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Abstract 

What is input?  In a Turing machine context, input is a 
series of one or more concrete symbols upon which the 
machine acts.  In this context, input is always defined.  
Output, on the other hand, is generally accepted to either be 
defined or undefined.  If the output is undefined for a 
machine and input pair, the problem is regarded as not 
Turing-computable.  This paper explores the hypothesis that 
for the non-computable problems, it is the input which is 
undefined, which in turn leads to an undefined output.  
Then, the nature of input and decisions based on that input 
is examined in a machine learning context; in particular, 
how some artificial intelligence algorithms avoid undefined 
input by disallowing certain decision tree models, yet 
theoretically retain the ability to address any true problem.  
The set of all Turing-decidable algorithms is complete; 
algorithms which are not Turing-decidable (paradoxes) are 
actually problems for which some of the input is simply 
undefined. 

 Introduction   

What is input?  Is it merely what is on the right-hand side 

of an assignment?  Or is there an implicit requirement for 

something of substance to actually be provided?  In 

mathematics, input is often represented as a special case, as 

a parameter to a function, such as x in the ubiquitous f(x).  

The equal symbol (‘=’) is generally accepted as the 

equality operator, which merely means what is on the left-

hand side equals what is on the right-hand side.  However, 

this operator often gets overloaded.  In fact, it must be 

overloaded to cover assignment of variables, such as what 

happens in the body of our f(x).  This has led to the use of 

more explicit conventions such as ‘:=’ for assignment, ‘=’ 

for equals or ‘=’ versus ‘==’ in programming languages 

like C++, or the use of additional keywords, such as ‘Let’, 

which explicitly precedes assignment.  In an assignment, 
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the right-hand side is input, which is being assigned into 

the variable on the left-hand side.  However, input is also 

required for statements which are concerned with either 

stating or testing the equality of what is on the right and 

left of the equal sign.  For example, in an ordinary 

mathematics equality statement in the form of ‘x = y’, x 

and y are atoms which are input to the ‘equates’ function.  

A function without input is no more than an idea at rest.  

For example, observe the function: 

 

f(x) = x + 1 

 

If input is never supplied, this function is of little more 

value than an idea on paper.  It is not until a value for x is 

actually supplied that we can expect to get a return value. 

Whether input has been supplied or not in a given 

context is precisely what this paper is all about.  We will 

show how input is of central importance in determining 

whether a problem is solvable or not.  The solvability of 

problems is not a new topic.  It is a broad subject which 

could easily outstrip the scope of this brief paper.  

Therefore, we will only be doing a cursory review of some 

of the most important past work concerning the solvability 

of problems.  We will briefly describe Hilbert’s use of 

meta-mathematics and his challenge, Gödel’s 

incompleteness theorems, Turing’s halting problem, and 

the Church-Turing thesis.  We will focus on the parts of 

these works which will give additional insight to the 

questions and statements regarding input raised within this 

introduction. 

Following our brief review of past work, we will explore 

the true meaning and importance of input, especially from 

an information sciences perspective.  We will see how 

core, simplistic mathematics may ironically be hiding some 

necessary complexity when it comes to input.  Therefore, 

we will then be diving into more detail about input in the 

context of algorithms.  By focusing on a concise derivative 

of Turing’s Halting Problem proof as an example, we will 

get to the core of where it goes awry (missing input), and 



how this missing input or absence of input is intertwined 

with the relatively modern concept of the deadlock.  Then, 

in relation to deadlock, we look at the field of artificial 

intelligence; particularly how and why machine learning 

models avoid deadlock altogether.  Finally, we will look at 

a practical example of a subset halt() program, written in 

C++, which demonstrates the programmatic detection of 

the absence of input.   

Background 

David Hilbert (January 23, 1862 – February 14, 1943) 

was a mathematician who presented a list of 23 unsolved 

problems in 1900, a portion of which remain unsolved 

today and continue to challenge mathematicians.  In 1920, 

he proposed a metamathematics research project, known as 

Hilbert’s program, where he sought to formulate a 

complete and solid foundation for mathematics where all 

mathematics stems from a finite set of axioms, and that this 

system would be provably consistent through some means 

such as epsilon calculus.  Metamathematics is intended to 

strip away all intrinsic meaning from the various symbols 

in mathematics, allowing rigorous rules of structure and 

logic to dictate relations between statements containing 

such symbols.  This was sought to be done such that 

statements could be consistently deduced as all following 

from a finite list of originating axioms.  The result would 

be a complete axiomatic foundation of mathematics, where 

no contradictory statements could be derived without 

violating some part of the system (Nagel, Newman, and 

Hofstadter, 2001).  One of Hilbert’s 23 unsolved problems 

is the Entscheidungsproblem (decision problem), which 

asks for an algorithm which takes as input a proposition in 

the form of a statement of first-order (or finitely greater) 

logic and answers whether the statement is universally 

valid or not. 

Kurt Gödel’s (April 28, 1906 – January 14, 1978) 

incompleteness theorems in 1931, using an axiomatic 

system, demonstrated that no such system could prove all 

true propositions within the system.  He did this by 

constructing a statement within the system which asserts 

itself as unprovable; if provable this would be false, 

contradicting the concept of provable statements always 

being true in a consistent system.  However, according to 

Gray (2000), regarding Gödel’s theorem in reference to 

Hilbert’s claim that there are no unsolvable problems in 

mathematics, Gödel asserted “, I wish to note expressly 

that [this theorem does] not contradict Hilbert’s formalistic 

viewpoint.”  As a side note of interest, the demonstrated 

axiomatic system uses the equal symbol (‘=’) and other 

operators, but assignment and equality are not explicitly 

differentiated from one another in the system’s axioms. 

Likewise, it uses an operator for ‘if…then…’ structures, 

and input for the first part of this structure is implied. 

Alan Turing (June 23, 1912 – June 7, 1954), is widely 

regarded as the father of computer science and artificial 

intelligence.  With his Turing machine, he formalized what 

an algorithm is in a mechanistic way.  In a Turing machine 

context, input is a series of one or more concrete symbols 

upon which the machine acts.  In this context, input is 

always defined.  Output, on the other hand, is generally 

accepted to either be defined or undefined.  If the output is 

undefined for a machine and input pair, the problem is 

regarded as not Turing-decidable.  In 1936, Turing 

delivered his paper “On Computable Numbers, with an 

Application to the Entscheidungsproblem”.   In it, he 

substituted theoretical implementations of Turing machines 

in the place of Gödel’s metamathematical numbering 

system, and proved using similar logic that the halting 

problem for Turing machines is undecidable.  The halting 

problem proposed by Turing has to do with being able to 

decide algorithmically regarding a given Turing machine 

and its input – will it halt or will it run forever?  In this 

paper, we will be focusing in on Turing’s halting problem. 

Rosen (1999) provides us with an excellent, concise 

summary of Turing’s proof for the halting problem: 

Proof: Assume there is a solution to the halting 
problem, a procedure called H(P,I).  The procedure 
H(P,I) takes two inputs, one a program P and the other 
I, an input to the program P.  H(P,I) generates the 
string “halt” as output if H determines that P stops 
when given I as input.  Otherwise, H(P,I) generates 
the string “loops forever” as output.  We will now 
derive a contradiction. 

When a procedure is coded, it is expressed as a string 
of characters; this string can be interpreted as a 
sequence of bits.  This means that a program itself can 
be used as data. Therefore a program can be thought 
of as input to another program, or even itself.  Hence, 
H can take a program P as both of its inputs, which 
are a program and input to this program.  H should be 
able to determine if P will halt when it is given a copy 
of itself as input. 

To show that no procedure H exists which solves the 
halting problem, we construct a simple procedure 
K(P), which works as follows, making use of the 
output H(P,P).  If the output of H(P,P) is “loops 
forever,” which means that P loops forever when 
given a copy of itself as input, then K(P) halts.  If the 
output of H(P,P) is “halt,” which means that P halts 
when given a copy of itself as input, then K(P) loops 
forever.  That is, K(P) does the opposite of what the 
output of H(P,P) specifies. 

Now suppose we provide K as input to K.  We note 
that if the output of H(K,K) is “loops forever,” then 
by the definition of K we see that K(K) halts.  
Otherwise, if the output of H(K,K) is “halt,” then by 
the definition of K we see that K(K) loops forever, in 



violation of what H tells us.  In both cases, we have a 
contradiction. 

Thus, H cannot always give the correct answers.  
Consequently, there is no procedure that solves the 
halting problem. 

 
Input I, as described by Rosen in his summary above, is of 

interest to our subject. 

Alonzo Church (June 14, 1903 – August 11, 1995) 

rounds out our list of notable people in our cursory review 

as one of the mathematicians who linked together the 

Turing machine and other methods of defining functions 

together as being computationally equivalent processes.  

Known as the Church-Turing thesis, it asserts that if some 

algorithm exists to carry out a calculation, then that same 

calculation can be carried out by a Turing machine (or 

other equivalent algorithmic process.) As part of this, 

Church had independently determined that there is no 

computable function which decides whether two given λ 

calculus expressions are equivalent or not, which agreed 

with Turing’s halting problem. (Davis, 1965). 

So-called unsolvable problems continue to be a source 

of interest and angst to this day.  However, the field of 

artificial intelligence gives us some interesting insights.  

Planning graphs are special data structures which allow us 

to derive reasonably accurate heuristic estimates about how 

we can reach some goal state from some starting state.  

Mutual exclusion  (or mutex) links record conflicts in a 

structure which are not possible.  Russell and Norvig 

(2010) give us an example in two actions which are mutex: 

Have(Cake) and Eat(Cake).  Any of three conditions 

establishes a mutex relationship between two actions in a 

planning graph: 

 
1. Inconsistent effects: one action negates the effect of 

the other. 

2. Interference: one of the effects of one action is the 
negation of a precondition of the other. 

3. Competing needs: one of the preconditions of one 
action is mutually exclusive with a precondition of 
the other. 

The way a planning graph deals with such impossibilities 

is to record them as what they are: impossible, mutually 

exclusive choices, with no way to reach the desired end 

goal via such links.  An alternative way of describing this 

is to say that actions on literals such as Have(Cake) and 

Eat(Cake) are input which comprise the nodes of  a 

planning graph, and invalid relationships are marked as 

impossible, and do not lead to the desired output (a path to 

the goal.)  In other words, a mutex relationship is invalid 

input. 

What Is Input? 

Understanding what input is and the full nature of its 

presence and the consequences of its absence for 

algorithms is essential for an analysis of what can and 

cannot be calculated. A function with no supplied input, 

whether internal, external, subtle or explicit, cannot return 

– it cannot be calculated.  We will show that for the non-

computable, undecidable problems, it is the input which is 

at best undefined or completely absent, which in turn leads 

to an undefined output.   

In discrete mathematics, input to a function is often 

represented in a format similar to the following: 
 

y = f(x) 

   

Where x is the input to function f(x) and y is the output. 

Demonstrating actual input and output for an example 

function such as: 

 
 f(x) = x + 1 

 

is trivial: 

 
 f(3) = 3 + 1 = 4 

 

Where 3 is the input and 4 is the output.  Translating our 

simple function example into one which is more 

programming code-like, we have: 

 
int f( int x ) 

{ 

x = x +1; 

return x; 

} 

 

However, the following code is equivalent: 
  

int f( int x ) 

 { 

  x = x + g(); 

  return x; 

} 

 

int g() 

 { 

return 1; 

} 

 

In this latter example, g() always returns a value, 1.  This 

value is external to function f(x).  Likewise, despite the 

fact that g()’s output did not enter f(x) through its header, it 

is input to f(x).  The true, total input to f(x) in the latter 

case must include the output of g() =1, as well as x = 3.  

So, input to a function can be pulled from within the body 

of a function in addition to whatever input is passed 

through its traditional header. 

Conditional logic can also be employed within the body 

of a function, potentially resulting in different output for 



different input.  For example, in a common mathematical 

format: 

 

      
  
   

              
         

 

 

And in a program code format: 

 
int g( int x ) 

{ 

 if ( h(x) == 0 ) 

  return 1; 

 else 

  return 0; 

} 

 

We’ve already demonstrated that one function’s output can 

comprise another function’s input.  In both examples 

above, g(x)’s output is emphasized.  And, it is easy to 

presume x as the limit of g(x)’s input.  In English textbook 

descriptions, the function above would be commonly 

referred to as “g of x,” as in the function g on the input 

variable x.  In the strictest sense, however, x is not the 

complete input for g(x), as h(x) also has something to 

contribute, and without examining it, we do not know what 

other external inputs may be making their way into the 

body of h(x). 

If an algorithm candidate sets up an input which is 

undefined, then that algorithm is not Turing decidable.  No 

algorithm can accept undefined input.  Likewise, a 

structure which sets up inescapable, undefined input, is 

incomplete.  If any part of an algorithm candidate's always-

invoked input relationship is undefined due to deadlock, 

then that algorithm candidate is undefined, is at best 

incomplete, and perhaps not an algorithm at all.  Undefined 

input, by its definition, is incalculable.  If, for a particular 

input i, an algorithm branches into an unresolvable 

deadlock, then the total input for f(x) at subset input i is 

undefined; any other true algorithm requiring f(x) and its 

input will not be able to accept f(x) and its total input, at 

subset input i, since the total input is undefined. 

If all input an algorithm accepts and/or sets up is 

defined, then that algorithm is Turing decidable. 

The relation on the natural numbers "Tx eventually halts 

when started with input y" is a Turing decidable relation, 

because for any algorithm where all input is defined, that 

algorithm is Turing decidable. 

  

Some examples: 

 
 while(true) {}  is an algorithm since true is 

defined. 

 The infinite loop: 

 
function a() {  

 return b() 

} 

 

function b() { 

 return a() 

} 

 
Both a() and b() are algorithms, as each input is defined as 

the return of the other, and is equivalent to while(true), and 

there is no deadlock, just an infinite loop. 

 
A representation of Turing’s Halting Problem: 

 

boolean main(f, i){ 

return halt(f, i) 

} 

boolean halt(function f, inputSubset i){ 

// Do amazing calculations here  

// and return whether f halts or 

// not, for inputSubset i (plus  

// any other input pulled within 

// f’s body.) 

} 

 

void contrary(void){ 

  if(halt(contrary(), null)) 

   while(true) 

 } 

 
Input to contrary() is output of halt() call, but input is 

undefined - not because of the null in the inputSubset call, 

but because halt() never receives all of contrary's input, 

because it cannot.  Contrary's input is undefined due to 

deadlock.  contrary() is an invalid algorithm because it sets 

up an inescapable deadlock; there is no input scenario 

where all of contrary’s input is defined.  halt(), however, is 

a legitimate, Turing-decidable algorithm because there is 

an infinitely large set of functions f with defined total input 

upon which it can operate. 

Silberschatz, Galvin and Gagne (2012) provide us with 

the necessary conditions for a deadlock to occur, which we 

then apply to our halting problem here: 

 
1. Mutual exclusion: at least one resource must be held 

in a non-sharable mode.  In the case of the halting 
problem, the 'resource' is the input channel for 
halt(); while executing its very clever code, it 
realizes that contrary()'s input requires a return from 
halt() to decide whether contrary() halts or runs 
forever.  But, halt() requires defined input for 
contrary() prior to returning true or false to halt() 
and subsequently to contrary().  So, halt(), by not 
returning, is effectively holding the input channel to 
contrary() open - contrary() will never get its 
answer, and therefore will never acquire defined 
input such that it can proceed with execution. 

2. Hold and wait.  As previously stated, halt() is 
holding open the input channel to contrary(); it 
cannot return a true or false to contrary(), prior to 
deciding whether it halts or runs forever, because a 
true or false return from halt() must come after a 
decision has been made. 

3. No preemption.  Only halt() can decide to release 
contrary's input channel by returning a true or false 
value.  halt() cannot give an answer as to whether 
contrary() will run forever or not, so contrary() can 



never acquire the defined input it needs to execute 
fully.  contrary()'s definition puts halt() in full 
control of its input channel. 

4. Circular wait.  halt() requires defined input for 
contrary() in order to make a decision as to whether 
it will halt or run forever, prior to releasing 
contrary()'s input channel by returning an answer.  
contrary() is waiting for the return from halt() in its 
input channel, which is being held by halt().  
Therefore, there is a circular wait in effect. 

 

All four conditions hold for a deadlock to occur in the 

halting problem.  Therefore, there is a deadlock upon 

trying to decide whether contrary() halts or runs forever.  

By definition, the execution of contrary() will always result 

in a deadlock.  contrary()'s total input is always undefined 

due to this deadlock.  
Deadlock is a condition between two or more processes 

which closes down an input channel.  Whether an 

algorithm explicitly takes input at its onset, or receives 

input within its body during execution, or has input that is 

embedded atomically and statically within the structure of 

the algorithm itself, receiving actual input on all defined 

input channels is a fundamental requirement for the 

execution of a program.  This paper is arguing that 

structures which are shown to be not effectively calculable 

also fail to meet this basic prerequisite and therefore fail to 

meet the basic requirement of qualifying as a legitimate 

problem. Asking for a response from a program when all 

of its input channels have not been satisfied is like asking 

for the numeric value of x+1 without first providing a 

value for x. 

Experiment 

Using the ideas stated above, an interesting exercise is to 

create a greatly simplified, working, subset version of 

halt(f, i) and a few example programs to be used against it.  

This is what was performed.  To keep unnecessary 

complexity from obfuscating our simple exercise, some 

basic ground rules and assumptions were used: 

 
 They were written as simplistic console C++ 

programs, and compiled on a Linux host using 
g++. 

 while(true) participates as the sole example of a 
code block which runs forever. 

 return 0 participates as the sole example of a code 
block which halts. 

 halt(f, i) assumes the presented program files: 

o have already been verified as compilable 
– they follow proper syntax. 

o There is only a single if statement which 
may be present, and its condition deals 
specifically with making a call back to 
halt(f, i) 

 Minimalist, easy-to-follow code parsing and logic 
is used within halt(f, i) 

 The sample programs to be passed to halt have no 
input passed to them via their header; the only 
input they receive are within their bodies, a call to 
halt. 

 

Our subset halt(f, i) was coded as halt.cpp, referenced via a 

header file in our scenario programs and primary 

executable main.x.  halt’s prototype: 

 
bool halt(char* codeFileName,  

char* headerInput[]); 

 

The primary executable takes a minimum of one argument, 

for the code to be analyzed: 
 

usage: main.x <filename> <input parameter 1> 

<input parameter 2> ... 

 

The code in the file identified by filename, together with 

its input, is determined by the compiled code from 

halt.cpp, to either halt or run forever. 

Results 

In the process of analyzing how halt(f, i) might deal with a 

program which makes a decision based on the output of 

halt(f, i) itself, four different scenarios were discovered 

which help to gain some intuition about the nature of the 

absence of input due to deadlock.. All four scenarios use 

output from halt(f, i) as input: 

 
1. A program file (alwaysrunsforever.cpp) which 

when compiled and executed always runs forever, 
regardless of input from halt(f, i) 

2. A program file (alwayshalts.cpp) which when 
compiled and executed always halts, regardless of 
input from halt(f, i) 

3. A program file (yesman.cpp) which when 
compiled and executed always agrees with halt(f, 
i), where f = the program’s own code and i=its 
header’s input. 

4. A program file (contrary.cpp) which when 
compiled and run always negates halt(f, i)’s 
output, where f = the program’s own code and 
i=its header’s input. 

 

The implementation shows the practical result of each 

scenario.  What follows is a listing of the actual code for 

each of the four, followed by output of main.x when run 

against the code file, and a description of how halt(f, i) 

deals with the scenario: 

 
// alwaysrunsforever.cpp 

#include <iostream> 

#include "halt.h" 

using namespace std; 

 



int main() // no header input 

{ 

   if ( !halt( "alwaysrunsforever.cpp", NULL ) )

     while(true); 

    

   while(true); 

   return 0; 

} 

 

main.x output: 
alwaysrunsforever.cpp runs forever. 

 

Because this program  always runs forever, regardless of 

the return from halt(f, i), halt(f, i) can safely return ‘false’ 

upon analyzing alwaysrunsforever.cpp’s code and input. 

 
// alwayshalts.cpp 

#include <iostream> 

#include "halt.h" 

using namespace std; 

 

int main() // no header input 

{ 

   if ( halt( "alwayshalts.cpp", NULL ) )   

      return 0; 

    

   return 0; 

} 

 

main.x output: 
alwaysrunsforever.cpp halts. 

 

Because this program  always halts, regardless of the return 

from halt(f, i), halt(f, i) can safely return ‘true’ upon 

analyzing alwayshalts.cpp’s code and input. 

 
// yesman.cpp 

#include <iostream> 

#include "halt.h" 

using namespace std; 

 

int main() // no header input 

{ 

   if ( halt( "yesman.cpp", NULL ) ) 

      return 0; 

    

   while(true); 

   return 0; 

} 

 

main.x output: 
yesman.cpp halts. 

 

Because the program  always agrees with halt’s analysis, 

regardless of the return from halt(f, i), halt(f, i) can safely 

return ‘true’ upon analyzing yesman.cpp’s code and input 

due to a general preference of procedures which halt over 

procedures which run forever.  yesman.cpp is effectively 

giving full control of its termination behavior to halt(f, i). 

 
// contrary.cpp 

#include <iostream> 

#include "halt.h" 

using namespace std; 

 

int main() // no header input 

{ 

   if ( halt( "contrary.cpp", NULL ) ) 

      while(true); 

    

   return 0; 

} 

 

main.x output: 
Exception: Contradiction found: Missing input due 

to deadlock. 

 

Because the program  always contradicts halt(f, i), halt(f, i) 

cannot return an answer.  There is a deadlock, as described 

earlier.  This particular deadlock means part of 

contrary.cpp’s input is forever missing.  The code 

compiled from halt.cpp throws an error, similar to what is 

done if the file portion of halt’s input is unreadable. 

Conclusion 

Artificial intelligence models give us insight in how to deal 

with impossible relationships which result in undefined or 

absence of input; eliminate it as invalid.  Turing’s halting 

problem asks if there could be a program, given another 

program and its input - can it answer: does it halt or run 

forever?  The answer is connected to the phrase and its 

input.  This paper asserts that for all true algorithms, for 

which valid input can be supplied, the answer is yes. 
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