
Arrays

Lecture 10
CGS 3416 Spring 2020

February 20, 2020

Arrays

Definition:

An array is an indexed collection of data elements of the same
type.

I Indexed means that the array elements are numbered
(starting at 0).

I The restriction of the same type is an important one,
because arrays are stored in consecutive memory cells. Every
cell must be the same type (and therefore, the same size).

Creating Arrays

Two Steps:

I Declare an array variable (a reference to the array)

I Create the array

Formatting the Array Variable

type[] arrayName; // preferred

type arrayName[]; // alternate form

Format for creating the array (with the operator new)

arrayName = new dataType[size];

//type should match the type of "arrayName"

The above statement does two things.

I It creates an array using new dataType[size]

I It assigns the reference of the newly created

array to the variable arrayName

Examples:

I int[] list = new int[30];

I char[] name = new char[20];

I double[] nums = new double[x];

The array’s size is stored in arrayName.length.

For example, the size of the ”list” array above is: list.length

Initializing and Using Arrays

I Declaring an array variable and creating an array

can be combined in one statement, as shown below

dataType[] arrayName = new dataType[size];

-
When array of a built-in type is created, elements are automatically
initialized.

I numeric types - array elements initialized to 0.

I char type - array elements initialized to ’\u0000’ (unicode 0,
corresponds to ASCII 0, or ’\0’).

I boolean type - array elements initialized to false.

Once an array is created, the notation arrayName[index] refers
to a specific array slot – the one at the given index position.

I Arrays are indexed from 0 through (array.length - 1).

I The index must be an integer or integer expression.

Some Examples

int x=1;

int[] list = new int[5]; // create array

double[] nums = new double[10]; // create array

list[3] = 6; // assign value 6 to array item with

index 3

System.out.print(nums[2]); // output array item with

index 2

list[x] = list[x+1];

// set values in list array to {1, 3, 5, 7, 9}
for (int i = 0; i < list.length; i++)

list[i] = i * 2 + 1;

Note that this last example, the for-loop, illustrates a good way to
set all values in an array. Arrays and for-loops go great together!

A Shortcut

The following format can be used to declare, create, and initialize
an array in one line. (Note that this also bypasses the new
operation, which is implicit):

type[] arrayName = initializer list ;

The initializer list is a comma-separated list of array values. From
this, the compiler can figure out the number of elements when
creating the array. Examples:

int[] list = {2, 4, 6, 8, 10, 12, 14, 16}; //has size

8

double[] grades = {96.5, 88.4, 90.3, 70}; //has size

4

char[] vowels = {‘a’, ‘e’, ‘i’, ‘o’, ‘u’}; //size 5

Passing arrays to methods

I Array variables can be used as method parameters.

I Arrays are not passed by value.
I Recall that regular parameters are passed by value – i.e. the

function parameter is a local copy of the original argument
passed in.

I When passing an array into a function, only the array reference
variable is passed in. A copy of the array is not made. The
parameter variable refers back to the original array. This is
called pass by reference.

I If the method makes changes to the array, it will affect the
original array that was passed in.

Copying Arrays

If we have these two arrays, how do we copy the contents of list2
to list1?

int[] list1 = new int[5];

int[] list2 = {3, 5, 7, 9, 11};

With variables, we use the assignment statement, so this would be
the natural tendency – but it is wrong!

list1 = list2; //does NOT copy array contents

We must copy between arrays element by element. A for loop
makes this easy, however:

for (int i = 0; i < list2.length; i++)

list1[i] = list2[i];

Copying Arrays

There is also a static method called arraycopy in the
java.lang.System class. It’s format is:

arraycopy(srcArray, src pos, tarArray, tar pos, len);

src pos and tar pos indicate the starting positions to use in the
copy process. len is the number of elements to be copied. Sample
call:

//this is equivalent to the for-loop example above

System.arraycopy(list2, 0, list1, 0, list2.length);

Multi-dimensional Arrays

Use separate set of index brackets [] for each dimension.
Examples:
// a 5 x 3 table of integers

int[][] table = new int[5][3];

// a 4 x 3 matrix of short integers

short[][] matrix = { {3, 4, 5},
{1, 2, 3},
{0, 5, 9},
{8, 1, -2} };

Multi Dimensional Arrays

I For a 2 dimensional array, we usually think of the first size as
rows, and the second as columns, but it really does not
matter, as long as you are consistent!

I We could think of the first array above as a table with 5 rows
and 3 columns, for example.

I When using a multi-dimensional array, make sure that the
indices are always used in the same order:

table[3][1] = 5;

// assigns a 5 to "row 3, column 1", in the above

interpretation

Enhanced for loops

The enhanced for statement allows us to iterate through any array
or collection without using a counter, the traditional index through
the array. Format (for arrays):
for (parameter : arrayName)

loop body

Consider a typical loop for adding up the elements of a numerical
array:
int[] values = new int[10];

// other statements that load array with data...

int total = 0;

for (int i = 0; i < values.length; i++)

total = total + values[i];

System.out.println("The total is " + total);

Enhanced for loop

The following code is equivalent, using an enhanced for loop:
int[] values = new int[10];

// other statements that load array with data...

int total = 0;

for (int number : values)

total = total + number;

System.out.println("The total is " + total);

Variable-Length Parameter Lists

I A method can have an unspecified number of arguments, of a
specified type.

I To do this, follow the type name with an ellipsis (...)
Format:
typeName... variableName

I The use of the ellipsis can only occur once in a parameter list,
and must be at the end.

void doTask(int x, double... values) //LEGAL

void doThing(double... values, int size) // ILLEGAL

void doThing(double... x, int... numbers)// ILLEGAL

Variable-Length Parameter Lists

In the doThing method above, a variable amount of double
arguments may be passed in. The following are all legal calls:

double d1, d2, d3, d4;

doThing(5, d1, d2);

doThing(5, d1, d2, d3);

doThing(5, d1, d2, d3, d4);

doThing(5, d1, d2, d3, d4, 3.4, 5.9, 12.4);

Variable-Length Parameter Lists

Java treats a variable-length list of arguments like an array of items
of the same type, so enhanced for-loops can be used on them.

void printStats(double... values)

{
for (double val : values)

System.out.print(val + " ");

}

