
Name:

Course: CAP 4601

Semester: Summer 2013

Assignment: Assignment 04

Date: 19 JUN 2013

Complete the following written problems:

1. The Probability Density Function of the Normal Distribution (50 Points).

The Normal Distribution has the following Probability Density Function (a.k.a. the "Gaussian"):

2

22
1

2

x

f x e

where is the mean, is the standard deviation, and 0 .

If the mean and the standard deviation are such that 0 and 1 , then we have the

following bell-shaped curve:

Note: The mean translates this curve left or right; while the standard deviation makes this

curve narrower or wider. For instance, the following plots show how this bell-shaped curve

changes as changes. The plot on the left is for
1

2
 , the plot in the center is for 1 , and

the plot on the right is for
3

2
 :

Therefore, as decreases, the bell-shaped curve shoots up (i.e. gets narrower). Similarly, as

increases, the bell-shaped curve flattens out (i.e. gets wider).

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Standard_deviation

Moreover, this function has the following property:

2

22
1

2

1

2 2

1 1

2 22 2

1 1

2 2

1

x

f x dx e dx

x
erf

x x
erf erf

where erf is the Error function,
22 xerf x e dx

 , and
22 xd

erf x e
dx

 .

Therefore, regardless of what the value is for and , the "area under the curve" for the entire

function is always 1 for this function. This is a desirable property that we can take advantage of

in Probability.

a. Given the function for the Normal distribution:

2

22
1

2

x

f x e

Derive the x values that production inflection points in the function above. In other words,

using Calculus and Algebra, find the x values that make 0f x for any value of and .

http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Inflection_point

b. C++11 added the Error function erf shown above to the header <cmath> as the function

erf(). The following block of code shows how to use this Error function:

#include <iostream>
#include <cmath>

int main () {
 std::cout << erf(1.0) << '\n'; // 0.842701
}

Use the indefinite integration above to calculate the exact value of the following definite

integrals where 0 . Exact value means keeping the square roots and reducing down to one

erf function. Note: erf a erf a . Also, use the C++11 erf() function to calculate the

decimal values of those same definite integrals:

Definite Integral Exact Value Decimal Value

2

22
1

2

x

e dx

2

2
erf

 0.682689

2

2

2

2

2

1

2

x

e dx

2

2

3

2

3

1

2

x

e dx

c. For these bell-shaped curves, what is the percentage of the "area under the curve" that is

within one standard deviation from the mean? In other words, if we fixed 0 , what is the

blue shaded area in this plot as a percentage of the overall "area under the curve":

d. For these bell-shaped curves, how many standard deviations from the mean covers

approximately 99.73% of the "area under the curve"?

http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Mean

2. Expectation Maximization using a Gaussian Mixture Model (50 Points).

OpenCV can perform Expectation Maximization using the cv::EM class. Here is an excerpt of

the OpenCV code needed to perform Expectation Maximization to pull out two "Gaussians" (i.e.

the multivariate version of the Normal distribution we covered above in Written Problem 1):

 int max_number_of_iterations = 1024;
 double threshold = 0.000001;
 cv::TermCriteria termination_criteria(
 cv::TermCriteria::COUNT + cv::TermCriteria::EPS,
 max_number_of_iterations,
 threshold
);
 int number_of_clusters = 2;
 cv::EM em(
 number_of_clusters,
 cv::EM::COV_MAT_GENERIC,
 termination_criteria
);
 em.train(dataset);
 auto means = em.getMat("means");
 std::cout << "means:\n" << means << "\n\n";
 auto covs = em.getMatVector("covs");
 std::cout << "covs:\n" << covs << "\n\n";

The OpenCV class cv::TermCriteria is used to set up the termination criteria (i.e. when to

stop the EM algorithm). This is same as the termination criteria that we have used to stop

gradient descent in previous assignments. Similarly, we are stopping here after either 1024

iterations of EM or when the relative change in the likelihood logarithm is under the threshold

0.000001.

The OpenCV enumeration value cv::EM::COV_MAT_GENERIC ensures that we will receive

"Gaussians" that are both scaled and rotated (both of these, vice just one or the other). In other

words, this enumeration value ensures that we will receive a full Covariance Matrix for each

cluster it will try to fit. A covariance matrix functions in much the same way as the standard

deviation functioned in Written Problem 1 above.

In the code excerpt above, we are requesting that "Gaussians" be fitted to two clusters of data;

therefore, after we train on a dataset, we should receive two means and two covariance matrices.

These multivariate "Gaussians" (i.e. the Probability Density Function of the Multivariate Normal

Distribution) have a similar function to that of the bell-shaped curve we saw in Written Problem

1 above:

 11

2
1

22

1

2

T

n
f e

x x

x

where T in the exponent means matrix or vector transpose, means the determinant, n is the

input dimension such that
nx , the mean n , and the covariance matrix is an n n

http://en.wikipedia.org/wiki/Expectation-maximization_algorithm
http://docs.opencv.org/2.4.4/modules/ml/doc/expectation_maximization.html
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Transpose
http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Covariance_matrix

matrix such that
T

RS RS where R is a n n parametric rotation matrix and S is a

n n parametric scaling matrix. As in Written Problem 1, the "area under the curve" (or

"volume under the curve") is 1. Note: Here is a variable, not the summation symbol. Since

we are dealing with the multivariate case here, we use the uppercase Greek letter S (uppercase

sigma): . When we were dealing with the univariate case in Written Problem 1, we used the

lowercase Greek letter s (lowercase sigma): .

For instance, if we have ,x yx , a mean 4, 2 , a parametric rotation matrix that R

rotates the "Gaussian" by 30 , and a parametric scaling matrix S that scales the "Gaussian"

by 4 in the x direction and 1 in the y direction prior to the rotation, then we would have the

following preliminary calculations:

Singular Value
Decomposition

4 0

0 1

3 1

cos cos 90 cos sin cos 30 sin 30 2 2

sin sin 90 sin cos sin 30 cos 30 1 3

2 2

49 15 3

4 4

15 3 19

4 4

T T T T

S

R

RS RS RSS R R SS R

1 1

2 2

1 1 1
1 1 1 1 1

Singualr Value
Decomposition

19 15 3

64 64

15 3 49

64 6

49 15 3

4

4

4
16

15 3 19

4

4

1

4

2

6

2

4

4

T T T T T

x x

y y

 RSS R R S S R R R

x

S S

http://en.wikipedia.org/wiki/Rotation_matrix
http://en.wikipedia.org/wiki/Scaling_matrix
http://en.wikipedia.org/wiki/Multivariate_Gaussian_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Rotation_matrix
http://en.wikipedia.org/wiki/Scaling_matrix

Then, we would have the following intermediate calculation:

1

2 2

19 15 3

4 464 64

2 215 3 49

64 64

19 15 3

464 64
4 2

215 3 49

64 64

19 15 15 3 19 49 15 3 49 15 3 125
3

64 32 16 8 64 8 16 4 16

T

T
x x

y y

x
x y

y

x x x y y y
xy

x x

And finally, we would have:

2 2

2 2

1

19 15 15 3 19 49 15 3 49 15 3 125
3

64 32 16 8 64 8 16 4 16

19 15 15 3 19 49 15 3 49 15 3 125
3

128 64 32 16 128 16 32 8 3

1

2
1

22

1

2

2

2

2

1

2

1
,

2 4

1

8

T

x x

n

x y y y
xy

x x x y y y
xy

f e

f x y e

e

x x

x

If we graphed this, we would have the following plots (with the contour plot at the end):

Note: The ellipses in the contour plot above are the first, second, and third "standard deviations"

from the mean point at the center.

Note: Since we're dealing with ellipses, a 30 rotation for a scaled ellipse will look the same if

the ellipse id rotated 180 in the opposite direction. In other words, a 30 rotation will look the

same as a 150 rotation.

That's a lot of math! Thank goodness the OpenCV library does most of this for us.

The data from Assignment 1, Programming Problem 5 was the following:

This data is not separated into classes; however, it does appear that there are two classes of

points in this dataset – a class for each cluster of data. These clusters also appear to be generated

from a distribution similar to the Multivariate Normal Distribution we just learned about. Why?

Because these clusters are dense at their center, that density gradually falls off as we move away

from their center, and the clusters are elliptical. Their center could be described by a mean (i.e.

their translation). Their elliptical nature could be described by a covariance matrix (i.e. their

scaling and rotation).

We need the EM algorithm to return the mean and covariance matrix of each of the clusters

above so that we can separate those clusters into classes.

Once the EM algorithm returns the mean and covariance matrix of each cluster, the following

OpenCV code extracts the elliptical information from each cluster (Note: i is the index of each

cluster [0 or 1]):

 // Singular Value Decomposition
 cv::Mat_<double> U, W, Vt;
 cv::SVDecomp(covs[i], W, U, Vt);

 cv::Mat_<double> center = means.row(i);
 cv::Mat_<double> semi_major_axis_direction = Vt.row(0);
 double semi_major_axis_angle_in_radians = atan2(
 semi_major_axis_direction(1),
 semi_major_axis_direction(0)
);
 double semi_major_axis_angle_in_degrees = (
 semi_major_axis_angle_in_radians * degrees_per_radian
);
 double semi_major_axis_magnitude = sqrt(W(0));

http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Translation_(geometry)
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Scaling_(geometry)
http://en.wikipedia.org/wiki/Rotation_(geometry)
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Ellipse

 cv::Mat_<double> semi_minor_axis_direction = Vt.row(1);
 double semi_minor_axis_angle_in_radians = atan2(
 semi_minor_axis_direction(1),
 semi_minor_axis_direction(0)
);
 double semi_minor_axis_angle_in_degrees = (
 semi_minor_axis_angle_in_radians * degrees_per_radian
);
 double semi_minor_axis_magnitude = sqrt(W(1));

Compile and run the following code from em.zip:

– main.cpp: The file containing the OpenCV calls for the EM algorithm.

– data.cpp: The dataset from Programming Problem 5 of Assignment 01.

– makefile: The makefile for linprog4.cs.fsu.edu.

Using information about Cluster 0 from the output of the code above, the Probability Density

Function of the Bivariate Normal Distribution that generated that first cluster of data (Cluster 0)

is approximately:
2 20.0385986 0.0492529 0.77767 0.0664186 1.30577 7.148690.0140821 x xy x y ye

a. Using information about Cluster 1 from the output of the code above, calculate the

approximate Probability Density Function of the Bivariate Normal Distribution that generated

that second cluster of data (Cluster 1).

http://www.cs.fsu.edu/~cop4601p/assignment/04/em.zip
http://www.cs.fsu.edu/~cop4601p/assignment/04/em/main.cpp
http://www.cs.fsu.edu/~cop4601p/assignment/04/em/data.cpp
http://www.cs.fsu.edu/~cop4601p/assignment/04/em/makefile
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Multivariate_normal_distribution

b. Using the information about Ellipse 0 and Ellipse 1 from the output of the code above, draw

the ellipse for each cluster that should contain 99.73% of the data. Draw these ellipses on the

large picture below. Ensure that you include the line for semi-major axis and the semi-minor

axis. Ensure that you pay close attention to the angle and the length of those semi-major and

semi-minor axes. For example, given the initial plot of points on the left, you would produce the

final plot of points with ellipses and axes on the right based on the output of the code above:

Draw the ellipses and axes on the following picture based on the output from the code above:

Keep in mind that this dataset did not contain class labels. This was an unlabeled dataset. We

told the EM algorithm to find two clusters of points and it found two … without supervision …

and the two clusters that the EM algorithm found happened to exactly match our expectations.

Yay, Unsupervised Learning!

3. Neural Networks (100 Points).

Given the following Neural Network:

where

1 1 1 10, 1, 1 2, 21f f f fw w x w x w x ,
2 2 2 20, 1, 1 2, 21f f f fw w x w x w x ,

0, 1, 1 2, 21y y y yw w f w f w f , and activation functions 1f , 2f , and y are step functions

defined as follows:

1

1

1

2

2

2

1

2

0, 1

0, 0

0, 1

0, 0

0, 1

0, 0

f

f

f

f

f

f

y

y

y

f

f

y

w x
w x

w x

w x
w x

w x

w x
w x

w x

a. Place and orient the activation functions 1f , 2f , and y by hand and calculate the nine Neural

Network parameters (i.e.
10, fw ,

11, fw ,
12, fw ,

20, fw ,
21, fw ,

22, fw ,
0, yw ,

1, yw , and
2, yw) above needed

to compute the XOR function. In other words, calculate the nine parameters needed to create

this function:

1 2

0 0

0 1

1 0

1 1

x x y

0

1

1

0

HINT: It will be very helpful to plot the 1 2,x x points, draw the lines
1

0f w x and
2

0f w x

on that plot, and shade each positive region (i.e. where
1 1f and

2 1f).

HINT: It will be very helpful to plot the 1 2,f f points, draw the line 0y w f on that plot, and

shade the positive region (i.e. where 1y).

Note: The XOR function produces these graphs:

Remember that 0 1 1 2 21w w x w x w x is just a plane that we can think of in terms of the

normal vector equation that we saw in Assignment 01:

0 1 2 1,0 2,0

1 1,0 2 2,0

1 1,0 2 2,0

1,0 2,0 1 2

1,0 2,0 1 2

cos ,sin , ,

cos ,sin ,

cos sin

cos sin cos sin

cos sin 1 cos sin

x x x x

x x x x

x x x x

x x x x

x x x x

n x x

Therefore, 0 1,0 2,0cos sinw x x , 1 cosw , and 2 sinw . Note: We could also

adjust the "slope" of that plane using the tan as we saw in the Logistic Function problem

from Assignment 03, but we won't need to do that here.

b. For the functions 1f , 2f , and y above, calculate the following tables:

1 2 1

0 0

0 1

1 0

1 1

x x f

1 2 2

0 0

0 1

1 0

1 1

x x f

1 2

0

1

f f y

Note: For that last table, you may add additional 0 or 1 values as needed for various

combinations of 1f and 2f .

Complete the following programming problems on linprog4.cs.fsu.edu:

Download the ZIP file containing the directory structure and files for these programming

problems: assignment_04.zip

1. Cross Validation – Part 2 (200 Points):

Use either the "Cross Validation – Part 1" code you wrote for Assignment 03 or the following

code:

– main.cpp: The file to be edited.

– wdbc.data: The Breast Cancer Wisconsin (Diagnostic) Data Set.

– makefile: The makefile for linprog4.cs.fsu.edu.

Do __not__ touch the Testing dataset that contains 5% of the malignant data and 5% of the

benign data.

Program a k -fold Stratified Cross Validation:

Using just the Training dataset, divide the training dataset into class datasets (for this problem, a

"malignant" dataset and a "benign" dataset).

(Optional) Shuffle each class dataset.

Divide each class dataset into k equal sets. For this programming problem, let 10k ;

however, ensure that k is a variable that can change be easily changed.

THE START OF A FOLD OF CROSS VALIDATION.

Create a "Train" dataset and a "Validate" dataset. Copy 1 set from each class into the "Validate"

dataset. Copy the remaining 1k sets from each class into the "Train" dataset.

(Required) Shuffle the "Train" dataset and then shuffle the "Validate" dataset that contains

copies from each class dataset.

Choose a classifier from OpenCV's Machine Learning Library (MLL) that interests you. Train a

classifier using the "Train" dataset. Use the classifier's train() method (if available).

Validate that classifier's performance using the "Validate" dataset. Use the classifier's

predict() method (if available). Use std::cout to report the parameters that were used

for the classifier and the performance of the classifier. For this programming problem, the

format of the output is not important.

For performance, use "Overall Accuracy":

the number of classes you predicted correctly
Overall Accuracy

the number of predictions you had to make

http://www.cs.fsu.edu/~cop4601p/assignment/04/assignment_04.zip
http://www.cs.fsu.edu/~cop4601p/assignment/04/cross_validation_2/main.cpp
http://www.cs.fsu.edu/~cop4601p/assignment/04/cross_validation_2/wdbc.data
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
http://www.cs.fsu.edu/~cop4601p/assignment/04/cross_validation_2/makefile
http://docs.opencv.org/2.4.4/modules/ml/doc/ml.html

Store "Overall Accuracy" in a std::vector that is maintained throughout the life of the

program.

THE END OF A FOLD OF CROSS VALIDATION.

From the k sets that each class dataset has been divided into, use a different set for your

"Validate" set … the next set of the k sets in each class. Use the remaining sets to create your

"Train" set. Perform another fold of Cross Validation.

Repeat this k times until every set of each class dataset has been used in the "Validate" set. In

other words, do k -folds of this k -fold Stratified Cross Validation.

Example: If 3k , then the "malignant" class would be broken up into 3 subsets … let's call

them malignant_1, malignant_2, malignant_3. Similarly, we would have benign_1, benign_2,

and benign_3.

For the 1st fold, our "Validate" set would contain the data from malignant_1 and benign_1; while

the "Train" set would contain the data from the rest of the sets.

For the 2nd fold, our "Validate" set would contain the data from malignant_2 and benign_2;

while the "Train" set would contain the data from the rest of the sets.

For the 3rd (and final) fold, our "Validate" set would contain the data from malignant_3 and

benign_3; while the "Train" set would contain the data from the rest of the sets.

