
An Introduction to Rational Rose

In this course you will be learning the Unified Modeling Language (UML), which is a special notation for
systems analysis and design. Creating UML diagrams requires a diagramming tool. The tool you will be using
for this purpose is a student version of Rational Rose. Rational Rose is a sophisticated CASE tool with a number
of automated features, including code generation and reverse engineering. The version you will use in this course
is not the most recent version and there are limitations on the size of the diagrams you can save.

1. Browser Window

This presents a hierarchical view of the analysis and design model, including all the diagrams and all the
individual elements that make up a diagram.

2. Drawing Tools

This tool presents a set of icons that indicate the different elements that can be added to a diagram. The elements
that can be used will change, depending on the type of diagram being created. Different diagram types have
different sets of icons. If you were creating a different diagram type, you would see a different set of icons. The
above example is a class diagram in logical view.

1. Browser Window

3. Drawing Window

2. Drawing Tools

4. Documentation Window

3. Diagram Window

This is where the diagram is actually created. You will see that the diagram shown in the drawing window on
Figure 1 represents a high-level model of this course. Course content can be seen as a system composed of four
interacting subsystems, two of which involve software. We have used the Package element to represent the
subsystems, and the Note element to indicate which packages contain software.

4. Documentation Window

It is strongly recommended that each element added to a diagram have documentation to accompany it. To add
documentation, right click on the element, select specification, and fill in the documentation field. The
documentation will then be shown in the documentation window each time the mouse is clicked on the element.
Documentation can also be added directly to the documentation window.

Views in UML/Rational Rose

There are four views for a model created in Rational Rose, each representing the system from a different point of
view.

The Use Case View
The use case view contains the diagrams used in analysis (use case, sequence, and collaboration), and all the
elements that comprise these diagrams (e.g., actors). More recent versions of Rational Rose also allow for
additional documentation in the form of word-processed documents and/or URLs to Web-based materials. The
purpose of the use case view is to envisage what the system must do, without dealing with the specifics of how it
will be implemented.

Logical View
The logical view contains the diagrams used in object design (class diagrams and state transition diagrams). It
offers a detailed view of how the system envisaged in the use case view will be implemented. The basic element
in this view is the class, which includes an outline of its attributes and operations. This directly corresponds to a
class created in your chosen implementation language. From the logical view, skeletal code can be generated for
implementation into a computer language. More recent versions of Rational Rose not only can generate skeletal
code for Visual C++, Visual Java, or Visual BASIC, but also reverse engineer programs created in these
languages into Rational Rose models. This allows existing components to be included in documented models, if
there is access to the source code. In addition, changes that need to be made during implementation can be
reflected in the documentation of the design model.

Component View
The component view is a step up from the logical view and contains diagrams used in system design (component
diagrams). This includes information about the code libraries, executable programs, runtime libraries, and other
software components that comprise the completed systems. Components can be pre-existing; for example, a
Windows program in Visual C++ will utilize Microsoft Foundation Class to provide the framework for the
Windows interface. Components that do not exist and need to be created by the developers will have to be
designed in the logical view.

Deployment View
The deployment view illustrates how the completed system will be physically deployed. This view is necessary
for complex applications in which a system will have different components located on different machines. For
example, interface components may be located on a user machine while other components may be located on a
network server.

Package Note

