Project 3:
An Introduction to File Systems

COP 4610 / CGS 5765
Principles of Operating Systems

Introduction

Project 3 learning objectives
0 File system design and implementation

o File system testing
o Data serialization/de-serialization

Project 3 Expectations

Teams of 2
o Partner is required
Program executes in user-space, not kernel

Source code
o C/C++ only
o Standard C/C++ libraries only

Project 3 Expectations

Testing environment for grading
2 MCH 202 lab machines

2 You may develop on another machine just make

sure your program works on the machines in the
lab

May require a demo

OVERVIEW

Typical Goals of File System Design

Means for users (e.g., apps) to access data

0 Store data
0 Locate and retrieve data

Uses persistent media (e.g., SSD, hard disks)
Consistency (e.g., after power failure)

Good performance

Persistent Storage

= Typically accessed as 1-dimenstional array of
data units

http://download.intel.com/pressroom/images/InsideHDDSSD.jpg

Desigh Questions

How best to use persistent storage?

Where to store data
o Fragmentation

0 Performance
What abstract data structure to use?
Timing characteristics of storage device

Additional information (metadata)
o User
E.g., name of file, date stamps
o Filesystem
E.g., pointers to locate specific data, journal
Other considerations
o Guarantees to user
E.g., data recoverable when file closed

o Media corruption/failure
E.g., duplication

REAL-WORLD EXAMPLE

Running out of storage space?

At least 64MB free plus space for your source
code

To see how much storage space you have
remaining, issue the following command:

$> df -h

10

@ user@copdtll: ~

/dev/sdal

a root file system (mounted at “/”)
o 2.2GB currently available

MOUNTING FILE SYSTEMS

Unix File Hierarchy

All files accessible in a UNIX system are
arranged in one big tree

o Also called the file hierarchy
o Tree is rooted (starts) at /

Files may be spread across several devices

The mount utility serves to attach a
filesystem to the file hierarchy

E.g., mount filesystem on usb device

13

‘mount’ utility

mount
mount <device> <mount directory>

‘mount’ without arguments

What device (e.g., partition) is mounted and
where

Second example attaches a device or
partition to a directory

May require root privileges

Mount Example

Mount point ‘ -
l /mnt \l /boot l/home l /lib
|

lfiles... lfiles... files...

The device sda partition 1 is mounted at “/”. All
/dev/sdal files and dirs below “/” come from this device.

Mount Example

Type command ‘'mount’ without any
arguments to see what is mounted and where

user@copdgll: ~

[I'W, errors=remount-ro) _
ype tmpfs (rw,nosu '

T . T

16

Mount Example

/dev/sdal

l /mnt \l /boot
|

ml—l—

l/home l /lib
|

files... files...

/dev/sdbl

Now suppose we want our thumb
drive files accessible under
/mnt...

17

File Hierarchy Example

Mount point -l /mnt l /boot
|
' files... l files... l l

/dev/sdal

l/home l /lib
|

files... files...

/dev/sdbl

Files from the thumb drive are
now accessible under /mnt

18

Mount Example

The ‘mount’ utility dynamically attaches
filesystems to the existing hierarchy

user@copd6ll: ~ | = | [E] |-

uid, mode=0755)

d, nodewv

19

Mount Example

The ‘mount’ command can dynamically
attach new devices to new mount points

user@copd6ll: ~ | = | [E] |-

uid, mode=0755)

d, nodewv

Unmounting

umount <dir>

In our example, the thumb drive was
mounted at /mnt, to unmount
o $> umount /mnt

o May require root privileges

21

System Configuration

/etc/fstab
o List of filesystems and mount locations

Mounting options
o auto-mount during boot
o read-only

D RO)

View output of dmesg when plugging in
device

Project 3

You will create a user-space utility to
manipulate a FAT32 file system image

2 No more kernel programming!

Utility must provide a few basic operations on
a given FAT32 filesystem

0 Must not corrupt the filesystem (i.e., deviate
from the specifications)

FAT32 Manipulation Utility

Utility only recognizes the following built-in

commands:

open
close
Create
rm
Size
fsinfo

cd

IS
mkdir
rmdir
read
write

24

File System Image

Manipulation utility will work on a pre-
configured FAT32 file system image

Raw FAT32 data structures
o Just like looking at the raw bytes of a disk partition

25

File System Image

Your FAT32 manipulation utility will have to
o Open the FAT32 file system image

o Read parts of the FAT32 file system image and
Interpret the raw bytes inside to service your
utility’s file system commands...

...Just like a file system!

26

File System Image

Sometimes you may want to check that you
haven’t corrupted your file system image, or
that you can add or write files successfully

o Mount your file system image with the OS FAT32
driver

o Just like the file system image is a device

27

File System Image Mount Example

]

/home

l /mnt \l /boot

/user

l /lib
|)

files...

Hinin

fat32.img

28

File System Image Mount Example

]

l /mnt \l /boot l/home l /lib
I)
lflles l /user lfiles...

File that contains a raw
Image of a file system

l fat32.img \

29

File System Image Mount Example

-]

l /boot l /home l /lib
I I I
l files... l files... l /user l files...
)) |)
Mount irr_lage_: o_nto /mnt l fat32.img \
to read files in image

30

File System Image Mount Example

$> sudo mount -o loop fat32.img /mnt
S> cd /mnt

fat32.img IS your image file
/mnt IS your mounting directory

Once the file Is mounted, you can go into the
/mnt directory and issue all your normal file
system commands like:

a Is, cat, cd, ...

31

FAT32 DATA STRUCTURES

Terminology

Byte

o 8 bits

0 Smallest addressable unit of processor
Sector

o Smallest addressable unit of persistent storage device
o Typically 512 or 4096 bytes

Cluster

o Group of sectors representing a chunk of data
0 FAT32-specific

FAT

o File Allocation Table

o0 Mapping of files to data

FAT32 Disk Layout

= 3 main regions...

Reserved

Region

Reserved Region

= Reserved Region — Includes the boot
sector, the extended boot sector, the file
system information sector, and a other

reserved sectors

Reserved

Region

7’ ~
7 N
7’ ~
7 \\
< N

Z
. Additional
Boot Sector FS Ig@étrg?tlon Reserved Sectors
(Optional)

FAT Region

= FAT Region — A map used to traverse the
data region. Contains mappings from cluster
locations to cluster locations

Reserved
Region

Copy of File Allocation

File Allocation Table #1 Table #1

Data Region

= Data Region — Using the addresses from
the FAT region, contains actual file/directory
data

Reserved

Region

/ \
/ \
/ \
\

Data structure storage

Endian

Big or little?

38

Endianness

Order to interpret a 1-dimensional array of bytes to
form a larger data structure

E.qg., Ints, shorts, long longs
Big-endian

Most significant byte first

Big end first
Little-endian

Least significant byte first

Little end first
FAT32 is assumes little-endian formatting

Endianness

Order to interpret a 1-dimensional array of bytes
to form a larger data structure

o E.g., ints, shorts, long longs
Big-endian

0 Most significant byte first
0 Big end first

Little-endian

0 Least significant byte first

o Little end first

FAT32 is assumes little-endian formatting

FAT32 Endianness

Endianness matters in your project

o Integral values in FAT32 image
E.g., short

o Directory entry attributes

Endianness Example

Imagine you can only communicate three
letters at a time, and your word is “RAPID”

Big-endian
o 1.RAP

o 2.1D
o Word = RAPID

Little-endian
o 1. PID
o 2. RA
o Word = PIDRA (come again?)

Endianness Example

short value = 15; /* OxO00F */
char bytes|2];
memcpy(bytes, &value, sizeof(short));

In little-endian:
o bytes[0] = OxOF
o bytes[1] = 0x00
In big-endian:
o bytes[0] = 0x00
o bytes[1] = OxOF

Endian Example

Int value = 13371337; /* OxO0CCO7C9 */

char bytes|[4];

memcpy(bytes, &value, sizeof(int));

In little-endian: In big-endian:
o bytes|[0] = OxC9 o bytes|[0] = 0x00
o bytes[1] = Ox07 o bytes[1l] = OxCC
o bytes[2] = OxCC o bytes[2] = 0x07
o bytes[3] = 0x00 o bytes[3] = 0x09

Value = 13,371,337
(0Ox 00 CC 07 C9)

big
endian 0x00 OxCC 0x07 0xC9

Until Next Time

Set up your environment
Download the image file

Mount the image file with the default OS
FAT32 drivers

o Make sure you can cd into /mnt and read/write to
the files

Read over the FAT32 Specification

46

