Project 2
System Calls, Kernel Modules & Schedulers

Assigned: September 19, 2014
Due (parts 1 and 2): October 2, 2014
Due (part 3): October 22, 2014

Restrictions
Must be written in C and compiled with GCC.

Part 1

System Calls
A system call is a function provided by the kernel that can be called from the user space. Calls made to these functions will be executed by the kernel in the kernel space. Ultimately, every program can be broken down into effective system calls. In order to perform input or output, the kernel must be leveraged to interact with the hardware.

Task
Write a program in the user space that uses exactly 20 system calls). The source should involve only the file tracetest.c and should be compiled with the following command:

gcc -o tracetest tracetest.c

You can verify how many system calls are made with the command:

strace -o log tracetest

strace will trace the system calls and the signals of tracetest and output the results to the text file log.

Part 2

Proc Files
Recall that files in /proc are not real files, but virtual files. When these files are ‘read’ or ‘written’, the kernel calls a function and passes it to the read/write buffer. The function then determines what goes into the buffer (for reading) or what gets done with written data (for writing).

Kernel Modules
Kernel modules are like “plugins” or “addons” for the kernel - they implement kernel functionality (run in kernel space) but are not compiled into the core kernel. Instead, they are loaded and unloaded “hot” with commands, such as insmod and rmmod.

Task
Write a kernel module called my_date that creates a virtual file in /proc. When the module is inserted, the file should appear in /proc. The file should be called currentdate and should always contain the current time in the format year-month-day hour:minute:second.
In other words, the following two commands should print the same thing to stdout:

date +"%Y-%m-%d %H:%M:%S"

cat /proc/currentdate

When the my_date module is removed, the file currentdate should disappear /proc.

Hints
The kernel variable xtime is a struct that contains the current time in seconds
The function time_to_tm can convert the current time in seconds to a tm struct

[bookmark: _GoBack]Note: Parts 1 and 2 are due before part 3.

Part 3

Schedulers
A kernel typically buffers requests that cannot be serviced until such a time when the resource required is available. Often, reordering is done to try and increase overall efficiency (more important things go first, shorter things go first, and so on). This process is called scheduling. As an example, consider the IO scheduler - many requests for reading or writing a disk arrive at once but cannot all be serviced at once. Instead, the kernel buffers these requests and reorders them (e.g., things stored adjacent to each other on the disk get serviced together).

Background
Many big airports have multiple terminals, and passengers can take shuttles from one terminal to the other terminal. Suppose that there are five terminals: Terminal 1, 2, 3, 4, and 5, located in one line and there is one shuttle going back and forth. It takes the shuttle 30 seconds to get to the next terminal.
There are three types of passengers that will use your shuttle service:
Child - A child needs only half of a seat during transit. If there are two children, they can share one seat.
Adult without luggage - An adult without luggage needs only one seat during transit.
Adult with luggage - An adult with luggage needs two seats because he or she needs an extra seat to put his or her luggage.

Each passenger requests a pickup from his or her current Terminal and has a destination in mind. Your goal is to maximize the total number of passengers delivered per second. The shuttle service is the only way to get to those terminals, so people in queue will stay there and never try to find another way, which means that you cannot let them wait forever.

Your shuttle has 25 seats maximum.

Task
Implement the following system calls in a kernel module

int start_shuttle(void)
A shuttle begins at Terminal C with no passenger onboard and no passenger waiting at all terminals, and with a shuttle status of either PARKED or MOVING. The call returns 1 if the service has already been started and 0 if it was started successfully.

int issue_request(char passenger_type, int initial_terminal,
int destination_terminal)
This call queues a passenger with the given parameters. The shuttle will then be able to pick up this passenger if the shuttle is currently at terminal initial_terminal, and the sum of all current passengers’ seats requirements, plus the passenger_type’s requirements, is at most 25. Once they have been loaded, they may be unloaded once the shuttle is at destination_terminal. This function returns 1 if the request is not valid (invalid argument range) and 0 otherwise.

	Type
	Name
	Compartments Required

	‘C’
	Child
	0.5

	‘A’
	Adult without luggage
	1

	‘L’
	Adult with luggage
	2

int stop_shuttle(void)
This call deactivates the shuttle service. The shuttle must not pick up any more passengers; however, before the shuttle can be considered closed, it must unload all of its current passengers. The call
returns 1 if the shuttle is already deactivated or is in the process of unloading all its passengers for deactivation. The call returns 0 otherwise.

In addition to the above system calls, you must provide a proc file called terminal, which when read must give the following information: (Please see example at the end)
Status (OFFLINE / DEACTIVATING / MOVING / PARKED)
OFFLINE - start_shuttle should be called to change the state
DEACTIVATING - stop_shuttle has been called and the shuttle is unloading passengers so that it can move to the OFFLINE state
MOVING - the terminal is currently in route to a new destination
PARKED - the terminal is currently loading or unloading passengers
Current seats used / available
Current number of passengers and their type
Current location [1-5] (If status is MOVING, this should be the previous location)
Destination location [1-5] (If status is PARKED this should be the next intended destination, or 0 if that has not been calculated yet)
Running total of passengers unloaded thus far and their types
A summary of who is in queue at the five terminals as follows (should be 5 lines):
Terminal [1-5]: W children, X adult without luggage, Y adult with luggage in queue. Z passengers delivered so far.
If status is OFFLINE, it should still print a summary of passengers delivered during the last phase in which it was running.

Notes
If the shuttle is going from terminal 1 to 3, it takes 60 seconds. If it is going from terminal 5 to terminal 1 it takes 120 seconds. (abs(X - Y) * 30 seconds)
The shuttle should wait 10 seconds every time it stops at one terminal if there are no more than 4 passengers who wish to load or unload.
The shuttle should wait 3 seconds more for each passenger if there are more than 4 passengers who wish to load or unload. For example, if the shuttle leaves a terminal having removed 2 passengers from its queue(load 2 passengers), it should wait 10 seconds before changing its status to MOVING. If the shuttle leaves a terminal having removed 3 passengers from its queue and delivered 3 passengers, it should wait 16 seconds.(10 + 3*2 = 16)
The shuttle can choose not to stop at the terminal, and then it does not have to wait. However, once it stops, it should wait at least 10 seconds even when there is no passenger to load or unload.
You can pick up passengers in any order you wish (there is no order related to their queue order).
You should write one and only one kernel module to simulate the shuttle running.
You will need to write a user-space program to test your system calls. A lot of this project has to do with strong testing.
This is a simulation program, and you should simulate the delay by sleeping. To accelerate this simulation, every 10 msec represents 1 second wall clock time.
You should outline your algorithm using pseudo-code in your report.

Submission
The team leader should submit a tarball to BlackBoard by the due dates containing the following
The project report
a README
All source code/Makefiles/etc in the src folder
Do not submit binaries
Parts 1-2: Named GroupName.Project2.part1and2.tar.gz
tar cfzv NamedGroupName.Project2.part1and2.tar.gz *
Part 3: Named GroupName.Project2.part3.tar.gz
tar cfzv NamedGroupName.Project2.part3.tar.gz *
Please include your test program (user space)

For part 3, a demo is required. You will sign up for a time to demo online and submit the source as normal. During your demo, you will bring your machine of choice (VM, laptop, lab, and so on) and demonstrate compiling, loading, and testing your module. All members should come and be able to demonstrate compiling, loading, and testing your work.

Extra Credit
The three teams to deliver the most passengers in the allotted time against my own data set will receive 10 extra credit points.

Example Output
cat /proc/terminal

Status:		MOVING
Seats:		17 used 8 available
Passengers:	16 (4 adult with luggage, 6 adult without luggage, 6 children)
Location:	3
Destination:	2
Delivered:	72 (21 adult with luggage, 18 adult without luggage, 33 children)

Terminal 1:1 adult with luggage, 2 adult without luggage, 0 children in queue. 18 passengers delivered so far.
Terminal 2:3 adult with luggage, 1 adult without luggage, 4 children in queue. 12 passengers delivered so far.
Terminal 3:1 adult with luggage, 1 adult without luggage, 2 children in queue. 24 passengers delivered so far.
Terminal 4:1 adult with luggage, 2 adult without luggage, 1 children in queue. 3 passengers delivered so far.
Terminal 5:0 adult with luggage, 0 adult without luggage, 3 children in queue. 15 passengers delivered so far.

