
Name:

Course: CAP 4601

Semester: Summer 2013

Assignment: Assignment 05

Date: 26 JUN 2013

Complete the following written problems:

1. Problem Set 1 (100 Points).

Complete the quizzes in the "Problem Set 1" unit in the Introduction to Artificial Intelligence

course from Udacity:

a. Sign In to Udacity.

b. Select Introduction to Artificial Intelligence from the Course Catalog.

c. Press the "Take the Class" button

d. Take the quizzes in the "Problem Set 1" unit.

There is nothing to write or turn in for this problem. Everyone that turns in this assignment will

receive these 100 points. Ensure that you pay close attention during these quizzes.

https://www.udacity.com/course/cs271
https://www.udacity.com/
https://www.udacity.com/
https://www.udacity.com/course/cs271

2. A* Search (100 Points).

First, we augment the graph above with edge weights:

Next, we add the top node to the frontier:

15

0

15

f n

frontier g n

h n

and explored is empty:

 explored = .

Entering the loop, we see that frontier is not empty, so we pop frontier to node:

15

0

15

f n

node g n

h n

Then, we test if node is the goal. Since it isn’t, we add node to explored:

15

0

15

f n

explored = g n

h n

.

For each child of the node, we test if it is in explored and frontier. Since they aren’t, we add

each child to the frontier giving priority to the smallest f n :

16 17 18 20 21

10 , 10 , 10 , 10 , 10

6 7 8 10 11

f n f n f n f n f n

frontier g n g n g n g n g n

h n h n h n h n h n

On the next iteration, we again see that frontier is not empty, so we pop frontier to node:

16

10

6

f n

node g n

h n

Since this node isn’t the goal, we add the node to explored:

15 16

0 , 10

15 6

f n f n

explored = g n g n

h n h n

and then we look at the children of that node. For each child, we check to see if the child is in

the frontier or in explored. Since each child isn’t, we add these children to frontier:

17 18 20 21 25 40

10 , 10 , 10 , 10 , 20 , 20

7 8 10 11 5 20

f n f n f n f n f n f n

frontier g n g n g n g n g n g n

h n h n h n h n h n h n

On the next iteration, we see that frontier is not empty, so we pop frontier to node:

17

10

7

f n

node g n

h n

Since node isn’t the goal, we add node to explored:

15 16 17

0 , 10 , 10

15 6 7

f n f n f n

explored = g n g n g n

h n h n h n

Since node doesn’t have any children, we go on to the next iteration.

On this next iteration, we see that frontier is still not empty, so we pop frontier to node:

18

10

8

f n

node g n

h n

Since node isn’t the goal, we add node to explored:

15 16 17 18

0 , 10 , 10 , 10

15 6 7 8

f n f n f n f n

explored = g n g n g n g n

h n h n h n h n

For each child of node, we check to see if the child is in the frontier or in explored. Since each

child isn’t, we add these children to frontier:

20 21 23 25 29 40

10 , 10 , 20 , 20 , 20 , 20

10 11 3 5 9 20

f n f n f n f n f n f n

frontier g n g n g n g n g n g n

h n h n h n h n h n h n

On the next iteration, we see that frontier is not empty, so we pop frontier to node:

20

10

10

f n

node g n

h n

Since node isn’t the goal, we add node to explored:

15 16 17 18 20

0 , 10 , 10 , 10 , 10

15 6 7 8 10

f n f n f n f n f n

explored = g n g n g n g n g n

h n h n h n h n h n

and then we look at the children of that node. For each child, we check to see if the child is in

the frontier or in explored. Since each child isn’t, we add these children to frontier:

20 21 23 25 29 40

20 , 10 , 20 , 20 , 20 , 20

0 11 3 5 9 20

f n f n f n f n f n f n

frontier g n g n g n g n g n g n

h n h n h n h n h n h n

On the next iteration, we see that frontier is not empty, so we pop frontier to node:

20

20

0

f n

node g n

h n

Since node is the goal, then we have our solution … and we’re done … and we put zeros in the

nodes that will never be expanded:

Therefore, we have the following:

a. The node where h=15: 1

b. The node where h=11: 0

c. The node where h=8: 4

d. The node where h=7: 3

e. The node where h=6: 2

f. The node where h=10: 5

g. The node where h=2: 0

h. The node where h=3: 0

i. The node where h=9: 0

j. The node where h=5: 0

k. The node where h=20: 0

j. The node where h=0 GOAL: 6

l. Is this heuristic admissible? If yes, why? If no, why?

Highlighting the following:

We see that our heuristic has a higher value than the actual edge cost to the goal because

edge cost 10 20 heuristic ; hence, our heuristic overestimates the cost to reach the goal.

Therefore, since our heuristic overestimates the cost to reach the goal, then this heuristic is not

admissible.

In other words: No, our heuristic is not admissible because it overestimates the cost to reach the

goal.

Complete the following programming problems on linprog4.cs.fsu.edu:

Download the ZIP file containing the directory structure and files for the following programming

problem: assignment_05.zip

1. A* Search (200 Points).

Implement the A* Search algorithm in C++11 to find the shortest path between any city in the

simplified road map of part of Romania on page 68 and Bucharest. In other words, find the

shortest path between any city on that map and Bucharest.

Use the following code:

– main.cpp: The file to be studied and then edited.

– makefile: The makefile for linprog4.cs.fsu.edu.

Use the links in Week 01 to understand any C++11 code that you may be unfamiliar with.

Only edit the following section in main.cpp:

 //---
 // Begin Your A* Algorithm Below:
 // Combine the Uniform-Cost-Search function on page 84 with the
 // information on A* search starting on page 93.
 //---

 // ENTER YOUR A* SEARCH CODE HERE.

 //---
 // End Your A* Algorithm Above.
 //---

You may use the lambda functions that I provided above this section of code or you may write

your own lambda functions in this section of code.

The usage for the main.exe that the makefile produces is as follows:

./main.exe [-source "City"]

where [-source "City"] is optional. If -source "City" is not provided, then Arad is

used as the source city.

The destination city is always Bucharest.

For example:

./main.exe -source "Rimnicu Vilcea" finds the shortest path between Rimnicu

Vilcea and Bucharest.

http://www.cs.fsu.edu/~cop4601p/assignment/05/assignment_05.zip
http://www.cs.fsu.edu/~cop4601p/assignment/05/a_star/main.cpp
http://www.cs.fsu.edu/~cop4601p/assignment/05/a_star/makefile
http://www.cs.fsu.edu/~cop4601p/week/01/

Hint: Check your implementation using the stages in an A* search on page 96. Figure 3.24

contains all the calculations that your code should carry out. Additionally, many sites across the

Internet have example implementations and pseudocode for A*. Use whatever is easiest to

understand and works properly, but do not edit main.cpp outside the comments above. In other

words, you must use the interface that I have provided (i.e. the container types, smart pointers,

etc.).

Use std::cout to create output of the following format ... the following is shortest path from

Arad to Bucharest:

Source: Arad

Destination: Bucharest

Expanded:

 { name: Arad, f: 366, g: 0, h: 366 }

 { name: Sibiu, f: 393, g: 140, h: 253 }

 { name: Rimnicu Vilcea, f: 413, g: 220, h: 193 }

 { name: Fagaras, f: 415, g: 239, h: 176 }

 { name: Pitesti, f: 417, g: 317, h: 100 }

 { name: Bucharest, f: 418, g: 418, h: 0 }

Solution: Arad -> Sibiu -> Rimnicu Vilcea -> Pitesti -> Bucharest

Note: This output contains similar information from Figure 3.24 on page 96.

Here's another example of output ... for the shortest path from Timisoara to Bucharest:

Source: Timisoara

Destination: Bucharest

Expanded:

 { name: Timisoara, f: 329, g: 0, h: 329 }

 { name: Lugoj, f: 355, g: 111, h: 244 }

 { name: Mehadia, f: 422, g: 181, h: 241 }

 { name: Arad, f: 484, g: 118, h: 366 }

 { name: Drobeta, f: 498, g: 256, h: 242 }

 { name: Sibiu, f: 511, g: 258, h: 253 }

 { name: Rimnicu Vilcea, f: 531, g: 338, h: 193 }

 { name: Fagaras, f: 533, g: 357, h: 176 }

 { name: Pitesti, f: 535, g: 435, h: 100 }

 { name: Craiova, f: 536, g: 376, h: 160 }

 { name: Bucharest, f: 536, g: 536, h: 0 }

Solution: Timisoara -> Arad -> Sibiu -> Rimnicu Vilcea -> Pitesti -> Bucharest

HINT: Even though C++11 has a std::priority_queue, do not use it for this problem . . .

it will be more trouble than it's worth.

http://en.wikipedia.org/wiki/A*_search_algorithm

After completing Assignment 05, create an assignment_05_lastname.pdf file for your

written assignment and an assignment_05_lastname.zip file for your programming

assignment (where lastname is your last name). Ensure that your

assignment_05_lastname.zip retains the directory structure of the original zip file. In

other words, ensure your zip file has the following directory structure:

 /

o a_star/

 main.cpp

 makefile

Upload both your assignment_05_lastname.pdf file for your written assignment and

your assignment_05_lastname.zip file for your programming assignment to the

Assignment 05 location on the BlackBoard site: https://campus.fsu.edu.

https://campus.fsu.edu/

