Java Libraries

Lecture 11
CGS 3416 Spring 2020

February 26, 2020



Intro to Libraries

> \We've barely scratched the surface of Java, but before we
proceed with programming concepts, we need to talk about
the Java API.

> We would also like to be able to start using existing libraries in
the Java SDK as quickly as possible.

» To that aim, this outline will provide " just enough” to
illustrate basic core usage of existing Java class libraries.

» The Java API can be found at https://docs.oracle.com/
en/java/javase/11/docs/api/index.html You will find
the basic APls under java.base module.


https://docs.oracle.com/en/java/javase/11/docs/api/index.html
https://docs.oracle.com/en/java/javase/11/docs/api/index.html

User vs. Builder

With any re-usable programming construct, we have two
points-of-view that should always be considered:

» The builder is responsible for declaring and defining how
some module works.

» The user (or caller) is somebody (i.e. some portion of code,
often some other module) that makes use of an existing
module to perform a task.

» For the purposes of this topic (Using Java Libraries), we are
looking at things from the user’'s perspective.

» In other words, what do we need to know to use an existing
Java library from the SDK, along with it's various
already-defined features.

We will look at how to build things like functions, classes,
interfaces, etc. later on.



What's in the Java SDK?

» There are multiple kinds of library constructs to consider,
including:
P classes
P interfaces
» packages
P classes and interfaces with generic type parameters

» Classes and interfaces are grouped into packages.

> packages are named into categories and subcategories,
separated by the dot-operator. Examples of packages:
> java.lang
> java.util
P> java.util.concurrent



What's in the Java SDK?

» If a class is inside a package, we can refer to the whole name
by referring to the package name, dot-operator, then class
name. Examples:

» java.lang.String
» java.util.Scanner

» classes and interfaces can contain:

> fields (i.e. data variables)
» methods (i.e. member functions)

Right now, we will focus on the usage of class libraries.



The import Statement

> If you are using any item from the package java.lang, you
don’t need to do anything special.

» Everything from java.lang is automatically imported for use
into every Java program you write.

» For a class out of any other package, you need to put an
import statement at the top of your file, to let the Java tools
(compiler and loader) know what libraries to pull in.

» Basic form:
import <package name>.<class name>;

> Examples:
import java.util.Scanner;
import javax.swing.JFrame;
import java.awt.geom.GeneralPath;



The import Statement

» Wildcards - if you are going to be using many classes from
the same package, you can tell the compiler to import all
classes from a single package with the * wildcard character
(meaning “all”), in place of a single class name. Examples:

import javax.swing.*; // imports all classes in
javax.swing package

import java.util.*; // imports all classes in
java.util package

> Note that in this last one, for example, it does not import all
classes in the sub-package java.util.concurrent. It only
imports classes directly inside the base package that is
specified.



API Descriptions

» The API description for a Java class gives all of the
information you need to be able to syntactically use it
correctly.

> Starts with description of the class, in a general
documentation format.
> Field Summary
» This section lists data fields that you might want to use

» Often, these are constants, but not always
» This chart lists the variable names, descriptions, and their types

» Constructor Summary

» This section lists the constructor methods that are available
for this class

» Constructors are related to the creation of objects

» This chart provides the parameter list for each constructor
option



API Descriptions

» Method Summary

» This section lists the methods that are available for this class

» For general class usage, this will typically be the most relevant
set of features that you will want to call upon

» This chart provides the full prototype, or declaration, of each
method

P first column shows the return type, and whether the method is
static or not (more on this later)

» Second column provides method name, as well as list of
expected parameters, and a short description

» For all of these items, the names (of the variables,
constructors, and methods) are also links to more detailed
descriptions of the items, which are further down the page.



static fields and methods

» Some fields and methods are declared as static

» In the Field Summary and/or Method Summary, this
information would show up in the left column.

» |If a variable or method is not declared with the word static,
then we call it an instance variable or method.

» To call upon variables or methods from a class, we use the
dot-operator syntax. There is a difference between static and
instance items, though.

» For a static variable or method, we use this format:

className.fieldName // fields
className .methodName (arguments) // methods



java.lang.Math Library

v

API: java.lang.Math
Note that all fields and methods in this class are static

class Math has two fields, which are common mathematical
constants. Sample usage:
double area = Math.PI *x radius * radius;

// compute area of a circle

Sample calls to static methods from Math:
area = Math.PI * Math.pow(radius, 2);

// area of circle, using power method
y = Math.abs(x);

// computes absolute value of x
System.out.print (Math.random()) ;

// prints random value in range [0,1)
int die = (int) (Math.random() * 6) + 1;

// roll a standard 6-sided die



Instance Fields and Methods

» Recall that an instance field or method is one that is not
declared to be static. Instance is the default.

» To call upon instance fields or methods in a class library, you
have to create one or more objects from that class

» A class is a blueprint for building objects.

» Syntax for building an object:
className variable = new className(parameter(s));

» In this format, the first part is the declaration of a reference
variable
className variableName

> new is a keyword of the language, and that part of the
statement builds a “new” object, and runs a special
initialization function called a constructor. This is what the
parameters are for.



Examples

Scanner input = new Scanner(System.in);
JButton myButton = new JButton("Click Me");
String s1 = new String();

Once you have declared one or more objects, call upon fields and
methods with the dot-operator, as before, but for instance
members, use the object’'s name (i.e. the reference variable) on the
left of the dot:

objectName.fieldName // fields
objectName.methodName (arguments) // methods

Example uses:

int x = input.nextInt();
myButton.setText ("Stop clicking me!");
System.out.print(sl.toUpperCase());



java.util.Random Library

» API: java.util.Random

» This library is for generating pseudo-random numbers

» How computers do "random” number generation

>
>
>

It's really a “pseudo-random” generator

Start with a “seed” value

The seed is used as the input to an algorithm, which generates
a seemingly randomized number

Each “random” value generated becomes the seed for the next
one

Start with the same seed, and you'll get the same random
numbers!



Some Examples

» Creating objects of this type:
Random rl1 = new Random();
// uses the system time to create seed
Random r2 = new Random(1234);
// uses 1234 as the seed

» In the above statements, rl and r2 refer to objects of type
Random — they both can generate a pseudo-random sequence
of values

» Sample calls to these objects:

int x = rl.nextInt(); // gets a random integer
rl.nextInt (10);
// gets a random integer from 0-9
double z = rl.nextDouble();
// gets a random double in range [0,1)

int y



