3.14 Consider the program:

```
t( 0+1, 1+0).
t( X+0+1, X+1+0).
t( X+1+1, Z) :-
t( X+1, X1),
t( X1+1, Z).
```

How will this program answer the following questions if '+' is an infix operator of type yfx (as usual):

- (a) ?- t(0+1, A).
- (b) ?- t(0+1+1, B).
- (c) ?- t(1+0+1+1+1, C).
- (d) ?- t(D, 1+1+1+0).

3.15 In the previous section, relations involving lists were written as:

```
member( Element, List),
conc( List1, List2, List3),
del( Element, List, NewList), . . .
```

Suppose that we would prefer to write these relations as:

```
Element in List, concatenating List1 and List2 gives List3, deleting Element from List gives NewList, ...
```

Define 'in', 'concatenating', 'and', etc. as operators to make this possible. Also, redefine the corresponding procedures.

3.4 Arithmetic

Some of the predefined operators can be used for basic arithmetic operations. These are:

]

]

)

- + addition
- subtraction
- * multiplication
 - division
- ** power
- // integer division

mod modulo, the remainder of integer division

Notice that this is an exceptional case in which an operator may in fact invoke an operation. But even in such cases an additional indication to perform arithmetic

will be necessary. The following question is a naive attempt to request arithmetic computation:

?-
$$X = 1 + 2$$
.

Prolog will 'quietly' answer

$$X = 1 + 2$$

and not X=3 as we might possibly expect. The reason is simple: the expression 1+2 merely denotes a Prolog term where + is the functor and 1 and 2 are its arguments. There is nothing in the above goal to force Prolog to actually activate the addition operation. A special predefined operator, is, is provided to circumvent this problem. The is operator will force evaluation. So the right way to invoke arithmetic is:

?-
$$X \text{ is } 1 + 2.$$

Now the answer will be:

$$X = 3$$

The addition here was carried out by a special procedure that is associated with the operator is. We call such procedures *built-in procedures*.

Different implementations of Prolog may use somewhat different notations for arithmetics. For example, the '/' operator may denote integer division or real division. In this book, '/' denotes real division, the operator // denotes integer division, and mod denotes the remainder. Accordingly, the question:

?- X is 5/2,

Y is 5//2,

Z is 5 mod 2.

is answered by:

X = 2.5

Y=2

Z = 1

The left argument of the is operator is a simple object. The right argument is an arithmetic expression composed of arithmetic operators, numbers and variables. Since the is operator will force the evaluation, all the variables in the expression must already be instantiated to numbers at the time of execution of this goal. The precedence of the predefined arithmetic operators (see Figure 3.8) is such that the associativity of arguments with operators is the same as normally in mathematics. Parentheses can be used to indicate different associations. Note that +, -, *, / and div are defined as yfx, which means that evaluation is carried out from left to right. For example,

$$X \text{ is } 5 - 2 - 1$$

r of

Also,

`hese

voke netic is interpreted as:

$$X \text{ is } (5-2)-1$$

Prolog implementations usually also provide standard functions such as sin(X), cos(X), atan(X), log(X), exp(X), etc. These functions can appear to the right of operator is.

Arithmetic is also involved when *comparing* numerical values. We can, for example, test whether the product of 277 and 37 is greater than 10000 by the goal:

yes

Note that, similarly to is, the '>' operator also forces the evaluation.

Suppose that we have in the program a relation born that relates the names of people with their birth years. Then we can retrieve the names of people born between 1980 and 1990 inclusive with the following question:

?- born(Name, Year), Year >= 1980, Year =< 1990.

The comparison operators are as follows:

X > Y
X is greater than Y
X < Y
X is less than Y
X >= Y
X is greater than or equal to Y
X =< Y
X is less than or equal to Y
X =:= Y
X and Y are equal
X =\=Y
The values of X and Y are not equal

Notice the difference between the matching operator '=' and '=:='; for example, in the goals X=Y and X=:=Y. The first goal will cause the matching of the objects X and Y, and will, if X and Y match, possibly instantiate some variables in X and Y. There will be no evaluation. On the other hand, X=:=Y causes the arithmetic evaluation and cannot cause any instantiation of variables. These differences are illustrated by the following examples:

B = 1

Let us further illustrate the use of arithmetic operations by two simple examples. The first is computing the greatest common divisor; the second, counting the items in a list.

Given two positive integers, X and Y, their greatest common divisor, D, can be found according to three cases:

- (1) If X and Y are equal then D is equal to X.
- (2) If X < Y then D is equal to the greatest common divisor of X and the difference Y X.
- (3) If Y < X then do the same as in case (2) with X and Y interchanged.

It can be easily shown by an example that these three rules actually work. Choosing, for example, X=20 and Y=25, the above rules would give D=5 after a sequence of subtractions.

These rules can be formulated into a Prolog program by defining a three-argument relation, say:

```
gcd(X, Y, D)
```

The three rules are then expressed as three clauses, as follows:

```
gcd( X, X, X).

gcd( X, Y, D) :-

X < Y,

Y1 is Y - X,

gcd( X, Y1, D).

gcd( X, Y, D) :-

Y < X,

gcd( Y, X, D).
```

Of course, the last goal in the third clause could be equivalently replaced by the two goals:

```
X1 is X - Y, gcd( X1, Y, D)
```

Our next example involves counting, which usually requires some arithmetic. An example of such a task is to establish the length of a list; that is, we have to count the items in the list. Let us define the procedure:

```
length(List, N)
```

which will count the elements in a list List and instantiate N to their number. As was the case with our previous relations involving lists, it is useful to consider two cases:

- (1) If the list is empty then its length is 0.
- (2) If the list is not empty then List = [Head | Tail]; then its length is equal to 1 plus the length of the tail Tail.

(), of

or J·

эf

These two cases correspond to the following program:

```
length([], 0).
length([_| Tail], N):-
length( Tail, N1),
N is 1 + N1.
```

An application of length can be:

```
?- length( [a,b,[c,d],e], N). N = 4
```

Note that in the second clause of length, the two goals of the body cannot be swapped. The reason for this is that N1 has to be instantiated before the goal:

```
N is 1 + N1
```

can be processed. With the built-in procedure is, a relation has been introduced that is sensitive to the order of processing and therefore the procedural considerations have become vital.

It is interesting to see what happens if we try to program the length relation without the use of is. Such an attempt can be:

```
\begin{split} &length1(\;[\;],\;0).\\ &length1(\;[_-\;|\;Tail],\;N)\;:\\ &length1(\;Tail,\;N1),\\ &N=1\,+\,N1. \end{split}
```

Now the goal

```
?- length1( [a,b,[c,d],e], N).
```

will produce the answer:

```
N = 1 + (1 + (1 + (1 + 0))).
```

The addition was never explicitly forced and was therefore not carried out at all. But in length1 we can, unlike in length, swap the goals in the second clause:

```
 \begin{aligned} &length1(~[\_~|~Tail],~N)~: \\ &N=1+N1,\\ &length1(~Tail,~N1). \end{aligned}
```

This version of length1 will produce the same result as the original version. It can also be written shorter, as follows,

```
\begin{array}{l} length1(\ [\_\ |\ Tail],\ 1+N) \ :-\\ length1(\ Tail,\ N). \end{array}
```

still producing the same result. We can, however, use length1 to find the number of elements in a list as follows:

Exercises	
3.16	j
3.17	S
2,	
	Se
3.18	D
2.40	SC
3.19	D
	_ 1
	w]
3.20	D€

the

?- length1([a,b,c], N), Length is N.

$$N = 1 + (1 + (1+0))$$

Length = 3

Finally we note that the predicate length is often provided as a built-in predicate. To summarize:

- Built-in procedures can be used for doing arithmetic.
- Arithmetic operations have to be explicitly requested by the built-in procedure is. There are built-in procedures associated with the predefined operators +, -, *, /, div and mod.
- At the time that evaluation is carried out, all arguments must be already instantiated to numbers.
- The values of arithmetic expressions can be compared by operators such as <, =<, etc. These operators force the evaluation of their arguments.

the body cannot be before the goal:

been introduced that edural considerations

n the length relation

Exercises

3.16 Define the relation

max(X, Y, Max)

so that Max is the greater of two numbers X and Y.

3.17 Define the predicate

maxlist(List, Max)

so that Max is the greatest number in the list of numbers List.

3.18 Define the predicate

sumlist(List, Sum)

so that Sum is the sum of a given list of numbers List.

3.19 Define the predicate

ordered(List)

which is true if List is an ordered list of numbers. For example,

ordered([1,5,6,6,9,12]).

3.20 Define the predicate

subsum(Set, Sum, SubSet)

so that Set is a list of numbers, SubSet is a subset of these numbers, and the sum of the numbers in SubSet is Sum. For example:

carried out at all. But id clause:

iginal version. It can

o find the number of

iables some

We can generate, by backtracking, all the objects, one by one, that satisfy some goal. Each time a new solution is generated, the previous one disappears and is not accessible any more. However, sometimes we would prefer to have all the generated objects available together – for example, collected into a list. The built-in predicates bagof, setof and findall serve this purpose.

The goal

```
bagof(X, P, L)
```

bagof, setof and findall

will produce the list L of all the objects X such that a goal P is satisfied. Of course, this usually makes sense only if X and P have some common variables. For example, let us have these facts in the program:

```
age( peter, 7).
age( ann, 5).
age( pat, 8).
age( tom, 5).
```

Then we can obtain the list of all the children of age 5 by the goal:

```
?- bagof( Child, age( Child, 5), List).
List = [ ann, tom]
```

If, in the above goal, we leave the age unspecified, then we get, through backtracking, three lists of children, corresponding to the three age values:

```
?- bagof( Child, age( Child, Age), List).
Age = 7
List = [ peter];
Age = 5
List = [ ann, tom];
Age = 8
List = [ pat];
no
```

We may prefer to have all of the children in one list regardless of their age. This can be achieved by explicitly stating in the call of bagof that we do not care about the value of Age as long as such a value exists. This is stated as:

```
?- bagof( Child, Age ^ age( Child, Age), List).
List = [ peter, ann, pat, tom]
```

Syntactically, '^' is a predefined infix operator of type xfy.

. For

ıseful

event

nonrates

uares ice is re to If there is no solution for P in the goal **bagof**(X, P, L), then the **bagof** goal simply fails. If the same object X is found repeatedly, then all of its occurrences will appear in L, which leads to duplicate items in L.

The predicate setof is similar to bagof. The goal

```
setof(X, P, L)
```

will again produce a list L of objects X that satisfy P. Only this time the list L will be ordered, and duplicate items, if there are any, will be eliminated. The ordering of the objects is according to built-in predicate @<, which defines the precedence among terms. For example:

?- setof(Child, Age ^ age(Child, Age), ChildList), setof(Age, Child ^ age(Child, Age), AgeList).

```
ChildList = [ ann, pat, peter, tom]
AgeList = [ 5, 7, 8]
```

There is no restriction on the kind of objects that are collected. So we can, for example, construct the list of children ordered by their age, by collecting pairs of the form Age/Child:

?- setof(Age/Child, age(Child, Age), List).

List = [5/ann, 5/tom, 7/peter, 8/pat]

Another predicate of this family, similar to bagof, is findall.

```
findall(X, P, L)
```

produces, again, a list of objects that satisfy P. The difference with respect to bagof is that *all* of the objects X are collected regardless of (possibly) different solutions for variables in P that are not shared with X. This difference is shown in the following example:

?- findall(Child, age(Child, Age), List).

List = [peter, ann, pat, tom]

If there is no object X that satisfies P then findall will succeed with L = [].

If findall is not available as a built-in predicate in the implementation used then it can be easily programmed as follows. All solutions for P are generated by forced backtracking. Each solution is, when generated, immediately asserted into the database so that it is not lost when the next solution is found. After all the solutions have been generated and asserted, they have to be collected into a list and retracted from the database. This whole process can be imagined as all the solutions generated forming a queue. Each newly generated solution is, by assertion, added to the end of this queue. When the solutions are collected the queue dissolves. Note, in addition, that the end of this queue has to be marked, for example, by the atom 'bottom' (which, of course, should be different from any solution that is possibly expected). An implementation of findall along these lines is shown as Figure 7.4.

Exerci

7.8

7.9