
Java for Non-Majors
CGS3416

Lecture 17 Part 1
Queue

This lecture is based on the notes from David Fernandez-Baca and Steve Kautz

Queue
•  A queue is a list that operates under the first-in

first-out (FIFO) policy:
o  read or remove only the item at the front (head) of

the queue
o  add an item only to the back (tail) of the queue
o  examine the front item.

•  java.util contains a Queue<E> interface that
contains all the methods you would expect from a
FIFO queues, as well as other kinds of queues. Java
offers several implementations, for example the
LinkedList class.

The Java Queue Interface
•  E element(). Retrieves, but does not remove, the

head of this queue. Throws
NoSuchElementException if this queue is empty.

•  E peek(). Retrieves, but does not remove, the head
of this queue, or returns null if this queue is empty.

•  boolean add(E e). Inserts the specified element into
this queue if it is possible to do so immediately
without violating capacity restrictions, returning true
upon success and throwing an IllegalStateException
if no space is currently available

The Java Queue Interface (cont.)
•  boolean offer(E e). Inserts the specified element into

this queue if it is possible to do so immediately
without violating capacity restrictions.

•  E poll(). Retrieves and removes the head of this
queue, or returns null if this queue is empty.

•  E remove(). Retrieves and removes the head of this
queue. Throws NoSuchElementException if this
queue is empty.

Since Queue<E> extends Collection<E>, it inherits all
of the latterʼs methods, including isEmpty(), size(), and
iterator().

Implementation – Linked List
•  A queue is easily implemented as a singly-linked list

with a tail pointer.
•  It is perhaps even better to use a circular list. In this

case, a pointer to the last node also gives easy access
to the first node, by following one link. Thus we can
handle the structure by a single pointer, instead of
two.

Implementation – Array-Based
We use an array a to store the elements. Additionally,
we have two indices:

o  first: points to first element of queue (front)
o  last: points to first available slot in the array (just

before the back)

We initialize first = last = 0. The queue is empty when
first == last.
•  To enqueue, put the new item in A[last] and

increment last.
•  To dequeue, return A[first] and increment first.

Implementation – Circular Array
•  A potential problem using array:

After a series of enqueue/dequeue operations, both first
and last are at the end of the array even though the array
is not full.

•  Solution: treat the array as being circular.
That is, when last == A.length and we need to increment
last to insert a new item, we just reset last to 0.
 last = (last + 1) % A.length;

Note that we still use the convention that the queue is
empty when first == last. This means that at least one entry
of array A will always have to be left unused. Otherwise, we
wouldnʼt be able to distinguish between an empty queue
and a full one.

