
Project #1:
Week 2

Principles of Operating Systems (LAB)

COP4610/CGS 5765

Overview

• Lab Information

• Teams

• How to get started

• Environment Variables

• Searching for a command using $PATH

• Starting Programs

• Questions

Project Weights

•Project #1: 30%

•Project #2: 40%

•Project #3: 30%

Lab

• You should have access to the lab
outside of recitation
– Exceptions include other class

meeting times as listed on course
website

– If you cannot access the lab (i.e.,
your card/pin does not unlock the
door), let me know

• Make sure the lab door is closed if
you are the last one to leave!

MCH
202

Teams for Project #1

• Everyone should have a partner

• If you have not done so, email me your team
(i.e., the two members)

How Should I Get Started?

• Understand the requirements

• Design
– Break the project into smaller pieces

– Flow of program
• Event-driven (what are the events?)

• Time-driven (what are the time instants?)

– Pseudo code
• Repeating sequences (loops)

– State diagram

• Discuss with team member

How Should I Get Started?

• Coding

int main()

{

 <small piece of project>

 return 0;

}

• see
http://www.cs.fsu.edu/~cop4610t/assignments/project1/code_snippets/
waitpid/main.c

ENVIRONMENT VARIABLES

Process

Data &
Instructions

Other Data &
Instructions

Environment Variables

• Mechanism to allow a program’s operation to
change based on a given value

– E.g.,

• $PATH

• $HOME

• $CC

Environment Variables

• SYNOPSIS

#include <stdlib.h>

char *getenv(const char *name);

• Returns

– pointer to the value of the name environmental
variable, if it exists

– null pointer if name does not exist

Environment Variables
(Example)

#include <stdlib.h>

...

const char *name = "HOME";

char *value;

value = getenv(name);

if(value) {

 ...

SEARCHING FOR AN EXECUTABLE

$PATH

• Allows one to easily run executables

• Colon separated list of directories

• Used by shell to find command, unless the
command:

– is a built-in command (e.g., cd)

– has a slash (e.g., ./a.out)

• E.g.,
<prompt> ls

Example

PATH=/usr/local/bin:/usr/bin

<prompt> ls

• Potential command locations

/usr/local/bin/ls

/usr/bin/ls

WAITPID()

waitpid()

• Mechanism to operate based on status of
child process(es)

– Child exited?

– Child still running?

waitpid() common usage

• Blocking
waitpid(-1, (int *)NULL, 0);

• Non-blocking
waitpid(-1, (int *)NULL, WNOHANG);

• -1

– status is requested for any child process

• (int *) NULL

– if the value of the argument stat_loc is not a null pointer, information
shall be stored in the location pointed to by stat_loc

• WNOHANG

– shall not suspend execution of the calling thread if status is not
immediately available for one of the child processes specified by pid.

waitpid() (foreground)

...

execv()

...

child fork()

waitpid()

parent

...

 ti
m

e

waitpid() (background)

...

execv()

...

child
fork()

waitpid()

...

parent

ti
m

e

QUESTIONS

