

Unsolvable Problems Do Not Exist

Only the Absence of Input Prevents Calculation

Bradley G. Homer

Florida State University
bgh9320@my.fsu.edu

Abstract

What is input? In a Turing machine context, input is a
series of one or more concrete symbols upon which the
machine acts. In this context, input is always defined.
Output, on the other hand, is generally accepted to either be
defined or undefined. If the output is undefined for a
machine and input pair, the problem is regarded as not
Turing-computable. This paper explores the hypothesis that
for the non-computable problems, it is the input which is
undefined, which in turn leads to an undefined output.
Then, the nature of input and decisions based on that input
is examined in a machine learning context; in particular,
how some artificial intelligence algorithms avoid undefined
input by disallowing certain decision tree models, yet
theoretically retain the ability to address any true problem.
The set of all Turing-decidable algorithms is complete;
algorithms which are not Turing-decidable (paradoxes) are
actually problems for which some of the input is simply
undefined.

 Introduction

What is input? Is it merely what is on the right-hand side

of an assignment? Or is there an implicit requirement for

something of substance to actually be provided? In

mathematics, input is often represented as a special case, as

a parameter to a function, such as x in the ubiquitous f(x).

The equal symbol (‘=’) is generally accepted as the

equality operator, which merely means what is on the left-

hand side equals what is on the right-hand side. However,

this operator often gets overloaded. In fact, it must be

overloaded to cover assignment of variables, such as what

happens in the body of our f(x). This has led to the use of

more explicit conventions such as ‘:=’ for assignment, ‘=’

for equals or ‘=’ versus ‘==’ in programming languages

like C++, or the use of additional keywords, such as ‘Let’,

which explicitly precedes assignment. In an assignment,

Copyright © 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the right-hand side is input, which is being assigned into

the variable on the left-hand side. However, input is also

required for statements which are concerned with either

stating or testing the equality of what is on the right and

left of the equal sign. For example, in an ordinary

mathematics equality statement in the form of ‘x = y’, x

and y are atoms which are input to the ‘equates’ function.

A function without input is no more than an idea at rest.

For example, observe the function:

f(x) = x + 1

If input is never supplied, this function is of little more

value than an idea on paper. It is not until a value for x is

actually supplied that we can expect to get a return value.

Whether input has been supplied or not in a given

context is precisely what this paper is all about. We will

show how input is of central importance in determining

whether a problem is solvable or not. The solvability of

problems is not a new topic. It is a broad subject which

could easily outstrip the scope of this brief paper.

Therefore, we will only be doing a cursory review of some

of the most important past work concerning the solvability

of problems. We will briefly describe Hilbert’s use of

meta-mathematics and his challenge, Gödel’s

incompleteness theorems, Turing’s halting problem, and

the Church-Turing thesis. We will focus on the parts of

these works which will give additional insight to the

questions and statements regarding input raised within this

introduction.

Following our brief review of past work, we will explore

the true meaning and importance of input, especially from

an information sciences perspective. We will see how

core, simplistic mathematics may ironically be hiding some

necessary complexity when it comes to input. Therefore,

we will then be diving into more detail about input in the

context of algorithms. By focusing on a concise derivative

of Turing’s Halting Problem proof as an example, we will

get to the core of where it goes awry (missing input), and

how this missing input or absence of input is intertwined

with the relatively modern concept of the deadlock. Then,

in relation to deadlock, we look at the field of artificial

intelligence; particularly how and why machine learning

models avoid deadlock altogether. Finally, we will look at

a practical example of a subset halt() program, written in

C++, which demonstrates the programmatic detection of

the absence of input.

Background

David Hilbert (January 23, 1862 – February 14, 1943)

was a mathematician who presented a list of 23 unsolved

problems in 1900, a portion of which remain unsolved

today and continue to challenge mathematicians. In 1920,

he proposed a metamathematics research project, known as

Hilbert’s program, where he sought to formulate a

complete and solid foundation for mathematics where all

mathematics stems from a finite set of axioms, and that this

system would be provably consistent through some means

such as epsilon calculus. Metamathematics is intended to

strip away all intrinsic meaning from the various symbols

in mathematics, allowing rigorous rules of structure and

logic to dictate relations between statements containing

such symbols. This was sought to be done such that

statements could be consistently deduced as all following

from a finite list of originating axioms. The result would

be a complete axiomatic foundation of mathematics, where

no contradictory statements could be derived without

violating some part of the system (Nagel, Newman, and

Hofstadter, 2001). One of Hilbert’s 23 unsolved problems

is the Entscheidungsproblem (decision problem), which

asks for an algorithm which takes as input a proposition in

the form of a statement of first-order (or finitely greater)

logic and answers whether the statement is universally

valid or not.

Kurt Gödel’s (April 28, 1906 – January 14, 1978)

incompleteness theorems in 1931, using an axiomatic

system, demonstrated that no such system could prove all

true propositions within the system. He did this by

constructing a statement within the system which asserts

itself as unprovable; if provable this would be false,

contradicting the concept of provable statements always

being true in a consistent system. However, according to

Gray (2000), regarding Gödel’s theorem in reference to

Hilbert’s claim that there are no unsolvable problems in

mathematics, Gödel asserted “, I wish to note expressly

that [this theorem does] not contradict Hilbert’s formalistic

viewpoint.” As a side note of interest, the demonstrated

axiomatic system uses the equal symbol (‘=’) and other

operators, but assignment and equality are not explicitly

differentiated from one another in the system’s axioms.

Likewise, it uses an operator for ‘if…then…’ structures,

and input for the first part of this structure is implied.

Alan Turing (June 23, 1912 – June 7, 1954), is widely

regarded as the father of computer science and artificial

intelligence. With his Turing machine, he formalized what

an algorithm is in a mechanistic way. In a Turing machine

context, input is a series of one or more concrete symbols

upon which the machine acts. In this context, input is

always defined. Output, on the other hand, is generally

accepted to either be defined or undefined. If the output is

undefined for a machine and input pair, the problem is

regarded as not Turing-decidable. In 1936, Turing

delivered his paper “On Computable Numbers, with an

Application to the Entscheidungsproblem”. In it, he

substituted theoretical implementations of Turing machines

in the place of Gödel’s metamathematical numbering

system, and proved using similar logic that the halting

problem for Turing machines is undecidable. The halting

problem proposed by Turing has to do with being able to

decide algorithmically regarding a given Turing machine

and its input – will it halt or will it run forever? In this

paper, we will be focusing in on Turing’s halting problem.

Rosen (1999) provides us with an excellent, concise

summary of Turing’s proof for the halting problem:

Proof: Assume there is a solution to the halting
problem, a procedure called H(P,I). The procedure
H(P,I) takes two inputs, one a program P and the other
I, an input to the program P. H(P,I) generates the
string “halt” as output if H determines that P stops
when given I as input. Otherwise, H(P,I) generates
the string “loops forever” as output. We will now
derive a contradiction.

When a procedure is coded, it is expressed as a string
of characters; this string can be interpreted as a
sequence of bits. This means that a program itself can
be used as data. Therefore a program can be thought
of as input to another program, or even itself. Hence,
H can take a program P as both of its inputs, which
are a program and input to this program. H should be
able to determine if P will halt when it is given a copy
of itself as input.

To show that no procedure H exists which solves the
halting problem, we construct a simple procedure
K(P), which works as follows, making use of the
output H(P,P). If the output of H(P,P) is “loops
forever,” which means that P loops forever when
given a copy of itself as input, then K(P) halts. If the
output of H(P,P) is “halt,” which means that P halts
when given a copy of itself as input, then K(P) loops
forever. That is, K(P) does the opposite of what the
output of H(P,P) specifies.

Now suppose we provide K as input to K. We note
that if the output of H(K,K) is “loops forever,” then
by the definition of K we see that K(K) halts.
Otherwise, if the output of H(K,K) is “halt,” then by
the definition of K we see that K(K) loops forever, in

violation of what H tells us. In both cases, we have a
contradiction.

Thus, H cannot always give the correct answers.
Consequently, there is no procedure that solves the
halting problem.

Input I, as described by Rosen in his summary above, is of

interest to our subject.

Alonzo Church (June 14, 1903 – August 11, 1995)

rounds out our list of notable people in our cursory review

as one of the mathematicians who linked together the

Turing machine and other methods of defining functions

together as being computationally equivalent processes.

Known as the Church-Turing thesis, it asserts that if some

algorithm exists to carry out a calculation, then that same

calculation can be carried out by a Turing machine (or

other equivalent algorithmic process.) As part of this,

Church had independently determined that there is no

computable function which decides whether two given λ

calculus expressions are equivalent or not, which agreed

with Turing’s halting problem. (Davis, 1965).

So-called unsolvable problems continue to be a source

of interest and angst to this day. However, the field of

artificial intelligence gives us some interesting insights.

Planning graphs are special data structures which allow us

to derive reasonably accurate heuristic estimates about how

we can reach some goal state from some starting state.

Mutual exclusion (or mutex) links record conflicts in a

structure which are not possible. Russell and Norvig

(2010) give us an example in two actions which are mutex:

Have(Cake) and Eat(Cake). Any of three conditions

establishes a mutex relationship between two actions in a

planning graph:

1. Inconsistent effects: one action negates the effect of

the other.

2. Interference: one of the effects of one action is the
negation of a precondition of the other.

3. Competing needs: one of the preconditions of one
action is mutually exclusive with a precondition of
the other.

The way a planning graph deals with such impossibilities

is to record them as what they are: impossible, mutually

exclusive choices, with no way to reach the desired end

goal via such links. An alternative way of describing this

is to say that actions on literals such as Have(Cake) and

Eat(Cake) are input which comprise the nodes of a

planning graph, and invalid relationships are marked as

impossible, and do not lead to the desired output (a path to

the goal.) In other words, a mutex relationship is invalid

input.

What Is Input?

Understanding what input is and the full nature of its

presence and the consequences of its absence for

algorithms is essential for an analysis of what can and

cannot be calculated. A function with no supplied input,

whether internal, external, subtle or explicit, cannot return

– it cannot be calculated. We will show that for the non-

computable, undecidable problems, it is the input which is

at best undefined or completely absent, which in turn leads

to an undefined output.

In discrete mathematics, input to a function is often

represented in a format similar to the following:

y = f(x)

Where x is the input to function f(x) and y is the output.

Demonstrating actual input and output for an example

function such as:

 f(x) = x + 1

is trivial:

 f(3) = 3 + 1 = 4

Where 3 is the input and 4 is the output. Translating our

simple function example into one which is more

programming code-like, we have:

int f(int x)

{

x = x +1;

return x;

}

However, the following code is equivalent:

int f(int x)

 {

 x = x + g();

 return x;

}

int g()

 {

return 1;

}

In this latter example, g() always returns a value, 1. This

value is external to function f(x). Likewise, despite the

fact that g()’s output did not enter f(x) through its header, it

is input to f(x). The true, total input to f(x) in the latter

case must include the output of g() =1, as well as x = 3.

So, input to a function can be pulled from within the body

of a function in addition to whatever input is passed

through its traditional header.

Conditional logic can also be employed within the body

of a function, potentially resulting in different output for

different input. For example, in a common mathematical

format:

And in a program code format:

int g(int x)

{

 if (h(x) == 0)

 return 1;

 else

 return 0;

}

We’ve already demonstrated that one function’s output can

comprise another function’s input. In both examples

above, g(x)’s output is emphasized. And, it is easy to

presume x as the limit of g(x)’s input. In English textbook

descriptions, the function above would be commonly

referred to as “g of x,” as in the function g on the input

variable x. In the strictest sense, however, x is not the

complete input for g(x), as h(x) also has something to

contribute, and without examining it, we do not know what

other external inputs may be making their way into the

body of h(x).

If an algorithm candidate sets up an input which is

undefined, then that algorithm is not Turing decidable. No

algorithm can accept undefined input. Likewise, a

structure which sets up inescapable, undefined input, is

incomplete. If any part of an algorithm candidate's always-

invoked input relationship is undefined due to deadlock,

then that algorithm candidate is undefined, is at best

incomplete, and perhaps not an algorithm at all. Undefined

input, by its definition, is incalculable. If, for a particular

input i, an algorithm branches into an unresolvable

deadlock, then the total input for f(x) at subset input i is

undefined; any other true algorithm requiring f(x) and its

input will not be able to accept f(x) and its total input, at

subset input i, since the total input is undefined.

If all input an algorithm accepts and/or sets up is

defined, then that algorithm is Turing decidable.

The relation on the natural numbers "Tx eventually halts

when started with input y" is a Turing decidable relation,

because for any algorithm where all input is defined, that

algorithm is Turing decidable.

Some examples:

 while(true) {} is an algorithm since true is

defined.

 The infinite loop:

function a() {

 return b()

}

function b() {

 return a()

}

Both a() and b() are algorithms, as each input is defined as

the return of the other, and is equivalent to while(true), and

there is no deadlock, just an infinite loop.

A representation of Turing’s Halting Problem:

boolean main(f, i){

return halt(f, i)

}

boolean halt(function f, inputSubset i){

// Do amazing calculations here

// and return whether f halts or

// not, for inputSubset i (plus

// any other input pulled within

// f’s body.)

}

void contrary(void){

 if(halt(contrary(), null))

 while(true)

 }

Input to contrary() is output of halt() call, but input is

undefined - not because of the null in the inputSubset call,

but because halt() never receives all of contrary's input,

because it cannot. Contrary's input is undefined due to

deadlock. contrary() is an invalid algorithm because it sets

up an inescapable deadlock; there is no input scenario

where all of contrary’s input is defined. halt(), however, is

a legitimate, Turing-decidable algorithm because there is

an infinitely large set of functions f with defined total input

upon which it can operate.

Silberschatz, Galvin and Gagne (2012) provide us with

the necessary conditions for a deadlock to occur, which we

then apply to our halting problem here:

1. Mutual exclusion: at least one resource must be held

in a non-sharable mode. In the case of the halting
problem, the 'resource' is the input channel for
halt(); while executing its very clever code, it
realizes that contrary()'s input requires a return from
halt() to decide whether contrary() halts or runs
forever. But, halt() requires defined input for
contrary() prior to returning true or false to halt()
and subsequently to contrary(). So, halt(), by not
returning, is effectively holding the input channel to
contrary() open - contrary() will never get its
answer, and therefore will never acquire defined
input such that it can proceed with execution.

2. Hold and wait. As previously stated, halt() is
holding open the input channel to contrary(); it
cannot return a true or false to contrary(), prior to
deciding whether it halts or runs forever, because a
true or false return from halt() must come after a
decision has been made.

3. No preemption. Only halt() can decide to release
contrary's input channel by returning a true or false
value. halt() cannot give an answer as to whether
contrary() will run forever or not, so contrary() can

never acquire the defined input it needs to execute
fully. contrary()'s definition puts halt() in full
control of its input channel.

4. Circular wait. halt() requires defined input for
contrary() in order to make a decision as to whether
it will halt or run forever, prior to releasing
contrary()'s input channel by returning an answer.
contrary() is waiting for the return from halt() in its
input channel, which is being held by halt().
Therefore, there is a circular wait in effect.

All four conditions hold for a deadlock to occur in the

halting problem. Therefore, there is a deadlock upon

trying to decide whether contrary() halts or runs forever.

By definition, the execution of contrary() will always result

in a deadlock. contrary()'s total input is always undefined

due to this deadlock.
Deadlock is a condition between two or more processes

which closes down an input channel. Whether an

algorithm explicitly takes input at its onset, or receives

input within its body during execution, or has input that is

embedded atomically and statically within the structure of

the algorithm itself, receiving actual input on all defined

input channels is a fundamental requirement for the

execution of a program. This paper is arguing that

structures which are shown to be not effectively calculable

also fail to meet this basic prerequisite and therefore fail to

meet the basic requirement of qualifying as a legitimate

problem. Asking for a response from a program when all

of its input channels have not been satisfied is like asking

for the numeric value of x+1 without first providing a

value for x.

Experiment

Using the ideas stated above, an interesting exercise is to

create a greatly simplified, working, subset version of

halt(f, i) and a few example programs to be used against it.

This is what was performed. To keep unnecessary

complexity from obfuscating our simple exercise, some

basic ground rules and assumptions were used:

 They were written as simplistic console C++

programs, and compiled on a Linux host using
g++.

 while(true) participates as the sole example of a
code block which runs forever.

 return 0 participates as the sole example of a code
block which halts.

 halt(f, i) assumes the presented program files:

o have already been verified as compilable
– they follow proper syntax.

o There is only a single if statement which
may be present, and its condition deals
specifically with making a call back to
halt(f, i)

 Minimalist, easy-to-follow code parsing and logic
is used within halt(f, i)

 The sample programs to be passed to halt have no
input passed to them via their header; the only
input they receive are within their bodies, a call to
halt.

Our subset halt(f, i) was coded as halt.cpp, referenced via a

header file in our scenario programs and primary

executable main.x. halt’s prototype:

bool halt(char* codeFileName,

char* headerInput[]);

The primary executable takes a minimum of one argument,

for the code to be analyzed:

usage: main.x <filename> <input parameter 1>

<input parameter 2> ...

The code in the file identified by filename, together with

its input, is determined by the compiled code from

halt.cpp, to either halt or run forever.

Results

In the process of analyzing how halt(f, i) might deal with a

program which makes a decision based on the output of

halt(f, i) itself, four different scenarios were discovered

which help to gain some intuition about the nature of the

absence of input due to deadlock.. All four scenarios use

output from halt(f, i) as input:

1. A program file (alwaysrunsforever.cpp) which

when compiled and executed always runs forever,
regardless of input from halt(f, i)

2. A program file (alwayshalts.cpp) which when
compiled and executed always halts, regardless of
input from halt(f, i)

3. A program file (yesman.cpp) which when
compiled and executed always agrees with halt(f,
i), where f = the program’s own code and i=its
header’s input.

4. A program file (contrary.cpp) which when
compiled and run always negates halt(f, i)’s
output, where f = the program’s own code and
i=its header’s input.

The implementation shows the practical result of each

scenario. What follows is a listing of the actual code for

each of the four, followed by output of main.x when run

against the code file, and a description of how halt(f, i)

deals with the scenario:

// alwaysrunsforever.cpp

#include <iostream>

#include "halt.h"

using namespace std;

int main() // no header input

{

 if (!halt("alwaysrunsforever.cpp", NULL))

 while(true);

 while(true);

 return 0;

}

main.x output:
alwaysrunsforever.cpp runs forever.

Because this program always runs forever, regardless of

the return from halt(f, i), halt(f, i) can safely return ‘false’

upon analyzing alwaysrunsforever.cpp’s code and input.

// alwayshalts.cpp

#include <iostream>

#include "halt.h"

using namespace std;

int main() // no header input

{

 if (halt("alwayshalts.cpp", NULL))

 return 0;

 return 0;

}

main.x output:
alwaysrunsforever.cpp halts.

Because this program always halts, regardless of the return

from halt(f, i), halt(f, i) can safely return ‘true’ upon

analyzing alwayshalts.cpp’s code and input.

// yesman.cpp

#include <iostream>

#include "halt.h"

using namespace std;

int main() // no header input

{

 if (halt("yesman.cpp", NULL))

 return 0;

 while(true);

 return 0;

}

main.x output:
yesman.cpp halts.

Because the program always agrees with halt’s analysis,

regardless of the return from halt(f, i), halt(f, i) can safely

return ‘true’ upon analyzing yesman.cpp’s code and input

due to a general preference of procedures which halt over

procedures which run forever. yesman.cpp is effectively

giving full control of its termination behavior to halt(f, i).

// contrary.cpp

#include <iostream>

#include "halt.h"

using namespace std;

int main() // no header input

{

 if (halt("contrary.cpp", NULL))

 while(true);

 return 0;

}

main.x output:
Exception: Contradiction found: Missing input due

to deadlock.

Because the program always contradicts halt(f, i), halt(f, i)

cannot return an answer. There is a deadlock, as described

earlier. This particular deadlock means part of

contrary.cpp’s input is forever missing. The code

compiled from halt.cpp throws an error, similar to what is

done if the file portion of halt’s input is unreadable.

Conclusion

Artificial intelligence models give us insight in how to deal

with impossible relationships which result in undefined or

absence of input; eliminate it as invalid. Turing’s halting

problem asks if there could be a program, given another

program and its input - can it answer: does it halt or run

forever? The answer is connected to the phrase and its

input. This paper asserts that for all true algorithms, for

which valid input can be supplied, the answer is yes.

References

Davis, M. 1965. The Undecidable, Basic Papers on Undecidable
Propositions, Unsolvable Problems and Computable Functions.
New York: Raven Press.

Gray, J. 2000. The Hilbert Challenge, 169-170. Oxford: Oxford
University Press.

Nagel, E., Newman, J., and Hofstadter, D. eds. 2001. Gödel’s
Proof, 98-101. New York: New York University Press.

Rosen, K. 1999. Discrete Mathematics and Its Applications, 4/e,
181-182. Boston, Mass.: WCB/McGraw-Hill.

Russell, S. and Norvig, P. eds. 2010. Artificial Intelligence: A
Modern Approach, 3/e, 379-381. Upper Saddle River, New
Jersey: Pearson.

Silberschatz, A., Galvin, P., and Gagne, G. 2012. Operating
Systems Concepts, 8/e, 285-287. New Jersey: John Wiley & Sons.

Turing, A. 1937. On Computable Numbers, With an Application
to the Entscheidungsproblem. Proceedings of the London
Mathematical Society 2(42): 230-265.

