
Project 3:
An Introduction to File Systems

COP 4610 / CGS 5765

Principles of Operating Systems

Introduction

 Project 3 learning objectives

 File system design and implementation

 File system testing

 Data serialization/de-serialization

Project 3 Expectations

 Teams of 2

 Partner is required

 Program executes in user-space, not kernel

 Source code

 C/C++ only

 Standard C/C++ libraries only

Project 3 Expectations

 Testing environment for grading

 MCH 202 lab machines

 You may develop on another machine just make
sure your program works on the machines in the
lab

 May require a demo

OVERVIEW

Typical Goals of File System Design

 Means for users (e.g., apps) to access data

 Store data

 Locate and retrieve data

 Uses persistent media (e.g., SSD, hard disks)

 Consistency (e.g., after power failure)

 Good performance

Persistent Storage

 Typically accessed as 1-dimenstional array of
data units

0 1 n - 2 n - 1 …

http://download.intel.com/pressroom/images/InsideHDDSSD.jpg

Design Questions

 How best to use persistent storage?
 Where to store data

 Fragmentation
 Performance

 What abstract data structure to use?
 Timing characteristics of storage device

 Additional information (metadata)
 User

 E.g., name of file, date stamps

 Filesystem
 E.g., pointers to locate specific data, journal

 Other considerations
 Guarantees to user

 E.g., data recoverable when file closed

 Media corruption/failure
 E.g., duplication

REAL-WORLD EXAMPLE

Running out of storage space?

 At least 64MB free plus space for your source

code

 To see how much storage space you have

remaining, issue the following command:

$> df -h

10

df -h

 /dev/sda1

 root file system (mounted at “/”)

 2.2GB currently available

12

MOUNTING FILE SYSTEMS

Unix File Hierarchy

 All files accessible in a UNIX system are

arranged in one big tree

 Also called the file hierarchy

 Tree is rooted (starts) at /

 Files may be spread across several devices

 The mount utility serves to attach a

filesystem to the file hierarchy

 E.g., mount filesystem on usb device

13

‘mount’ utility

 mount

 mount <device> <mount directory>

 ‘mount’ without arguments

 What device (e.g., partition) is mounted and
where

 Second example attaches a device or
partition to a directory

 May require root privileges

Mount Example

15

/dev/sda1

Mount point

The device sda partition 1 is mounted at “/”. All

files and dirs below “/” come from this device.

Mount Example

 Type command ‘mount’ without any

arguments to see what is mounted and where

16

Root “/” file

system

mounted

Mount Example

17

/dev/sda1
Now suppose we want our thumb

drive files accessible under

/mnt… /dev/sdb1

File Hierarchy Example

18

/dev/sda1

Mount point

Files from the thumb drive are

now accessible under /mnt
/dev/sdb1

Mount Example

 The ‘mount’ utility dynamically attaches

filesystems to the existing hierarchy

19

Mount Example

 The ‘mount’ command can dynamically

attach new devices to new mount points

20

Thumb drive

mounted

here

Unmounting

 umount <dir>

 In our example, the thumb drive was

mounted at /mnt, to unmount

 $> umount /mnt

 May require root privileges

21

System Configuration

 /etc/fstab

 List of filesystems and mount locations

 Mounting options
 auto-mount during boot

 read-only

 ...

 View output of dmesg when plugging in
device

Project 3

 You will create a user-space utility to
manipulate a FAT32 file system image

 No more kernel programming!

 Utility must provide a few basic operations on
a given FAT32 filesystem

 Must not corrupt the filesystem (i.e., deviate
from the specifications)

FAT32 Manipulation Utility

 open

 close

 create

 rm

 size

 fsinfo

 cd

 ls

 mkdir

 rmdir

 read

 write

24

Utility only recognizes the following built-in

commands:

File System Image

 Manipulation utility will work on a pre-

configured FAT32 file system image

 Raw FAT32 data structures

 Just like looking at the raw bytes of a disk partition

25

File System Image

 Your FAT32 manipulation utility will have to

 Open the FAT32 file system image

 Read parts of the FAT32 file system image and

interpret the raw bytes inside to service your

utility’s file system commands…

…just like a file system!

26

File System Image

 Sometimes you may want to check that you

haven’t corrupted your file system image, or

that you can add or write files successfully

 Mount your file system image with the OS FAT32

driver

 Just like the file system image is a device

27

File System Image Mount Example

28

File System Image Mount Example

29

File that contains a raw

image of a file system

File System Image Mount Example

30

Mount image onto /mnt

to read files in image

File System Image Mount Example

$> sudo mount -o loop fat32.img /mnt

$> cd /mnt

 fat32.img is your image file

 /mnt is your mounting directory

 Once the file is mounted, you can go into the

/mnt directory and issue all your normal file

system commands like:

 ls, cat, cd, …

 31

32

FAT32 DATA STRUCTURES

Terminology

 Byte
 8 bits
 Smallest addressable unit of processor

 Sector
 Smallest addressable unit of persistent storage device
 Typically 512 or 4096 bytes

 Cluster
 Group of sectors representing a chunk of data
 FAT32-specific

 FAT
 File Allocation Table
 Mapping of files to data

 3 main regions…

FAT32 Disk Layout

Reserved

Region

FAT

Region

Data

Region

Reserved Region

 Reserved Region – Includes the boot

sector, the extended boot sector, the file

system information sector, and a other

reserved sectors

Reserved

Region

FAT

Region

Data

Region

Boot Sector
FS Information

Sector

Additional
Reserved Sectors

(Optional)

FAT Region

 FAT Region – A map used to traverse the

data region. Contains mappings from cluster

locations to cluster locations

Reserved

Region

FAT

Region

Data

Region

File Allocation Table #1
Copy of File Allocation

Table #1

Data Region

 Data Region – Using the addresses from

the FAT region, contains actual file/directory

data

Reserved

Region

FAT

Region

Data

Region

Data structure storage

Endian

Big or little?

38

Endianness

 Order to interpret a 1-dimensional array of bytes to
form a larger data structure

 E.g., ints, shorts, long longs

 Big-endian

 Most significant byte first

 Big end first

 Little-endian

 Least significant byte first

 Little end first

 FAT32 is assumes little-endian formatting

Endianness

 Order to interpret a 1-dimensional array of bytes
to form a larger data structure
 E.g., ints, shorts, long longs

 Big-endian
 Most significant byte first
 Big end first

 Little-endian
 Least significant byte first
 Little end first

 FAT32 is assumes little-endian formatting

FAT32 Endianness

 Endianness matters in your project

 Integral values in FAT32 image

 E.g., short

 Directory entry attributes

Endianness Example

 Imagine you can only communicate three
letters at a time, and your word is “RAPID”

 Big-endian

 1. RAP

 2. ID

 Word = RAPID

 Little-endian

 1. PID

 2. RA

 Word = PIDRA (come again?)

Endianness Example

 short value = 15; /* 0x000F */

 char bytes[2];

 memcpy(bytes, &value, sizeof(short));

 In little-endian:

 bytes[0] = 0x0F

 bytes[1] = 0x00

 In big-endian:

 bytes[0] = 0x00

 bytes[1] = 0x0F

Endian Example

 int value = 13371337; /* 0x00CC07C9 */

 char bytes[4];

 memcpy(bytes, &value, sizeof(int));

 In little-endian:

 bytes[0] = 0xC9

 bytes[1] = 0x07

 bytes[2] = 0xCC

 bytes[3] = 0x00

 In big-endian:

 bytes[0] = 0x00

 bytes[1] = 0xCC

 bytes[2] = 0x07

 bytes[3] = 0x09

Value = 13,371,337
(0x 00 CC 07 C9)

index 0 1 2 3

little
endian

0xC9 0x07 0xCC 0x00

big
endian

0x00 0xCC 0x07 0xC9

Until Next Time

 Set up your environment

 Download the image file

 Mount the image file with the default OS

FAT32 drivers

 Make sure you can cd into /mnt and read/write to

the files

 Read over the FAT32 Specification

46

