
Classes and Objects

Lecture 12
CGS 3416 Spring 2020

March 3, 2020



Classes and Objects

I An object is an encapsulation of data along with functions
that act upon that data.

I It attempts to mirror the real world, where objects have
attributes and are associated with activities.

I An object consists of:
I Name: the variable name we give it.
I Attributes (or state) a set of data fields and their current

values, describing the object.
I Methods (behavior) a set of methods that define the

behavior aspects of the object.

I A class is a blueprint for objects. A class is a user-defined
type that describes and defines objects of the same type.

I A class contains a collection of data and method definitions.

I An object is a single instance of a class. You can create
many objects from the same class type.



Creating Objects

Objects are created from a class by using the new operator, and
they must be attached to a reference variable. Two steps:

1. Declare the object reference variable.

2. Create the object with the new operator and attach it to the
reference variable.

Format
ClassName objectReference;

objectReference = new ClassName();

(or combined into one statement)
ClassName objectReference = new ClassName();

Examples:
Circle myCircle; // where Circle is a class

myCircle = new Circle();

Dog fido = new Dog(); // where Dog is a class



Creating Objects

Since the name used to refer to an object is a reference variable,
and not the object itself, it is important to note that any
assignments done on such a variable are just on the reference.

For example, if we create two objects, and then assign their
variables together:

Circle c1 = new Circle();

Circle c2 = new Circle();

c1 = c2;

The last statement (c1 = c2) does not copy circle c2 into c1.

Instead, it copies the reference variable c2 to c1, which means that
both reference variables are now referring to the same object (the
second one, c2).



Using Objects

Once an object is created, access the object’s internal methods and
data with the dot-operator. Format:

objectReference.data

objectReference.method(arguments) //method call

Example:

Circle c1 = new Circle();

c1.radius = 10; // access radius instance variable

//compute and print the area with the findArea method

System.out.print("Area = " + c1.findArea());



Protection levels in a class (Visibility Modifiers)

We can declare members of a class to be public or private.

I public - can be accessed from inside or outside of the object.

I private - can only be used by the object itself.

The public members of a class make up the interface for an object
(i.e. what the outside builder of the object can use).

The user of an object is some other portion of code (other classes,
functions, main program).



Data Hiding

Although there is no set rule on what is made public and what is
made private, the standard practice is to protect the data of a class
by making it private.

Provide access to the data through public methods, which can
maintain control over the state of the object.

Reasons for data hiding:

I Makes interface simpler for user.

I Principle of least privilege (need-to-know).

I More secure. Less chance for misuse (accidental or malicious).

I Class implementation easy to change without affecting other
modules that use it.



Constructors

A constructor is a special member function of a class whose
purpose is usually to initialize the members of an object.
A constructor is easy to recognize because:

I It has the same name as the class.

I It has no return type

Constructors can have parameters. A constructor without any
parameters is known as a default constructor.
A constructor is automatically invoked when an object is created
with new.
c1 = new Circle();// invokes default constructor

c2 = new Circle(9.0) //invokes constructor with one

parameter

The usual purpose of a constructor is to perform any initializations
on the object when it is created (primarily the instance variables).



Accessors and Mutators

Since it’s a good idea to keep internal data of an object private, we
often need methods in the class interface to allow the user of
objects to modify or access the internally stored data, in a
controlled way.

An accessor method is a function that returns a copy of an internal
variable or computed value. A common practice is to name these
with the word get.

A mutator method is a function that modifies the value of an
internal data variable in some way. The simplest form of mutator
function is one that sets a variable directly to a new value – a
common practice is to name these with the word set.



Objects as Method Parameters

I Remember, objects are created with the new operator. The
name we use is a reference variable.

I When an object is passed into a method, the reference
variable is copied into the method’s local parameter (just like
with arrays) – method parameter becomes a reference to the
original object.

I Bottom line: When an object is passed into a method (by its
reference variable), the method has access to the original
object. Changes to the object (from inside the method) will
affect the original.



Class Variables and Methods

The modifier static can be used on variables and on methods.
I Variables

I A static variable is shared by all instances of a class. Only one
variable created for the class.

I Instance variable (not static) – each object (i.e. each instance
of a class) gets its own copy of such a variable.

I Methods
I A regular method (instance method) can only be called by an

object (an instance of the class).
I A static method (class method) can be called without creating

instances of a class. Called through class name or object name
– but a better practice to call through the class name (to help
remind that they are static). Example: Math.round(x)



Class Variables and Methods

The static and final qualifiers.

Access:

I Static variables can be accessed from both instance methods
or static methods.

I Instance variables can not be accessed from static methods
(since instance variables only exist when an object exists).
Instance variables can be accessed from instance methods

To make a class variable constant, add the keyword final as a
modifier on the declaration.

It’s better to make your constants also static – since the value
won’t change, it’s more efficient to have one variable shared by the
entire class.



Example

class Student

{
private int testGrade;

// instance variable (non-static)

private static int numStudents = 0;

// static variable (class variable)

private final static int pointsPossible = 100;

// class constant

public Student()

{ testGrade = 0; }

public void setGrade(int gr)

{ testGrade = gr; }



Example (continued)

public int getGrade()

{ return testGrade; }

public static void incrementNumStudents()

{ numStudents++; }

public static int getNumStudents()

{ return numStudents; }
}



Explanation

In this sample code:

I testGrade is an instance variable. Each object of type
Student will have its own copy of testGrade

I numStudents is a class variable (static). There is only one
variable shared by the whole class. The variables value can be
changed, but changes are seen by all objects.

I pointsPossible is a class constant. There is only one
variable (because of static), and its value cannot be changed)

I setGrade and getGrade are instance methods. They must
be called through individual objects.

I incrementNumStudents and getNumStudents are static
methods. They cannot access instance variables of the class,
but they can be called through the class name, regardless of
whether any objects have been created.



The Keyword this

I In Java, the keyword this is a reference variable to the
current calling object (from inside an instance method). Once
inside the instance method, this acts as the reference name
for the calling object that you are in.

I In Java, this can also be used to call one constructor from
another in a class, for the current calling object. Use it like
the function name in the call. Example:

public Date(int m, int d, int y)//3 param constructor

{
month = m; day = d; year = y;

}
public Date(int m, int d)// constructor with 2 params

{
this(m, d, 0);// calls constructor with 3 params

}



Arrays of Objects

Creating an array of objects is a little trickier than an array of a
primitive type.

1. Create an array using similar syntax to primitive types, but
use the class name instead of the primitive type name:

Student[] list = new Student[10];

This only creates an array of reference variables – references
for type Student.

2. Create the individual objects with new, and attach to the
reference variables (the array positions). This can be done
separately:

list[0] = new Student();

list[1] = new Student();



Arrays of Objects

It’s easier to create the individual objects with a loop (as long as
you are using the same constructor for each object):

for (int i = 0; i < list.length; i++)

list[i] = new Student();

Each list[i] is the reference to an object now.


