
Inheritance

Lecture 13
CGS 3416 Spring 2020



Subclasses and Superclasses

I Inheritance is a technique that allows one class to be derived
from another.

I A derived class inherits all of the data and methods from the
original class.

Example: Suppose that class Y is inherited from class X.

I class X is the superclass. Also known as base class or parent
class.

I class Y is the subclass. Also known as the derived class, or
child class, or extended class.

I class Y consists of anything created in class Y, as well as
everything from class X, which it inherits



Declaring a subclass

Use the keyword extends to declare the derived class.
Example 1
public class AAA // base class

{ ... }

public class BBB extends AAA // derived class

{ ... }

Example 2
public class Employee {...} // base class

public class HourlyEmployee extends Employee { ... }
// derived class



The keyword super

I When you create a derived object, the derived class
constructor needs to invoke the base class constructor.

I Do this with the keyword super – in this context, it acts as
the call to the base class constructor.
super(); // base class default constructor

super(parameters); //base class parametrized

constructor

I The call to super() must be the first line of the derived class
constructor.

I If explicit call to parent constructor not made, the subclass’
constructor will automatically invoke super(). (the default
constructor of the base class, if there is one).

I Can also use super to invoke a method from the parent class
(from inside the derived class). Format:

super.method(parameters)



Example

//class HourlyEmployee, derived from Employee

public class HourlyEmployee extends Employee

{
public HourlyEmployee() // default constructor

{
super(); // invokes Employee() constructor

}

public HourlyEmployee(double h, double r)

{
super(h,r); // invokes Employee constructor

w/ 2 parameters

}

// ... more methods and data

} // end class HourlyEmployee



The protected modifier

I Recall that public data and methods can be accessed by
anyone, and private data and methods can be accessed only
by the class they are in.

I protected data and methods of a public class can be accessed
by any classes derived from the given class (this is also true in
C++).

I In Java, a protected member can also be accessed by any
class in the same package (to be discussed later)



The final modifier

In addition to creating constant variable identifiers, the keyword
final can be used for a couple of special purposes involving
inheritance:

I When used on a class declaration, it means that the class
cannot be extended. (i.e. it cannot become a parent class to
a new subclass).

I When used on a method declaration, it means that the
method cannot be overridden in a subclass. (i.e. this is the
final version of the method).



Method Overriding

Although the derived class inherits all the methods from the base
class, it is still possible to create a method in the derived class with
the same signature as one in the base. Example:

I Suppose a class Rectangle is derived from class Shape.

I Shape has a method:
void Draw() { ... }

I We can define a method in class Rectangle with the same
signature. The derived class version will override the base
class version, when called through an object of type Rectangle.

Rectangle r = new Rectangle(); // create a

Rectangle object which has all the

Shape methods available.

r.Draw(); // invokes the Draw method from the

Rectangle class



Method Overriding

Note that the Rectangle class’ Draw() method can still invoke the
superclass’ method, with the keyword super

public void Draw()

{
super.Draw(); // invoke parent’s Draw()

// continue with any processing specific

to Rectangle

}



Abstract Classes

I Superclasses are more general and subclasses are more
specific.

I Sometimes a base class is so general that it doesn’t make
sense to actually instantiate it (i.e. create an object from it).
I Such a class is primarily a grouping place for common data

and behaviors of subclasses – an abstract class.

I To make a class abstract, use the keyword abstract (which
is a modifier)

public abstract class Shape

I Now that Shape is abstract, this would be illegal:
Shape s = new Shape();

I Specifically, it’s new Shape(); that is illegal.



Methods can be abstract as well

I An abstract method is a method signature without a
definition.

I Abstract methods can only be created inside abstract classes.

I The main purpose of an abstract method is to be overridden
in derived classes (with the same signature)

I Example:
public abstract class Shape

// Shape is an abstract class

{
public abstract double findArea();

// findArea is an abstract method

// other methods and data

}



The Object class

In Java, every class is derived automatically from a class called
Object. If no specific inheritance is declared for a class, it
automatically has Object as a superclass.

While there are several methods in class Object, here are three
important such methods, inherited by every Java class.

I public boolean equals(Object object)

I public String toString()

I public Object clone()

Let’s look at each.



public boolean equals(Object object)

Tests whether two objects are equal. Returns true if equal, false
if not. object1 and object2 same class type.

object1.equals(object2)

Default implementation is:

public boolean equals(Object obj)

{
return (this == obj);

}

Note that this default implementation is equivalent to the ==
operator, since it only tests the reference variables for equality.
The intent is that subclasses of Object should override the equals

method whenever they want a test of equality of two objects’
contents.



public String toString()

Returns a string that represents the object. Call format:
objectName.toString();

The default version of the string might not always be useful, but
this can be overridden in any derived class. Example for a class
called Fraction:

public String toString()

{
return numerator + "/" + denominator;

}



public String toString()

Assuming the above function for a Fraction class, the following
illustrates its usage:

Fraction f1 = new Fraction(4,5);

// create the fraction 4/5

System.out.print(f1.toString());

// will print "4/5"

System.out.print(f1);

// also prints "4/5" as this always invokes

a class’ toString method



public Object clone()

Remember, direct assignment between object names will only copy
one reference variable to another. Use the clone() method to
make copies of objects.

newObject = someObject.clone();

Not all objects can be cloned. Only objects imeplementing the
java.lang.Cloneable interface (which will be discussed later)
can use the clone method.

The clone() method from the object class does a ”shallow copy”
(i.e. copies reference variables verbatim). If a ”deep copy” is
needed (a la copy constructors in C++), you should override
clone() for a class.



Other methods from class Object

I finalize – called by garbage collector to perform to perform
cleanup on an object. Can be overridden, but rarely done.

I getClass – returns an object of type Class, with information
about the calling object’s type.

I hashCode – returns hash value that can be used as a key for
the object (for use in a hash table, for example).

I notify, notifyAll, wait – related to multithreading.


