
Polymorphism and Interfaces

Lecture 14
CGS 3416 Spring 2020

March 9, 2020

Polymorphism and Dynamic Binding

I If a piece of code is designed to work with an object of type
X, it will also work with an object of a class type that is
derived from X (any subclass of X).

I This is a feature known as polymorphism and is implemented
by the Java interpreter through a mechanism called dynamic
binding.

I Suppose there is a base class called Shape. Suppose that
Rectangle, Triangle, and Circle are all subclasses of
Shape.

I Then it is legal to attach derived objects to the base reference
variables:
Shape s1 = new Circle();

Shape s2 = new Rectangle();

Shape s3 = new Triangle();

Polymorphism and Dynamic Binding

I Suppose a method findArea() is called through one of these
variables (s1, s2, s3) in the above example.

I The method must exist in the Shape class, but there can be
override versions in the subclasses.

I If so, then through dynamic binding, the method that runs
will be based on the attached object’s type, as a priority over
the reference variable type (Shape):
s1.findArea(); // from the Circle class

s2.findArea(); // from the Rectangle class

s3.findArea(); // from the Triangle class

I If any of these subclasses did not override the finArea()
method, then the Shape class’ findArea() method will run.

Polymorphism and Dynamic Binding

I If a method expects a parameter of type X, it is legal to pass
in an object of a type derived from X in that slot:
// Sample method

public int draw(Shape s)

{ // definition code }

// sample calls

Shape s1 = new Shape();

Shape s2 = new Circle();

Shape s3 = new Rectangle();

draw(s1); // normal usage

draw(s2); // passing in a Circle object

draw(s3); // passing in a Rectangle object

Another Example

I Notice that a useful application of polymorphism is to store
many related items, but with slightly different types (i.e.
subclasses of the same superclass), in one storage container –
for example, an array – and then do common operations on
them through overridden functions.

I Assume the setup in the previous example, base class Shape
and derived classes Rectangle, Circle, Triangle.
Suppose the base class has a findArea() method (probably
abstract, since we don’t know how to compute the area for a
generic shape), and each derived class has its own
findArea() method.

I Note that in the for-loop, the appropriate area methods are
called for each shape attached to the array, without the need
for separate storage for different shape types (i.e. no need for
an array of circles, and a separate array of rectangles, etc).

Another Example

Shape[] list = new Shape[size];

// create an array of Shape reference variables

list[0] = new Circle(); // attach a Circle to first

array slot

list[1] = new Rectangle(); // attach a Rectangle to

second slot

list[2] = new Triangle(); // attach a Triangle to

third slot

for (int i = 0; i < list.length; i++)

System.out.println("The area of shape " + i +

" = " + list[i].findArea())

Casting

I Since a derived object can always be attached to a
corresponding base class reference variable, this is a type of
casting that is implicitly allowed.

I Similarly, direct assignment between variables (derived type
assigned into base type) in this order is also allowed, as are
explicit cast operations.
Shape s1, s2; // Shape is the base class

Circle c; // Circle is a derived class

s1 = new Circle(); // automatically legal

s2 = c; // automatically legal

s1 = (Shape)c; // explicit cast used, but

equivalent to above

Casting

To convert an instance of a superclass (base) to an instance of a
subclass (derived), the explicit cast operation must be used:

c = s1; // would be illegal -- cast needed

c = (Circle)s1; // legal (though not always so

useful)

The instanceof operator

The instanceof operator checks to see if the first operand (a
variable) is an instance of the second operand (a class), and
returns a response of type boolean.
Shape s1;

Circle c1;

// other code.....

if (s1 instanceof Circle)

c1 = (Circle)s1; // cast to a Circle variable

Interfaces

I Java does not allow multiple inheritance
I A subclass can only be derived from one base class with the

keyword extends
I In Java, the interface can obtain a similar effect to multiple

inheritance

I Interface - A construct that contains only constants and
abstract methods
I Similar to abstract class
I Different, since an abstract class can also contain regular

variables and methods
I Can use as a base type name (just like regular base classes)
I Cannot instantiate (like an abstract class)

Format for declaring an interface:

modifier interface Name

{
constant declarations

abstract method signatures - keyword "abstract"

not needed. ALL methods in an interface are abstract

}
I Use the keyword implements to state that a class will use a

certain interface.

I In this example, Comparable is the name of an interface.

I The class ComparableCircle inherits the data from the
Comparable interface, and would then need to implement the
methods (to be able to use them).

class CompCircle extends Circle implements Comparable

{
//

}

Other rules:

I Only single inheritance for classes, with extends

I Interfaces can inherit other interfaces (even multiple), with
extends

public interface NewInterface extends interface1,

..., interfaceN

I classes can implement more than one interface with
implements

public class NewClass extends BaseClass

implements interface1, ..., interfaceN

The Cloneable interface

I A special interface in the Java.lang package which happens to
be empty:
public interface Cloneable

{
}

I This is a marker interface – no data or methods, but special
meaning in Java.

I A class can use the clone() method (inherited from class
Object) only if it implements Cloneable.

