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Abstract 

A Markov Chain (or a Markov Process) is a stochastic 

process that satisfies the Markov Property on a fine or 

countable state space. The Markov Property refers to the 

property of a process that can make predictions for the 

future of the process based solely on its present state, not the 

sequence of events that preceded it. We apply the Markov 

decision process to a stochastic, discrete environment 

described by Roters (1998) as a dice game. Using the 

Markov process derives an optimal strategy to go about 

maximizing a player’s score. 

 Introduction   

The dice game Roters (1998) described a competition 

where a player would continuously roll a fair 6-sided die, 

adding the numbers rolled to the player’s total score until 

either (1) the player rolls the number “1”, which will reset 

the player’s score to 0 and end his turn, or (2) the player 

decides to end his turn early by not rolling and keeping the 

total number of points accumulated. A player’s turn will 

always end with some positive score if he chooses to end 

early or a score of 0. On the end of a player’s turn, the 

opponent will then take his turn, and will repeat the steps 

of the game. The winner is decided by whoever first 

reaches a certain number score. 

 The dice game is considered a stochastic game (Shapley, 

1953), such that the play proceeds by steps from position 

to position, according to transition probabilities controlled 

jointly by the two players. Each step involves making the 

choice of rolling the die or ending your turn. Each 

transition involves either the player choosing to end his 

turn or rolling a 1, or rolling some other number to move to 

the next step. 

 Different strategies were developed using varying 

approaches. Roters (1998) derives the strategy that 

maximizes the expected score over one turn. Roters & 

Haigh (2000) found the strategy that minimises the 

expected number of turns required to reach the target, 
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while Crocce & Mordecki (2009) provides an algorithm to 

compute the optimal minimax strategy for the dice game. 

Background 

Stochastic Games 

As introduced by Shapley (1953), a stochastic game is a 

dynamic game played by one or more players. Stochastic 

games involve probabilistic transitions played in a 

sequence of states, each of which are unconcerned by the 

previous state. On a given state, a player will choose an 

action which transitions the game into a new state, 

dependent on the previous state and the actions chosen by 

the player. These transitions are continued for either a 

finite or infinite amount of states, either which the game 

ends if a goal is reached or, in the case of finite states, the 

maximum number of states is reached.  

 In Roters’ (1998) dice game, it is clear that with a goal 

of a certain number of points, we are involved in a 

stochastic game continued for an finite number of states 

until the goal is reached. 

 

Markov Decision Process 

Markov decision processes (MDPs) model contains a finite 

set of states s, a finite set of actions a, a reward 

      
              |    |      received after the 

transition from initial state at time    to the new state     , 

and lastly the probability       
   that state s leads to new 

state s’ given action a. Crocce & Mordecki (2009) defines 

our game of interest as a competitive Markov decision 

process (also known as a stochastic game) and states the 

use of two-players, finite-state and finite-action, zero-sum 

games, driven by payoffs and transition probabilities. 

 The difference between a MDP and a Markov Chain 

comes from the addition of actions and rewards. While 

Markov Chains only have one action per state, a MDP 

states may contain more than one action, with each 

action giving its unique rewards. MDPs with only one 

action for each state with identical rewards would be 

comparable to a Markov Chain.   

 

 



 

Figure 1: MDP of Roters’ (1998) Dice Game containing a 

state for each player’s turn and their actions. 

 

 

Markov Chain 

In this paper we’ll be using a Markov Chain by assuming 

the player will only take the action to roll until the 

probability of rolling a 1 becomes a greater risk than 

rolling a number not equal to 1 or ending the turn early. By 

finding the optimal number of rolls by reducing the risk of 

losing points, the optimal strategy to maximize the number 

of points can be found. 

A Markov chain has the Markov property, meaning the 

present state is independent to the past and future states, 
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The transition matrix P will remain the same for each state, 

and each state x can be written as a stochastic row vector 

with the relation         . By using a Markov Chain, a 

stationary distribution can be found which will represent 

the optimal number of rolls to take per turn in the form of a 

steady state vector. 

The Dice Game 

With the start of the game, the player is assumed to 

always take the first roll over ending his turn since it 

would be meaningless to end the turn with no 

accumulated points. 

 The transition matrix P is defined as 
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and the initial state    = [5/6 1/6] due to the player always 

taking the action to roll over on the first turn. With just 

these two values, the probability of rolling a number not 

equal to 1 equates to 83.33%, while the probability of 

rolling a 1 equates to 16.67%. To calculate the next state, 

we multiply the initial state with the transition matrix P to 

get the second state    
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For the following state    simplified 
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Each with their decimal approximations: 

                    

                    

                    

With an increase in the number of states predicted, the 

estimates become more and more inaccurate. To represent 

a state that is independent of the previous state’s 

probability, a steady state vector can be calculated. The 

steady state vector q is independent of the initial conditions 

and cannot be changed by the transition matrix P. The 

steady state vector is which is defined as: 

     
   

     

Since q is independent of initial conditions, we make q 

unchanged by the transition matrix P by subtracting it by 

its identity matrix. 
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Since we know q is a probability vector,        , and after 

solving the simultaneous equations, we get the steady state 

distribution: 
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With this steady state distribution, the probability of rolling 

a 1 averages to every 7
th

 roll, and any roll after the 6
th

 roll 

is not worth the risk of losing the accumulated points. This 

suggests that the optimal number of rolls is the 6
th

 roll, and 

that rolling attempting to roll 6 times before ending your 

turn will maximize your score during the course of the 

game, regardless of the goal. 

C++ Prototype 

To test the accuracy of the results of the steady state 

vector, the C++ prototype program will mimic a player 

playing the dice game. The player will decide on a set 

number of rolls, which he will then attempt to roll that 

number of rolls every turn. The program will then average 

the total score every turn for each set of rolls. The program 

demonstrates what happens when a player goes through 

each set of rolls for every number of rolls between 1 and 

12. 

 For instances, the beginning roll set has the program roll 

once for every turn where each roll will simulate a fair 6-

sided die. The program will roll one die once per turn for 

100,000 turns. Then second set of rolls begin, which the 

program will roll two rolls per turn for 100,000 turns. This 

goes on for 12 sets of rolls, where the last set of rolls will 

attempt to roll 12 times for 100,000 turns. The average is 

computed at the end and displayed to show how one 

number of rolls compares to the next. 

Results of the Prototype 

The results of the program initially showed that the optimal 

number of rolls per turn was 6, as the steady state vector 

suggested. However even after averaging 100,000 turns for 

each set of rolls, the top average score per set of rolls 

varies between 5 rolls per turn and 6 rolls per turn with an 

average score nearing 8 points per turn. 

 The average score for the numbers lower and greater 

than 5 and 6 stayed consistently lower, which can be seen 

illustrated by Figure 2. The average score peaks at 5 or 6 

rolls per turn and gradually falls back down. Upon further 

testing, the average score scales back down to 3 points per 

turn at 17 rolls per turn. At 26 rolls per turn, the average 

score per turn is consistently less than 1. 

 

 

 

Figure 2: Sample game generated by C++ prototype 

program. The results show the optimal number of turns to 

take as suggested by the steady state vector was accurate. 

 

 For the set of 6 rolls per turn, the mean score was 

consistently averaging out to 8, varying in the hundredth 

place. The mean score of successful turns, turns where 

points were scored, was 23.98 and the probability of 

having a successful turn where points averaged to 33%.

 For the set of 5 rolls per turn, the mean score was always 

close to the mean score of 6 rolls per turn, consistently 

averaging out to 8, varying in the hundredth place. The 

mean score of successful turns was 19.98 and the 

probability of having a successful turn where points 

averaged to 40%.    

 Roters (1998) showed that the optimal strategy was for 

the player to stop his turn early when his score had reached 

either 20 or 21, both of which achieved the maximum 

expected score on a maximum turn. This is comparable to 

the mean score for 5 rolls per turn at 19.98 points scored 

per successful turn. 

 Haigh & Roters’ (2000) results showed that initial 

strategies as diverse as scoring 14 or 25 points can be 

optimal and for games with larger goals to win suggested 

scoring 20 to 21 points to be optimal. The average score of 

successful turns for both 5 and 6 rolls per turn both fell in 

Haigh & Roters’ optimal number of points per turn, which 

confirms that the steady state vector stating taking 6 rolls 

out of every 7 can be optimal. 

The Conclusion 

In this paper we get a steady state vector from a transition 

matrix which showed the probabilities of the results of a 

single roll of a die. The steady state vector suggested that 

taking 6 rolls per turn was the optimal strategy. Results 

from the prototype program would partially support the 



steady state vector, showing that the optimal number of 

rolls per turn was 5 or 6. 

 

Future Work 

 The study done by this paper did not address certain 

important aspects of this game. A different, optimal 

strategy may exist if the target player is falling behind the 

opponent.  Again, another optimal strategy may exist if the 

target player is initially ahead and would seek to win 

taking a safer number of rolls per turn. Further testing can 

include different rules and elements. Crocce & Mordecki 

(2009) tests three different variants of the dice game to test 

their strategy. 
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