Name:		
Course:	CAP 4601
Semester:	Summer 2013
Assignment:	Assignment 03
Date:		10 JUN 2013

Complete the following written problems:

1. Parametric vs. Nonparametric Methods (40 Points).

For the methods below, indicate whether the method is parametric or nonparametric:
	Method
	Parametric
	Nonparametric

	Linear Regression
	X
	

	k-Nearest Neighbor
	
	X

	Bayesian Network
	
	

	Multivariate Linear Regression
	
	

	Logistic Regression
	
	

	Perceptron
	
	

	Multilayer Feed-Forward Neural Network
	
	

	Locally Weighted Regression
	
	

	Support Vector Machines
	
	

	Kernel Density Estimation
	
	

2. Logistic Function (100 Points).

From Page 726 of AIMA, the Logistic Function (also known as the Sigmoid Function) is:

where are the weights attached to the independent variables in such that and . Hence, the dot product is:

In other words, is just a "plane" … possibly a steep "plane". We have seen how to rotate and translate a plane in 2 dimensions in order to classify points. From the Introduction to the Mathematics of Classification, Part 1, we saw that we could combine rotation and translation such that:

where is the angle that "points" towards the positive class from the point .

If we also wanted to adjust the steepness of our plane (aka its "slope"), we could simply add a slope out in front such that we would have:

Since "slope" is just the change in the "y" over the change in "x", we can represent this "slope" as:

.
Therefore, we have:

.

If we wanted to use this plane in a version the logistic function above for two dimensions, then we would have:

However, let's just use the following:

where the is where we place this logistic function and is the direction in which this logistic function "points" toward the positive class for a "slope" such that .

For instance, given , , and , we have:

For the following three points:

We would have the following values:

Hence, we would have the following plots:
[image:]

If we increased the "slope" to , then we have:

For those same three points, we would have the following values:

[image:]
Similar to what we did above and using the points from Written Problem 4 of Assignment 01, do the following:

a) Write the equation of the logistic function such that it is placed at and is oriented at . In others words, oriented such that it points toward . Use . The plot for this logistic function would be:
[image:]

b) Write the equation of another logistic function such that it is placed at and is oriented at , but this time use . The plot for this logistic function would be:
[image:]

c) Compute the values of and for the following points from Written Problem 4 of Assignment 01:

	Class 1

	
Point
	
Value of
	
Value of

	

	
	

	

	
	

	

	
	

	Class 2

	
Point
	
Value of
	
Value of

	

	
	

	

	
	

	

	
	

d) Which class (Class 1 or Class 2) has values for and that are over ? And which class has values under ?

3. Bayes Network (60 Points):

Given the following Bayes Network:

X
Y

With the following probabilities:

a) What is ? Show all work.

b) Show that . Show all work.

Complete the following programming problem on linprog4.cs.fsu.edu:

Download the ZIP file containing the directory structure and files for this programming problem: assignment_03.zip

1. Logistic Regression (100 Points):

Recalling Logistic Regression from Machine Learning with Andrew Ng, program logistic regression using gradient descent on the data from Written Problem 4 of Assignment 01. Use the logistic function, cost function, and gradients provided in the video lectures to fit a logistic regression to those six points.

Using the notation from the Logistic Function in the Written Problems above, this logistic regression will iteratively find the locally best parameters for a given dimension . Since we have two dimensional data, then ; hence, we'll iteratively find the locally best parameters for . Note: Andrew Ng used to represent these same parameters in the Machine Learning course.

Start your gradient descent at with the parameters initially set to , use a learning rate of , and ensure that the termination criteria for your gradient descent is set to the following:

Stop the gradient descent when either:
·

The distance between consecutive iterations of parameters is less than . In other words, given the -th and-th iteration, .
· The number of full gradient descent iterations exceeds 1024. In other words, don't do more than 1024 updates of gradient descent.

Given the Class 1 points (the red points below) and the Class 2 points (the blue points below), ensure your logistic regression approximately produces parameter values consistent with the following plots:
[image:][image:]

[image:][image:]

HINT: Pay close attention to the terms that Andrew Ng mentions in the videos. You may need to manipulate the class labels in the data set.

[bookmark: _GoBack]HINT: Pay close attention to the terms that Andrew Ng mentions in the videos. Do not forget the in those terms. Note: We used the notation for this term above.

Use std::cout to output information exactly in the following format:

1: { 0, 0, 0 }
2: { 0, 1.4, 1.4 }
3: { -0.210437, 1.31978, 1.31978 }
4: { -0.405597, 1.24458, 1.24458 }
.
.
.

 Note: The ellipses above should not be included in your output. The ellipses represent the rest of your properly formatted output for this gradient descent problem.
2. Cross Validation - Part 1 (100 Points):

Using OpenCV's CvMLData, create a program that reads in the Breast Cancer Wisconsin (Diagnostic) Data Set, ignores the ID number column from the dataset, uses the Diagnosis column as the class, and uses the remaining columns as the data.

Separate each class into its own dataset. Example: Place all the data whose Diagnosis column reads "M" (for malignant) into one container. Place all the data that reads "B" (for benign) into another container.

Split each container such that 95% of the data is placed into a training set and a 5% is placed into a testing set. Therefore, 95% of malignant data and 95% of benign data will be in the training dataset. Moreover, 5% of the malignant data and 5% of the benign data will be in the testing dataset.

Use std::cout to print the following:
· The number of malignant data points in the training dataset.
· The number of benign data points in the training dataset.
· The number of malignant data points in the testing dataset.
· The number of benign data points in the testing dataset.

Ensure your output is formatted exactly as follows:

Training Data

Malignant: AAA
Benign: BBB

Testing Data

Malignant: CCC
Benign: DDD

… where AAA, BBB, CCC, and DDD represent the counts in their respective datasets.

oleObject3.bin

oleObject46.bin

image51.wmf
(

)

1,0

oleObject47.bin

image52.wmf
(

)

0,0

oleObject48.bin

image53.wmf
(

)

,

xy

oleObject49.bin

image54.wmf
(

)

,

a

hxy

oleObject50.bin

image55.wmf
(

)

,

b

hxy

image4.wmf
(

)

012

,,,,

n

wwww

=

w

K

oleObject51.bin

image56.wmf
(

)

10,10

oleObject52.bin

image57.wmf
(

)

10,9

oleObject53.bin

image58.wmf
(

)

9,10

oleObject54.bin

image59.wmf
(

)

,

a

hxy

oleObject55.bin

image60.wmf
(

)

,

b

hxy

oleObject4.bin

oleObject56.bin

image61.wmf
0.5

oleObject57.bin

image62.wmf
0.5

oleObject58.bin

image63.wmf
(

)

(

)

(

)

0.25

0.4

0.6

PX

PYX

PYX

=

=

Ø=

oleObject59.bin

image64.wmf
(

)

PXY

oleObject60.bin

image65.wmf
(

)

(

)

1

PYPY

+Ø=

image5.wmf
(

)

12

1,,,,

n

xxx

=

x

K

oleObject61.bin

oleObject62.bin

image66.wmf
n

oleObject63.bin

image67.wmf
2

n

=

oleObject64.bin

image68.wmf
(

)

012

,,

www

=

w

oleObject65.bin

image69.wmf
(

)

12

1,,

xx

=

x

oleObject5.bin

oleObject66.bin

image70.wmf
(

)

01

,,,,,

jn

qqqqq

=

KK

oleObject67.bin

image71.wmf
(

)

0,0,0

=

w

oleObject68.bin

image72.wmf
0.1

a

=

oleObject69.bin

image73.wmf
(

)

012

,,

www

=

w

oleObject70.bin

image74.wmf
0.000001

image6.wmf
(

)

(

)

01212

01122

01122

,,,,1,,,,

1

nn

nn

nn

wwwwxxx

wwxwxwx

wwxwxwx

×+×+×++×

+×+×++×

wx

g

KgK

L

L

oleObject71.bin

image75.wmf
n

oleObject72.bin

image76.wmf
1

n

+

oleObject73.bin

image77.wmf
1

0.000001

nn

+

-<

ww

oleObject74.bin

oleObject75.bin

image78.png

image79.png

oleObject6.bin

image80.png

image81.png

image82.wmf
(

)

i

y

oleObject76.bin

image83.wmf
(

)

i

j

x

oleObject77.bin

image84.wmf
1

oleObject78.bin

image85.wmf
(

)

12

1,,

xx

=

x

oleObject79.bin

image7.wmf
wx

g

oleObject7.bin

image8.wmf
(

)

(

)

(

)

(

)

(

)

00

,cossin

fxyxxyy

qq

=-+-

oleObject8.bin

image9.wmf
q

oleObject9.bin

image10.wmf
(

)

00

,

xy

oleObject10.bin

image11.wmf
m

oleObject11.bin

image12.wmf
(

)

(

)

(

)

(

)

(

)

(

)

00

,cossin

m

fxymxxyy

qq

=-+-

oleObject12.bin

image13.wmf
(

)

(

)

(

)

sin

tan

cos

m

f

f

f

==

oleObject13.bin

image14.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

00

,tancossin

fxyxxyy

f

fqq

=-+-

oleObject14.bin

image15.wmf
(

)

,

fxy

f

oleObject15.bin

image16.wmf
(

)

h

w

x

oleObject16.bin

image17.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

012

012

012

00

00

,,

,,1,,

,

,,,

tancossin

1

1

1

,

1

1

1

1

1

1

,

1

www

wwwxy

wwxwy

fxy

xy

xxyy

h

e

hxy

e

e

e

hxy

e

f

qf

fqq

-

-

-+×+×

-

--+-

=

+

=

+

=

+

=

+

=

+

w

wx

x

g

g

oleObject17.bin

image18.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

00

tancossin

1

,

1

xxyy

hxy

e

fqq

--+-

=

+

oleObject18.bin

image19.wmf
(

)

00

,

xy

oleObject19.bin

image20.wmf
q

oleObject20.bin

image21.wmf
f

oleObject21.bin

image22.wmf
0

2

p

f

<<

oleObject22.bin

image23.wmf
(

)

(

)

00

,0,0

xy

=

image1.wmf
(

)

1

1

h

e

-

=

+

w

wx

x

g

oleObject23.bin

image24.wmf
00

q

=°=

oleObject24.bin

image25.wmf
45

4

p

f

=°=

oleObject25.bin

image26.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

00

tancossin

tancos00sin00

4

110

1

,

1

1

1

1

1

1

1

xxyy

xy

xy

x

hxy

e

e

e

e

fqq

p

--+-

æö

--+-

ç÷

èø

-+

-

=

+

=

+

=

+

=

+

oleObject26.bin

image27.wmf
(

)

(

)

(

)

{

}

2,2,0,0,2,2

--

oleObject27.bin

image28.wmf
(

)

(

)

(

)

(

)

(

)

(

)

202

2,20,02,2

111

111

0.1192030.50.880797

hhh

eee

--

+++

oleObject1.bin

oleObject28.bin

image29.png

image30.wmf
4

8080

1809

pp

f

=°=°=

°

oleObject29.bin

image31.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

00

tancossin

4

tancos00sin00

9

4

tan10

9

4

tan

9

1

,

1

1

1

1

1

1

1

xxyy

xy

xy

x

hxy

e

e

e

e

fqq

p

p

p

--+-

æö

--+-

ç÷

èø

æö

-+

ç÷

èø

æö

-

ç÷

èø

=

+

=

+

=

+

=

+

oleObject30.bin

image32.wmf
(

)

(

)

(

)

(

)

(

)

(

)

444

tan2tan0tan2

999

2,20,02,2

111

111

0.00001185720.50.999988

hhh

eee

ppp

æöæöæö

ç÷ç÷ç÷

èøèøèø

--

+++

oleObject31.bin

image33.png

image34.wmf
(

)

,

a

hxy

image2.wmf
w

oleObject32.bin

image35.wmf
(

)

5,5

oleObject33.bin

image36.wmf
45

q

=°

oleObject34.bin

image37.wmf
(

)

10,10

oleObject35.bin

image38.wmf
45

f

=°

oleObject36.bin

image39.png

oleObject2.bin

image40.wmf
(

)

,

b

hxy

oleObject37.bin

image41.wmf
(

)

5,5

oleObject38.bin

image42.wmf
45

q

=°

oleObject39.bin

image43.wmf
80

f

=°

oleObject40.bin

image44.png

image45.wmf
(

)

,

a

hxy

image3.wmf
x

oleObject41.bin

image46.wmf
(

)

,

b

hxy

oleObject42.bin

image47.wmf
(

)

,

xy

oleObject43.bin

image48.wmf
(

)

,

a

hxy

oleObject44.bin

image49.wmf
(

)

,

b

hxy

oleObject45.bin

image50.wmf
(

)

0,1

