

Reserved

Region

FAT

Region

Data

Region

Data structure storage

Endian

Big or little?

38

Endianness

 Order to interpret a 1-dimensional array of bytes to
form a larger data structure

 E.g., ints, shorts, long longs

 Big-endian

 Most significant byte first

 Big end first

 Little-endian

 Least significant byte first

 Little end first

 FAT32 is assumes little-endian formatting

Endianness

 Order to interpret a 1-dimensional array of bytes
to form a larger data structure
 E.g., ints, shorts, long longs

 Big-endian
 Most significant byte first
 Big end first

 Little-endian
 Least significant byte first
 Little end first

 FAT32 is assumes little-endian formatting

FAT32 Endianness

 Endianness matters in your project

 Integral values in FAT32 image

 E.g., short

 Directory entry attributes

Endianness Example

 Imagine you can only communicate three
letters at a time, and your word is “RAPID”

 Big-endian

 1. RAP

 2. ID

 Word = RAPID

 Little-endian

 1. PID

 2. RA

 Word = PIDRA (come again?)

Endianness Example

 short value = 15; /* 0x000F */

 char bytes[2];

 memcpy(bytes, &value, sizeof(short));

 In little-endian:

 bytes[0] = 0x0F

 bytes[1] = 0x00

 In big-endian:

 bytes[0] = 0x00

 bytes[1] = 0x0F

Endian Example

 int value = 13371337; /* 0x00CC07C9 */

 char bytes[4];

 memcpy(bytes, &value, sizeof(int));

 In little-endian:

 bytes[0] = 0xC9

 bytes[1] = 0x07

 bytes[2] = 0xCC

 bytes[3] = 0x00

 In big-endian:

 bytes[0] = 0x00

 bytes[1] = 0xCC

 bytes[2] = 0x07

 bytes[3] = 0x09

Value = 13,371,337
(0x 00 CC 07 C9)

index 0 1 2 3

little
endian

0xC9 0x07 0xCC 0x00

big
endian

0x00 0xCC 0x07 0xC9

Until Next Time

 Set up your environment

 Download the image file

 Mount the image file with the default OS

FAT32 drivers

 Make sure you can cd into /mnt and read/write to

the files

 Read over the FAT32 Specification

46

