
Supplements to Luger, 6th ed.

Propositional Calculus

The symbols will be

1. propositional symbols: p1, p2, . . ., denoted generically by P,Q,R, S, etc.

2. truth symbols: true, false

3. connectives: ¬, ∨, ∧, →, ≡

4. parentheses: (and)

The propositions (or statements) are defined by:

1. Propositional symbols and truth symbols are propositions.

2. If P and Q are propositions, then so are (¬P), (P ∨Q), (P ∧Q), (P → Q), and (P ≡ Q).

3. Nothing is a proposition except as required by the above.

Parentheses are dropped when the intended grouping is clear. It is normally assumed that ¬
has priority over ∨ and ∧, and that these have priority over → and ≡.

An interpretation (sometimes called a truth value assignment) for the propositional calculus is
a mapping v : propositions→ {T,F} defined by:

1. v(pi) ∈ {T,F}, for all i

2. v(true) = T and v(false) = F

3. v(¬P) = T iff v(P) = F

4. v(P ∨Q) = T iff v(P) = T or v(Q) = T

5. v(P ∧Q) = T iff v(P) = T and v(Q) = T

6. v(P → Q) = T iff v(P) = F or v(Q) = T

7. v(P ≡ Q) = T iff v(P) = v(Q)

Predicate Calculus

Luger adapts the syntax of Prolog. We begin with some alpahabet characters consisting of:

1. the English alphabet letters, both uppercase and lowercase,

2. the numerals 0, 1, . . . , 9, and

3. the underscore character, .

A symbol expression is any string of alphabet characters that begin with an English letter. Then
the symbols are:

1. logical connectives: ¬, ∨, ∧, →, ≡,

2. punctuation: left and right parentheses and comma,

3. quantifiers: ∀ and ∃,

4. constant symbols: symbol expressions beginning with a lowercase letter,

5. variable symbols: symbol expressions beginning with an uppercase letter,

6. function symbols: symbol expressions beginning with a lowercase letter (distinguished from
constant symbols by context), each having an arity indicating the number of arguments,

7. predicate symbols: same as function symbols, also distinguished by context,

8. truth symbols: true and false.

The terms are defined by:

1. Constant symbols and variable symbols are terms.

2. If f is an n-ary function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

3. Nothing is a term except as required by the above.

A term is closed if it does not contain variable symbols. The sentences (also called (first-order)
formulas) are defined by:

1. If p is an n-ary predicate symbol and t1, . . . , tn are terms, then p(t1, . . . , tn) is a sentence,
known as an atomic sentence. The truth symbols true and false also are atomic sentences.

2. If s1 and s2 are sentences, then so are (¬s1), (s1 ∧ s2), (s1 ∨ s2), (s1 → s2), and (s1 ≡ s2).

3. If s is a sentence, then so are ∀Xs and ∃Xs.

4. Nothing is a sentence except as required by the above.

A sentence is closed if either it does not contain variable symbols or all its variable symbols are
within the scopes of quantifiers.

Different first-order languages are defined by different selections of constant symbols, function
symbols, and predicate symbols. An interpretation I for a first-order language L consists of:

1. A nonempty set DI serving as the domain, the elements of which are called individuals.

2. For each constant symbol a in L, assignment of a unique individual aI in DI . In this case,
let I(a) denote aI .

3. For each variable symbol V in L, assignment of a subset VI of DI (to serve as the range for
possible values of V).

4. For each n-ary function symbol f in L, assignment of a function fI : Dn
I → DI .

5. For each n-ary predicate symbol p in L, assigment of a predicate (relation) pI on Dn
I .

Given an interpretation I for a first-order language L, a term valuation is a mapping I :
closed terms→ DI , having the properties:

1. If t is a constant symbol a, I(t) = aI .

2. If t is a function expression f(t1, . . . , tn), then I(t) = fI(I(t1), . . . , I(tn)).

Given an interpretation I for a first-order language L, a truth valuation is a mapping v :
closed sentences→ {T,F} defined by:

1. v(true) = T and v(false) = F.

2. For s atomic, having the form p(t1, . . . , tn), v(s) = T iff pI holds for (I(t1), . . . , I(tn)).

3. For s of the form ¬s′, v(s) = T iff v(s′) = F.

4. For s of the form s1 ∧ s2, v(s) = T iff v(s1) = T and v(s2) = T.

5. For s of the form s1 ∨ s2, v(s) = T iff v(s1) = T or v(s2) = T.

6. For s of the form s1 → s2, v(s) = T iff v(s1) = F or v(s2) = T.

7. For s of the form s1 ≡ s2, v(s) = T iff v(s1) = v(s2).

8. For s of the form ∀Xs′, v(s) = T iff v(s′) is true in DI for every interpretation of X as an
individual in DI . (For simplicity, some details are blurred here.)

9. For s of the form ∃Xs′, v(s) = T iff v(s′) is true in DI for some interpretation of X as an
individual in DI . (For simplicity, some details are blurred here.)

A most general unifier (mgu) for a set of expressions E is any unifier g such that, if s is a
unifier for E, then there exists a substitution s′ such that s = gs′. E.g., {fred/X,fred/Y} = {Z/X,
Z/Y}{fred/Z}.

