
COP 4530 Pointer

TA: Liting Zhang

Florida State University

Oct 19, 2023

TA: Liting Zhang (Florida State University) COP 4530 Pointer Oct 19, 2023 1 / 14

What you need to know about pointers

A pointer is a memory address

Every location in memory, and therefore every variable, has an
address.

Every address corresponds to a unique location in memory.

Given a memory address, the computer can find out what value is
stored at that location.

TA: Liting Zhang (Florida State University) COP 4530 Pointer Oct 19, 2023 2 / 14

Pointer Syntax #1

To declare a pointer of a particular type, use the * (asterisk) symbol
1 string* petPtr; // declare a pointer to a string

2 int* agePtr; // declare a pointer to an int

3 char* letterPtr; // declare a pointer to a char

The type for petPtr is a string* and not a string. This is important! A
pointer type is distinct from the pointee type.

TA: Liting Zhang (Florida State University) COP 4530 Pointer Oct 19, 2023 3 / 14

Pointer Syntax #2

To get the address of another variable, use the (ampersand) symbol. This
is not a reference! It is the same symbol, but does not mean the same
thing.

1 string* petPtr;

2 // declare a pointer (which will hold a memory address) to a string

3 // at this point, petPtr's value is bogus!

4 // petPtr does have its own address, which we

5 // will pretend is 1234

1 string pet = "cat";

2 //a string variable, pretend it is at memory location 10

TA: Liting Zhang (Florida State University) COP 4530 Pointer Oct 19, 2023 4 / 14

Pointer Syntax #2

Now we have

To get petPtr to point to pet, we have to assign the address of pet
to petPtr. We do this like any other assignment, except that we use
the &symbol:

1 petPtr = &pet; // petPtr now holds the address of pet

Notice that petPtr’s value is 10, which is the address of pet.

petPtr is a pointer, which means that its value is an address.

TA: Liting Zhang (Florida State University) COP 4530 Pointer Oct 19, 2023 5 / 14

Pointer Syntax #3

To get value of the variable a pointer points to, use the * (asterisk)
character (in a different way than before!):

1 string* petPtr; // declare a pointer to a string

2 string pet = "cat"; // a string variable, pretend it is at memory location 10

3 petPtr = &pet; // petPtr now holds the address of pet

4 cout << *petPtr << endl; // prints out "cat"

When we use * in this way, we say that we are dereferencing the
pointer, which follows the address to its location and gets what is at
that location.

TA: Liting Zhang (Florida State University) COP 4530 Pointer Oct 19, 2023 6 / 14

Pointers are numbers

Pointers are just numbers that are associated with a type
1 int x = 4; // pretend x has some address, which is a number

2 int y;

3 y = x; // what is y's value? It's 4;

4

5 cout << "x: " << x << ", y:" << y << endl;

6

7 int *xPtr;

8 int *yPtr;

9

10 xPtr = &x; // what is xPtr's value? It is the address of x, some number

11 yPtr = xPtr; // what is yPtr's value? It is also the address of x, the same number

12

13 // we need to cast to a size_t below so we print out a regular number

14 cout << "xPtr: " << (size_t)xPtr << ", yPtr:" << (size_t)yPtr << endl;

output
1 x: 4, y:4

2 xPtr: 123145559043436, yPtr:123145559043436

TA: Liting Zhang (Florida State University) COP 4530 Pointer Oct 19, 2023 7 / 14

Pointer Tips #1
To ensure that we can tell if a pointer has a valid address or not, set your
declared pointer to nullptr, which means ”no valid address” (it actually is
just 0 in C++).

Instead of this

1 string* petPtr; // declare a pointer to a string

We do this, instead:

1 string* petPtr = nullptr;

2 // declare a pointer to a string that points to nullptr

TA: Liting Zhang (Florida State University) COP 4530 Pointer Oct 19, 2023 8 / 14

Pointer Tips #2

If you are unsure if your pointer holds a valid address, you should check for
nullptr

1 void printPetName(string* petPtr) {

2 if (petPtr != nullptr) {

3 cout << *petPtr << endl; // prints out the value pointed to by petPtr

4 // if it is not nullptr

5 } else {

6 cout << "petPtr is not valid!" << endl;

7 }

8 }

When you dereference a nullptr, you seg fault!

TA: Liting Zhang (Florida State University) COP 4530 Pointer Oct 19, 2023 9 / 14

Pointer Pratice

If you set one pointer equal to another pointer, they both point to the
same variable.

1 string* sPtr1 = nullptr;

2 string* sPtr2 = nullptr;

3 string s = "hello";

TA: Liting Zhang (Florida State University) COP 4530 Pointer Oct 19, 2023 10 / 14

Pointer Pratice

If you set one pointer equal to another pointer, they both point to the
same variable.

1 string* sPtr1 = nullptr;

2 string* sPtr2 = nullptr;

3 string s = "hello";

4 sPtr1 = &s;

5 cout << *sPtr1 << endl;

output
1 hello

TA: Liting Zhang (Florida State University) COP 4530 Pointer Oct 19, 2023 11 / 14

Pointer Pratice
1 string* sPtr1 = nullptr;

2 string* sPtr2 = nullptr;

3 string s = "hello";

4 sPtr1 = &s;

5 cout << *sPtr1 << endl;

6 sPtr2 = sPtr1;

7 cout << *sPtr2 << endl;

output
1 hello

TA: Liting Zhang (Florida State University) COP 4530 Pointer Oct 19, 2023 12 / 14

Pointer Pratice
1 string* sPtr1 = nullptr;

2 string* sPtr2 = nullptr;

3 sPtr1 = &s;

4 cout << *sPtr1 << endl;

5 sPtr2 = sPtr1;

6 *sPtr1 = "goodbye";

7 cout << *sPtr1 << " " << *sPtr2 << endl;

output
1 goodbye goodbye

TA: Liting Zhang (Florida State University) COP 4530 Pointer Oct 19, 2023 13 / 14

More info about Addresses

Addresses are just numbers, as we have seen. However, you will often see
an address listed like this:

1 0x7fff3889b4b4

or this:
1 0x602a10

This is a base-16, hexadecimal representation. The 0x just means ”the
following number is in hexadecimal notation.”
The letters are used because base 16 needs 16 digits:

1 0 1 2 3 4 5 6 7 8 9 a b c d e f

Reference:
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1206/
lectures/pointers/

TA: Liting Zhang (Florida State University) COP 4530 Pointer Oct 19, 2023 14 / 14

