
Project #1:
Command-Line User Interface Shell

and Utilities

Outline

• Background

• General Requirements/Assumptions

• Implementation Tools

• Details

• Questions

Operating Systems

• Provides resources and services

– Examples

• High-level interactions with user

• Protection mechanisms (e.g., process model)

• Processor scheduling

• Synchronization (Serialization) of executing code

• Filesystem

Project #1

Project #2

Project #3

OS

Base System

in
p

u
t

o
u

tp
u

t

HW

Command-Line Shell

• Provides means for user to interact with OS

– View/modify state of the system

• Simple and easy to use

• Considered a component of the OS

Requirements

• User prompt
• “built-in” utilities (Execute utility directly without

searching for it)
– cd
– ioacct
– exit

• Start the execution of programs
– background

• I/O redirection
• input
• output
• pipelining

Assumptions/Requirements

• Program written in C

• Makefile to build program

• No zombie processes

• No memory leaks

IMPLEMENTATION TOOLS

gcc Compiler

• Warnings are your friend and you don’t ignore
your friends (most of the time)

• Useful gcc options
– Wall

– Wextra

– pedantic

– Wconversion

– Wshadow

– std=c11 or -std=c99

Makefile

• Targets
– Name of file

– Name of an action

• Prerequisites
– File/action that target depends on

– E.g., Source code files to create executable

• Recipe
– Actions to create target file or satisfy named

action

target(s) : dependency(ies)

<tab>recipe

...

PROJECT DETAILS

Prompt

<username>@<hostname>:<working_directory> $

Example:

cop4610t@linprog:/home/grads/cop4610t $

I/O Redirection

Text Terminal

Process

Keyboard

Display

I/O Redirection

Text Terminal

Process

Keyboard

Display

FILE
A

FILE
B

Redirect

FILE
A open()

 returns file descriptor

STDOUT_FILENO
Process

dup2(fd_A, STDOUT…)

Display

fd_A

File Descriptors

Kernel

File Descriptor Table
(per-process)

ptr to terminal i/p

pointer to file A

ptr to terminal o/p

pointer to file A

<empty>

File Descriptors

File Descriptor Table
(per-process)

ptr to terminal i/p

pointer to file A

ptr to terminal o/p

pointer to file A

<empty>

Kernel
Open File Table

Off-set … inode

Protection

Kernel Space

User Space

dup2()

QUESTIONS?

