80 Lists, Operators, Arithmetic

3.14

3.15

34

Consider the program:
t(0+1, 140).
t(X+0+1, X+1+40).

t(X+1+1, Z) -
t(X+1, X1),
t(X1+1, 2).

How will this program answer the following questions if ‘+’ is an infix operator of
type yfx (as usual):

(a) ?- t(0+1,A).

(b) ?- t(0+1+1, B).

(©) ?- t(14+0+1+1+1, C).

(d) ?- t(D, 1+1+1+0).

In the previous section, relations involving lists were written as:

member(Element, List),
conc(List1, List2, List3),
del(Element, List, NewList), ...

Suppose that we would prefer to write these relations as:

Element in List,
concatenating List1 and List2 gives List3,
deleting Element from List gives NewlList, ...

Define ‘in’, ‘concatenating’, ‘and’, etc. as operators to make this possible. Also,
redefine the corresponding procedures.

Arithmetic

Some of the predefined operators can be used for basic arithmetic operations. These
are:

+ addition

- subtraction

* multiplication

/ division

*% power

/ integer division

mod modulo, the remainder of integer division

Notice that this is an exceptional case in which an operator may in fact invoke
an operation. But even in such cases an additional indication to perform arithmetic

1
!

1 of

Also,

wvoke

Arithmetic 81

mpt to request arithmetic

will be necessary. The following question is a naive atte
computation:

- X=1+2.
Prolog will ‘quietly’ answer

X=1+2

and not X = 3 as we might possibly expect. The reason is simple: the expression
1 + 2 merely denotes a Prolog term where + is the functor and 1 and 2 are its
arguments. There is nothing in the above goal to force Prolog to actually activate
the addition operation. A special predefined operator, is, is provided to circumvent
this problem. The is operator will force evaluation. So the right way to invoke

arithmetic is:
?- Xis1+2.
Now the answer will be:

X=3

The addition here was carried out by a special procedure that is associated with the

operator is. We call such procedures built-in procedures.

Different implementations of Prolog may use somewhat different notations for
arithmetics. For example, the ‘/' operator may denote integer division or real
division. In this book, ‘/’ denotes real division, the operator // denotes integer
division, and mod denotes the remainder. Accordingly, the question:

7 Xis5/2,

Y is 5//2,
Zis 5 mod 2.

is answered by:

X=25
Y=2
Z=1

The left argument of the is operator is a simple object. The right argument is an
arithmetic expression composed of arithmetic operators, numbers and variables.
Since the is operator will force the evaluation, all the variables in the expression
must already be instantiated to numbers at the time of execution of this goal. The
precedence of the predefined arithmetic operators (see Figure 3.8) is such that the
associativity of arguments with operators is the same as normally in mathematics.
Parentheses can be used to indicate different associations. Note that +, —, / and div
are defined as yfx, which means that evaluation is carried out from left to right. For

example,

Xis5-2-1

82

Lists, Operators, Arithmetic

is interpreted as:
Xis(5-2)-1

Prolog implementations usually also provide standard functions such as sin(X),
cos(X), atan(X), log(X), exp(X), etc. These functions can appear to the right of
operator is.

Arithmetic is also involved when comparing numerical values. We can, for
example, test whether the product of 277 and 37 is greater than 10000 by the goal:

?- 277 x 37 > 10000.
yes

Note that, similarly to is, the ‘>’ operator also forces the evaluation.

Suppose that we have in the program a relation born that relates the names of
people with their birth years. Then we can retrieve the names of people born
between 1980 and 1990 inclusive with the following question:

?- born(Name, Year),
Year >= 1980,
Year =< 1990.

The comparison operators are as follows:

X > Y X is greater than Y

X <Y Xisless than'Y

X >= Y X is greater than or equal to Y
X =< Y X is less than or equal to Y

X =:= Y the values of X and Y are equal

X =\=Y the values of X and Y are not equal

Notice the difference between the matching operator ‘='and ‘=:='; for example, in
the goals X = Y and X =:= Y. The first goal will cause the matching of the objects X
and Y, and will, if X and Y match, possibly instantiate some variables in X and Y.
There will be no evaluation. On the other hand, X =:=Y causes the arithmetic
evaluation and cannot cause any instantiation of variables. These differences are
illustrated by the following examples:

22 14+2=:=2+1.

yes

2-1+2=2+1.

no

2-1+A=B+2.

A=2
B=1

Arithmetic 83

Let us further illustrate the use of arithmetic operations by two simple examples.

The first is computing the greatest common divisor; the second, counting the items
! in a list.

|
O, Given two positive integers, X and Y, their greatest common divisor, D, can be
of found according to three cases:
or (1) IfXandY are equal then D is equal to X.
1: : (2) IfX <Y then D is equal to the greatest common divisor of X and the difference
: Y- X
(3) IfY < X then do the same as in case (2) with X and Y interchanged.
It can be easily shown by an example that these three rules actually work. Choosing,
for example, X = 20 and Y = 25, the above rules would give D = § after a sequence
f of subtractions.
n

These rules can be formulated into a Prolog program by defining a three-
argument relation, say:

ged(X, Y, D)

The three rules are then expressed as three clauses, as follows:
ged(X, X, X).

ged(X, Y, D) -
X <Y,
YlisY - X,
ged(X, Y1, D).

gcd(X, Y, D) :-
Y <X,
ged(Y, X, D).

Of course, the last goal in the third clause could be equivalently replaced by the two
goals:

XlisX -,

gcd(X1, Y, D)

Our next example involves counting, which usually requires some arithmetic. An
example of such a task is to establish the length of a list; that is, we have to count the
items in the list. Let us define the procedure:

length(List, N)

which will count the elements in a list List and instantiate N to their number. As was
the case with our previous relations involving lists, it is useful to consider two cases:

(1) If the list is empty then its length is 0.

(2) If the list is not empty then List = [Head f Tail]; then its length is equal to 1 plus
the length of the tail Tail.

84 Lists, Operators, Arithmetic

These two cases correspond to the following program:

length([], 0).

length([_ | Tail], N) :-
length(Tail, N1),
Nis1 + NI1.

An application of length can be:
?- length([a,b,[c,d],e], N).
N=4

Note that in the second clause of length, the two goals of the body cannot be
swapped. The reason for this is that N1 has to be instantiated before the goal:

Nis1+ N1

can be processed. With the built-in procedure is, a relation has been introduced that
is sensitive to the order of processing and therefore the procedural considerations
have become vital.

It is interesting to see what happens if we try to program the length relation
without the use of is. Such an attempt can be:

length1([], 0).

length1([_ | Tail}, N) :-
length1(Tail, N1),
N=1+N1L

Now the goal

?- lengthl([ab,[c,d},e], N).
will produce the answer:

N = 1+(1+(1+(1+0))).

The addition was never explicitly forced and was therefore not carried out at all. But
in lengthl we can, unlike in length, swap the goals in the second clause:

lengthl([_ | Tail], N) :-
N=1+Ni1,
length1(Tail, N1).

This version of lengthl will produce the same result as the original version. It can
also be written shorter, as follows,

length1([_| Taill, 1 + N) =
length1(Tail, N).

still producing the same result. We can, however, use length1 to find the number of
elements in a list as follows:

Exercises
3.16]
s
3.17 I
St
3.18 L
SC
319 p
wi
320 D
SO
the

the body cannot be
before the goal:

been introduced that
adural considerations

n the length relation

carried out at all. But
1d clause:

iginal version. It can

o find the number of

Exercises

3.17

3.18

3.19

3.20

Arithmetic 85

?- length1([a,b,c], N), Length is N.

N = 1+(1+(1+0))
Length = 3

Finally we note that the predicate length is often provided as a built-in predicate.
To summarize:

¢ Built-in procedures can be used for doing arithmetic.

® Arithmetic operations have to be explicitly requested by the built-in procedure
is. There are built-in procedures associated with the predefined operators +, —, x,
/, div and mod.

® At the time that evaluation is carried out, all arguments must be already
instantiated to numbers.

¢ The values of arithmetic expressions can be compared by operators such as <, =<,
etc. These operators force the evaluation of their arguments.

Define the relation
max(X, Y, Max)
so that Max is the greater of two numbers X and Y.
Define the predicate
maxlist(List, Max)
so that Max is the greatest number in the list of numbers List.
Define the predicate
sumlist(List, Sum)
so that Sum is the sum of a given list of numbers List.
Define the predicate
ordered(List)
which is true if List is an ordered list of numbers. For example,
ordered([1,5,6,6,9,12]).
Define the predicate

subsum(Set, Sum, SubSet)

so that Set is a list of numbers, SubSet is a subset of these numbers, and the sum of
the numbers in SubSet is Sum. For example:

lables
some

vent

non-
rates

uares
Ice is
re to

Syntactically, ‘*’ is a predefined infix operator of type xfy.

bagof, setof and findall 167

bagof, setof and findall
We can generate, by backtracking, all the objects, one by one, that satisfy some goal.
Each time a new solution is generated, the previous one disappears and is not
accessible any more. However, sometimes we would prefer to have all the generated
objects available together - for example, collected into a list. The built-in predicates
bagof, setof and findall serve this purpose.

The goal

bagof(X, P, L)

will produce the list L of all the objects X such that a goal P is satisfied. Of course,

this usually makes sense only if X and P have some common variables. For example,
let us have these facts in the program:

age(peter, 7).
age(ann, 5).
age(pat, 8).
age(tom, 5).

Then we can obtain the list of all the children of age 5 by the goal:
?- bagof(Child, age(Child, 5), List).
List = [ann, tom]

If, in the above goal, we leave the age unspecified, then we get, through back-
tracking, three lists of children, corresponding to the three age values:

?- bagof(Child, age(Child, Age), List).

Age =7
List = [peter];

Age =35

List = [ann, tom};
Age =8

List = [pat};

no

We may prefer to have all of the children in one list regardless of their age. This can
be achieved by explicitly stating in the call of bagof that we do not care about the
value of Age as long as such a value exists. This is stated as:

?- bagof(Child, Age ~ age(Child, Age), List).

List = [peter, ann, pat, tom]

168

More Built-in Predicates

If there is no solution for P in the goal bagof(X, P, L), then the bagof goal simply
fails. If the same object X is found repeatedly, then all of its occurrences will appear
in L, which leads to duplicate items in L.

The predicate setof is similar to bagof. The goal

setof(X, P, L)

will again produce a list L of objects X that satisfy P. Only this time the list L will be
ordered, and duplicate items, if there are any, will be eliminated. The ordering of the
objects is according to built-in predicate @<, which defines the precedence among
terms. For example:

?- setof(Child, Age ~ age(Child, Age), ChildList),
setof(Age, Child » age(Child, Age), AgeList).

ChildList = [ann, pat, peter, tom}
AgeList =[5, 7, 8]

There is no restriction on the kind of objects that are collected. So we can, for
example, construct the list of children ordered by their age, by collecting pairs of the
form Age/Child:

?- setof(Age/Child, age(Child, Age), List).
List = [5/ann, 5/tom, 7/peter, 8/pat]

Another predicate of this family, similar to bagof, is findall
findall(X, P, L)

produces, again, a list of objects that satisfy P. The difference with respect to bagof is
that all of the objects X are collected regardless of (possibly) different solutions for
variables in P that are not shared with X. This difference is shown in the following
example:

?- findall(Child, age(Child, Age), List).

List = [peter, ann, pat, tom]

If there is no object X that satisfies P then findall will succeed with L ={].

If findall is not available as a built-in predicate in the implementation used then it
can be easily programmed as follows. All solutions for P are generated by forced
backtracking. Each solution is, when generated, immediately asserted into the
database so that it is not lost when the next solution is found. After all the solutions
have been generated and asserted, they have to be collected into a list and retracted
from the database. This whole process can be imagined as all the solutions generated
forming a queue. Each newly generated solution is, by assertion, added to the end of
this queue. When the solutions are collected the queue dissolves. Note, in addition,
that the end of this queue has to be marked, for example, by the atom ‘bottom’
(which, of course, should be different from any solution that is possibly expected).
An implementation of findall along these lines is shown as Figure 7.4.

Exerci

