Name:		
Course:	CAP 4601
Semester:	Summer 2013
Assignment:	Assignment 04
Date:		19 JUN 2013

Complete the following written problems:

1. The Probability Density Function of the Normal Distribution (50 Points).

The Normal Distribution has the following Probability Density Function (a.k.a. the "Gaussian"):

where is the mean, is the standard deviation, and .

If the mean and the standard deviation are such that and , then we have the following bell-shaped curve:
[image:]

Note: The mean translates this curve left or right; while the standard deviation makes this curve narrower or wider. For instance, the following plots show how this bell-shaped curve changes as changes. The plot on the left is for , the plot in the center is for , and the plot on the right is for :
[image:] [image:] [image:]

Therefore, as decreases, the bell-shaped curve shoots up (i.e. gets narrower). Similarly, as increases, the bell-shaped curve flattens out (i.e. gets wider).

Moreover, this function has the following property:

where is the Error function, , and .
	

Therefore, regardless of what the value is for and , the "area under the curve" for the entire function is always 1 for this function. This is a desirable property that we can take advantage of in Probability.

a. Given the function for the Normal distribution:

Derive the values that production inflection points in the function above. In other words, using Calculus and Algebra, find the values that make for any value of and .

b. C++11 added the Error function shown above to the header <cmath> as the function erf(). The following block of code shows how to use this Error function:

#include <iostream>
#include <cmath>

int main () {
	std::cout << erf(1.0) << '\n'; // 0.842701
}

Use the indefinite integration above to calculate the exact value of the following definite integrals where . Exact value means keeping the square roots and reducing down to one function. Note: . Also, use the C++11 erf() function to calculate the decimal values of those same definite integrals:

	Definite Integral
	Exact Value
	Decimal Value

	

	

	

	

	
	

	

	
	

c. For these bell-shaped curves, what is the percentage of the "area under the curve" that is within one standard deviation from the mean? In other words, if we fixed , what is the blue shaded area in this plot as a percentage of the overall "area under the curve":
[image:]

d. For these bell-shaped curves, how many standard deviations from the mean covers approximately of the "area under the curve"?

2. Expectation Maximization using a Gaussian Mixture Model (50 Points).

OpenCV can perform Expectation Maximization using the cv::EM class. Here is an excerpt of the OpenCV code needed to perform Expectation Maximization to pull out two "Gaussians" (i.e. the multivariate version of the Normal distribution we covered above in Written Problem 1):

	int max_number_of_iterations = 1024;
	double threshold = 0.000001;
	cv::TermCriteria termination_criteria(
		cv::TermCriteria::COUNT + cv::TermCriteria::EPS,
		max_number_of_iterations,
		threshold
);
	int number_of_clusters = 2;
	cv::EM em(
		number_of_clusters,
		cv::EM::COV_MAT_GENERIC,
		termination_criteria
);
	em.train(dataset);
	auto means = em.getMat("means");
	std::cout << "means:\n" << means << "\n\n";
	auto covs = em.getMatVector("covs");
	std::cout << "covs:\n" << covs << "\n\n";

The OpenCV class cv::TermCriteria is used to set up the termination criteria (i.e. when to stop the EM algorithm). This is same as the termination criteria that we have used to stop gradient descent in previous assignments. Similarly, we are stopping here after either 1024 iterations of EM or when the relative change in the likelihood logarithm is under the threshold 0.000001.

The OpenCV enumeration value cv::EM::COV_MAT_GENERIC ensures that we will receive "Gaussians" that are both scaled and rotated (both of these, vice just one or the other). In other words, this enumeration value ensures that we will receive a full Covariance Matrix for each cluster it will try to fit. A covariance matrix functions in much the same way as the standard deviation functioned in Written Problem 1 above.

In the code excerpt above, we are requesting that "Gaussians" be fitted to two clusters of data; therefore, after we train on a dataset, we should receive two means and two covariance matrices.

These multivariate "Gaussians" (i.e. the Probability Density Function of the Multivariate Normal Distribution) have a similar function to that of the bell-shaped curve we saw in Written Problem 1 above:

where in the exponent means matrix or vector transpose, means the determinant, is the input dimension such that , the mean , and the covariance matrix is an matrix such that where is a parametric rotation matrix and is a parametric scaling matrix. As in Written Problem 1, the "area under the curve" (or "volume under the curve") is 1. Note: Here is a variable, not the summation symbol. Since we are dealing with the multivariate case here, we use the uppercase Greek letter S (uppercase sigma): . When we were dealing with the univariate case in Written Problem 1, we used the lowercase Greek letter s (lowercase sigma): .

For instance, if we have , a mean , a parametric rotation matrix that rotates the "Gaussian" by , and a parametric scaling matrix that scales the "Gaussian" by in the direction and in the direction prior to the rotation, then we would have the following preliminary calculations:

Then, we would have the following intermediate calculation:

And finally, we would have:

If we graphed this, we would have the following plots (with the contour plot at the end):
[image:] [image:] [image:]
[image:] [image:]
Note: The ellipses in the contour plot above are the first, second, and third "standard deviations" from the mean point at the center.

Note: Since we're dealing with ellipses, a rotation for a scaled ellipse will look the same if the ellipse id rotated in the opposite direction. In other words, a rotation will look the same as a rotation.

That's a lot of math! Thank goodness the OpenCV library does most of this for us.

The data from Assignment 1, Programming Problem 5 was the following:
[image:]
This data is not separated into classes; however, it does appear that there are two classes of points in this dataset – a class for each cluster of data. These clusters also appear to be generated from a distribution similar to the Multivariate Normal Distribution we just learned about. Why? Because these clusters are dense at their center, that density gradually falls off as we move away from their center, and the clusters are elliptical. Their center could be described by a mean (i.e. their translation). Their elliptical nature could be described by a covariance matrix (i.e. their scaling and rotation).

We need the EM algorithm to return the mean and covariance matrix of each of the clusters above so that we can separate those clusters into classes.

Once the EM algorithm returns the mean and covariance matrix of each cluster, the following OpenCV code extracts the elliptical information from each cluster (Note: i is the index of each cluster [0 or 1]):

	// Singular Value Decomposition
	cv::Mat_<double> U, W, Vt;
	cv::SVDecomp(covs[i], W, U, Vt);

	cv::Mat_<double> center = means.row(i);
	cv::Mat_<double> semi_major_axis_direction = Vt.row(0);
	double semi_major_axis_angle_in_radians = atan2(
			semi_major_axis_direction(1),
			semi_major_axis_direction(0)
);
	double semi_major_axis_angle_in_degrees = (
		semi_major_axis_angle_in_radians * degrees_per_radian
);
	double semi_major_axis_magnitude = sqrt(W(0));

	cv::Mat_<double> semi_minor_axis_direction = Vt.row(1);
	double semi_minor_axis_angle_in_radians = atan2(
		semi_minor_axis_direction(1),
		semi_minor_axis_direction(0)
);
	double semi_minor_axis_angle_in_degrees = (
		semi_minor_axis_angle_in_radians * degrees_per_radian
);
	double semi_minor_axis_magnitude = sqrt(W(1));

Compile and run the following code from em.zip:
– main.cpp: The file containing the OpenCV calls for the EM algorithm.
– data.cpp: The dataset from Programming Problem 5 of Assignment 01.
– makefile: The makefile for linprog4.cs.fsu.edu.

Using information about Cluster 0 from the output of the code above, the Probability Density Function of the Bivariate Normal Distribution that generated that first cluster of data (Cluster 0) is approximately:

a. Using information about Cluster 1 from the output of the code above, calculate the approximate Probability Density Function of the Bivariate Normal Distribution that generated that second cluster of data (Cluster 1).

b. Using the information about Ellipse 0 and Ellipse 1 from the output of the code above, draw the ellipse for each cluster that should contain 99.73% of the data. Draw these ellipses on the large picture below. Ensure that you include the line for semi-major axis and the semi-minor axis. Ensure that you pay close attention to the angle and the length of those semi-major and semi-minor axes. For example, given the initial plot of points on the left, you would produce the final plot of points with ellipses and axes on the right based on the output of the code above:
[image:] [image:]
Draw the ellipses and axes on the following picture based on the output from the code above:
[image:]

Keep in mind that this dataset did not contain class labels. This was an unlabeled dataset. We told the EM algorithm to find two clusters of points and it found two … without supervision … and the two clusters that the EM algorithm found happened to exactly match our expectations. Yay, Unsupervised Learning!

3. Neural Networks (100 Points).

Given the following Neural Network:

where , , , and activation functions , , and are step functions defined as follows:

a. Place and orient the activation functions , , and by hand and calculate the nine Neural Network parameters (i.e. , , , , , , , , and) above needed to compute the XOR function. In other words, calculate the nine parameters needed to create this function:

HINT: It will be very helpful to plot the points, draw the lines and on that plot, and shade each positive region (i.e. where and).

HINT: It will be very helpful to plot the points, draw the line on that plot, and shade the positive region (i.e. where).

Note: The XOR function produces these graphs:
 [image:] [image:]

Remember that is just a plane that we can think of in terms of the normal vector equation that we saw in Assignment 01:

Therefore, , , and . Note: We could also adjust the "slope" of that plane using the as we saw in the Logistic Function problem from Assignment 03, but we won't need to do that here.

b. For the functions , , and above, calculate the following tables:

Note: For that last table, you may add additional or values as needed for various combinations of and .

Complete the following programming problems on linprog4.cs.fsu.edu:

Download the ZIP file containing the directory structure and files for these programming problems: assignment_04.zip

1. Cross Validation – Part 2 (200 Points):

Use either the "Cross Validation – Part 1" code you wrote for Assignment 03 or the following code:
– main.cpp: The file to be edited.
– wdbc.data: The Breast Cancer Wisconsin (Diagnostic) Data Set.
– makefile: The makefile for linprog4.cs.fsu.edu.

Do __not__ touch the Testing dataset that contains 5% of the malignant data and 5% of the benign data.

Program a -fold Stratified Cross Validation:

Using just the Training dataset, divide the training dataset into class datasets (for this problem, a "malignant" dataset and a "benign" dataset).

(Optional) Shuffle each class dataset.

Divide each class dataset into equal sets. For this programming problem, let ; however, ensure that is a variable that can change be easily changed.

THE START OF A FOLD OF CROSS VALIDATION.

Create a "Train" dataset and a "Validate" dataset. Copy set from each class into the "Validate" dataset. Copy the remaining sets from each class into the "Train" dataset.

(Required) Shuffle the "Train" dataset and then shuffle the "Validate" dataset that contains copies from each class dataset.

Choose a classifier from OpenCV's Machine Learning Library (MLL) that interests you. Train a classifier using the "Train" dataset. Use the classifier's train() method (if available). Validate that classifier's performance using the "Validate" dataset. Use the classifier's predict() method (if available). Use std::cout to report the parameters that were used for the classifier and the performance of the classifier. For this programming problem, the format of the output is not important.

For performance, use "Overall Accuracy":

Store "Overall Accuracy" in a std::vector that is maintained throughout the life of the program.

THE END OF A FOLD OF CROSS VALIDATION.

From the sets that each class dataset has been divided into, use a different set for your "Validate" set … the next set of the sets in each class. Use the remaining sets to create your "Train" set. Perform another fold of Cross Validation.

Repeat this times until every set of each class dataset has been used in the "Validate" set. In other words, do -folds of this -fold Stratified Cross Validation.

Example: If , then the "malignant" class would be broken up into 3 subsets … let's call them malignant_1, malignant_2, malignant_3. Similarly, we would have benign_1, benign_2, and benign_3.

For the 1st fold, our "Validate" set would contain the data from malignant_1 and benign_1; while the "Train" set would contain the data from the rest of the sets.

For the 2nd fold, our "Validate" set would contain the data from malignant_2 and benign_2; while the "Train" set would contain the data from the rest of the sets.

For the 3rd (and final) fold, our "Validate" set would contain the data from malignant_3 and benign_3; while the "Train" set would contain the data from the rest of the sets.

image2.wmf
m

Î

¡

image43.png

image44.wmf
s

oleObject40.bin

image45.wmf
99.73%

oleObject41.bin

oleObject2.bin

image46.wmf
(

)

(

)

(

)

(

)

1

1

2

1

2

2

1

2

T

n

fe

p

-

=

xx

x

S

S

mm

oleObject42.bin

image47.wmf
T

oleObject43.bin

image48.wmf

oleObject44.bin

image49.wmf
n

oleObject45.bin

image50.wmf
n

Î

x

¡

oleObject46.bin

image51.wmf
n

Î

¡

m

image3.wmf
s

Î

¡

oleObject47.bin

image52.wmf
S

oleObject48.bin

image53.wmf
nn

´

oleObject49.bin

image54.wmf
(

)

(

)

T

RSRS

S=

oleObject50.bin

image55.wmf
R

oleObject51.bin

oleObject3.bin

image56.wmf
nn

´

oleObject52.bin

image57.wmf
S

oleObject53.bin

image58.wmf
nn

´

oleObject54.bin

image59.wmf
S

oleObject55.bin

image60.wmf
S

oleObject56.bin

image61.wmf
s

oleObject57.bin

image62.wmf
(

)

,

xy

=

x

oleObject58.bin

image63.wmf
(

)

4,2

=-

m

image4.wmf
0

s

>

oleObject59.bin

image64.wmf
R

oleObject60.bin

image65.wmf
30

q

=°

oleObject61.bin

image66.wmf
S

oleObject62.bin

image67.wmf
4

oleObject4.bin

oleObject63.bin

image68.wmf
x

oleObject64.bin

image69.wmf
1

oleObject65.bin

image70.wmf
y

oleObject66.bin

image71.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

Singular Value

Decomposition

40

01

31

coscos90cossincos30sin30

22

sinsin90sincossin30cos30

13

22

49153

44

15319

44

T

TTT

qqqq

qqqq

æö

=

ç÷

èø

æö

-

ç÷

+°-°-°

æöæöæö

ç÷

====

ç÷ç÷ç÷

+°°°

ç÷

èøèøèø

ç÷

èø

æö

ç÷

ç÷

===

ç÷

ç

èø

S

R

RSRSRSSRRSSR

14243

S=

(

)

(

)

(

)

(

)

(

)

1

1

2

2

111

11111

Singualr Value

Decomposition

19153

6464

15349

646

49153

4

4

4

16

15319

4

4

1

4

2

6

2

4

4

TTTTT

xx

yy

æö

-

ç÷

ç÷

ç÷

-

ç÷

èø

-

÷

æö

ç÷

ç÷

==

ç÷

ç÷

èø

==

==

æöæöæö

--=

ç÷ç÷ç÷

-+

èøèøèø

==

RSSRRSSRRR

x

SS

1442443

S

S

S

m=

oleObject67.bin

image72.wmf
(

)

(

)

(

)

1

22

19153

44

6464

22

15349

6464

19153

4

6464

42

2

15349

6464

1915153194915349153125

3

643216864816416

T

T

xx

yy

x

xy

y

xxxyyy

xy

-

æö

-

ç÷

--

æöæö

ç÷

ç÷ç÷

+ç÷+

èøèø

-

ç÷

èø

æö

-

ç÷

-

æö

ç÷

=-+

ç÷

ç÷+

èø

-

ç÷

èø

=---++++

--=

+

xx

S

mm

oleObject68.bin

image73.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

22

22

1

1915153194915349153125

3

643216864816416

1915153194915349153125

3

128643216128163283

1

2

1

2

2

1

2

2

2

2

1

2

1

,

24

1

8

T

xx

n

xyyy

xy

xxxyyy

xy

fe

fxye

e

p

p

p

-

---+++++

-+++-

æö

-

ç÷

ç÷

èø

=

=

=

xx

x

S

S

mm

oleObject69.bin

image74.png

image75.png
008

oo

om

200

)

10

BT

=

image76.png
)

10

)

image77.png
0

1

1

]

=

7

10

)

image78.png
10

10|

=Ty o o 2

image79.wmf
30

°

oleObject70.bin

image5.wmf
m

image80.wmf
180

°

oleObject71.bin

image81.wmf
30

°

oleObject72.bin

image82.wmf
150

-°

oleObject73.bin

image83.png
8

10

oleObject5.bin

image84.wmf
22

0.03859860.04925290.777670.06641861.3057

77.14869

0.0140821

xxyxyy

e

-+--+-

oleObject74.bin

image85.png

image86.png

image6.wmf
s

image87.wmf
1

oleObject75.bin

image88.wmf
1

x

oleObject76.bin

image89.wmf
2

x

oleObject77.bin

image90.wmf
(

)

1

1

f

f

wx

g

oleObject78.bin

image91.wmf
(

)

2

2

f

f

wx

g

oleObject79.bin

oleObject6.bin

image92.wmf
1

oleObject80.bin

image93.wmf
(

)

y

y

wf

g

oleObject81.bin

image94.wmf
1

0,

f

w

oleObject82.bin

image95.wmf
2

0,

f

w

oleObject83.bin

image96.wmf
0,

y

w

oleObject84.bin

image7.wmf
0

m

=

image97.wmf
1

1,

f

w

oleObject85.bin

image98.wmf
2

1,

f

w

oleObject86.bin

image99.wmf
1

2,

f

w

oleObject87.bin

image100.wmf
2

2,

f

w

oleObject88.bin

image101.wmf
1,

y

w

oleObject89.bin

oleObject7.bin

image102.wmf
2,

y

w

oleObject90.bin

oleObject91.bin

oleObject92.bin

oleObject93.bin

oleObject94.bin

oleObject95.bin

oleObject96.bin

oleObject97.bin

oleObject98.bin

image8.wmf
1

s

=

oleObject99.bin

oleObject100.bin

oleObject101.bin

oleObject102.bin

oleObject103.bin

oleObject104.bin

oleObject105.bin

oleObject106.bin

image103.wmf
1111

0,1,12,2

1

ffff

wwxwx

=×+×+×

wx

g

oleObject107.bin

oleObject8.bin

image104.wmf
2222

0,1,12,2

1

ffff

wwxwx

=×+×+×

wx

g

oleObject108.bin

image105.wmf
0,1,12,2

1

yyyy

wwfwf

=×+×+×

wf

g

oleObject109.bin

image106.wmf
1

f

oleObject110.bin

image107.wmf
2

f

oleObject111.bin

image108.wmf
y

oleObject112.bin

image9.png
19

o3

10

image109.wmf
(

)

(

)

(

)

1

1

1

2

2

2

1

2

0,1

0,0

0,1

0,0

0,1

0,0

f

f

f

f

f

f

y

y

y

f

f

y

³

ì

ï

=

í

<

ï

î

³

ì

ï

=

í

<

ï

î

³

ì

=

í

<

î

wx

wx

wx

wx

wx

wx

wx

wx

wx

g

g

g

g

g

g

g

g

g

oleObject113.bin

image110.wmf
1

f

oleObject114.bin

image111.wmf
2

f

oleObject115.bin

image112.wmf
y

oleObject116.bin

image113.wmf
1

0,

f

w

oleObject117.bin

image114.wmf
1

1,

f

w

oleObject118.bin

image115.wmf
1

2,

f

w

oleObject119.bin

image116.wmf
2

0,

f

w

oleObject120.bin

image117.wmf
2

1,

f

w

oleObject121.bin

image118.wmf
2

2,

f

w

oleObject122.bin

image10.wmf
m

image119.wmf
0,

y

w

oleObject123.bin

image120.wmf
1,

y

w

oleObject124.bin

image121.wmf
2,

y

w

oleObject125.bin

image122.wmf
12

00

01

10

11

xxy

0

1

1

0

oleObject126.bin

image123.wmf
(

)

12

,

xx

oleObject127.bin

oleObject9.bin

image124.wmf
1

0

f

=

wx

g

oleObject128.bin

image125.wmf
2

0

f

=

wx

g

oleObject129.bin

image126.wmf
1

1

f

=

oleObject130.bin

image127.wmf
2

1

f

=

oleObject131.bin

image128.wmf
(

)

12

,

ff

oleObject132.bin

image129.wmf
0

y

=

wf

g

oleObject133.bin

image130.wmf
1

y

=

oleObject134.bin

image131.png

image132.png
"

image133.wmf
01122

1

wwxwx

=×+×+×

wx

g

oleObject135.bin

image134.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

0121,02,0

11,022,0

11,022,0

1,02,012

1,02,012

cos,sin,,

cos,sin,

cossin

cossincossin

cossin1cossin

xxxx

xxxx

xxxx

xxxx

xxxx

qq

qq

qq

qqqq

qqqq

-=-

=--

=-+-

=--++

=--++

nxx

r

gg

g

oleObject136.bin

image11.wmf
s

image135.wmf
(

)

(

)

01,02,0

cossin

wxx

qq

=--

oleObject137.bin

image136.wmf
(

)

1

cos

w

q

=

oleObject138.bin

image137.wmf
(

)

2

sin

w

q

=

oleObject139.bin

image138.wmf
(

)

tan

f

oleObject140.bin

image139.wmf
1

f

oleObject141.bin

oleObject10.bin

image140.wmf
2

f

oleObject142.bin

image141.wmf
y

oleObject143.bin

image142.wmf
121

00

01

10

11

xxf

oleObject144.bin

image143.wmf
122

00

01

10

11

xxf

oleObject145.bin

image144.wmf
12

0

1

ffy

oleObject146.bin

image12.wmf
s

image145.wmf
0

oleObject147.bin

image146.wmf
1

oleObject148.bin

image147.wmf
1

f

oleObject149.bin

image148.wmf
2

f

oleObject150.bin

oleObject11.bin

image149.wmf
k

oleObject151.bin

image150.wmf
k

oleObject152.bin

image151.wmf
10

k

=

oleObject153.bin

image152.wmf
k

image13.wmf
1

2

s

=

oleObject154.bin

image153.wmf
1

oleObject155.bin

image154.wmf
1

k

-

oleObject156.bin

image155.wmf
the number of classes you predicted corr

ectly

Overall Accuracy

the number of predictions you had to mak

e

=

oleObject157.bin

image156.wmf
k

oleObject158.bin

oleObject12.bin

image157.wmf
k

oleObject159.bin

image158.wmf
k

oleObject160.bin

image159.wmf
k

oleObject161.bin

oleObject162.bin

image160.wmf
3

k

=

oleObject163.bin

image14.wmf
1

s

=

oleObject13.bin

image15.wmf
3

2

s

=

oleObject14.bin

image16.png
=

19

10

image17.png
19

o3

10

image18.wmf
s

oleObject15.bin

image19.wmf
s

oleObject16.bin

image20.wmf
(

)

(

)

2

2

2

1

2

1

2

2

11

22

22

11

22

1

x

fxdxedx

x

erf

xx

erferf

m

s

sp

m

s

mm

ss

-

¥¥

-

-¥-¥

¥

-¥

¥-¥

=

-

æö

=

ç÷

èø

--

æöæö

=-

ç÷ç÷

èøèø

æöæö

=--

ç÷ç÷

èøèø

=

òò

oleObject17.bin

image21.wmf
erf

oleObject18.bin

image22.wmf
(

)

2

2

x

erfxedx

p

-

=

ò

oleObject19.bin

image23.wmf
(

)

2

2

x

d

erfxe

dx

p

-

=

éù

ëû

oleObject20.bin

image24.wmf
m

oleObject21.bin

image25.wmf
s

oleObject22.bin

image26.wmf
(

)

(

)

2

2

2

1

2

x

fxe

m

s

sp

-

-

=

oleObject23.bin

image27.wmf
x

oleObject24.bin

image28.wmf
x

oleObject25.bin

image29.wmf
(

)

0

fx

¢¢

=

oleObject26.bin

image30.wmf
m

oleObject27.bin

image31.wmf
s

oleObject28.bin

image32.wmf
(

)

erf

oleObject29.bin

image33.wmf
0

m

=

image1.wmf
(

)

(

)

2

2

2

1

2

x

fxe

m

s

sp

-

-

=

oleObject30.bin

image34.wmf
erf

oleObject31.bin

image35.wmf
(

)

(

)

erfaerfa

-=-

oleObject32.bin

image36.wmf

oleObject33.bin

image37.wmf
(

)

2

2

2

1

2

x

edx

m

s

s

s

sp

-

-

-

ò

oleObject34.bin

image38.wmf
2

2

erf

æö

ç÷

èø

oleObject1.bin

oleObject35.bin

image39.wmf
0.682689

oleObject36.bin

image40.wmf
(

)

2

2

2

2

2

1

2

x

edx

m

s

s

s

sp

-

-

-

ò

oleObject37.bin

image41.wmf
(

)

2

2

3

2

3

1

2

x

edx

m

s

s

s

sp

-

-

-

ò

oleObject38.bin

image42.wmf
0

m

=

oleObject39.bin

