Supplements to Luger, 6th ed.

Propositional Calculus
The symbols will be
1. propositional symbols: p1,p2, ..., denoted generically by P, @, R, S, etc.
2. truth symbols: true, false
3. connectives: -, V, A\, =, =
4. parentheses: (and)

The propositions (or statements) are defined by:

1. Propositional symbols and truth symbols are propositions.
2. If P and @ are propositions, then so are (=P), (PV @), (PAQ), (P — @), and (P = Q).

3. Nothing is a proposition except as required by the above.

Parentheses are dropped when the intended grouping is clear. It is normally assumed that —
has priority over V and A, and that these have priority over — and =.

An interpretation (sometimes called a truth value assignment) for the propositional calculus is
a mapping v : propositions — {T,F} defined by:

1. v(p;) € {T,F}, for all i
2. v(true) = T and v(false) = F
3. v(-P)=Tiff v(P)=F

5. v(PAQ)=Tiff v(P)=T and v(Q) =T

P
6. v(P—-Q)=Tiff v(P)=Forv(Q)=T

(
(
(
4. v(PVQ)=Tiffv(P)=Torv(Q) =T
(
(
7. v(P

Q) = T iff o(P) = 0(Q)

Predicate Calculus

Luger adapts the syntax of Prolog. We begin with some alpahabet characters consisting of:

1. the English alphabet letters, both uppercase and lowercase,
2. the numerals 0,1,...,9, and

3. the underscore character, _

A symbol expression is any string of alphabet characters that begin with an English letter. Then
the symbols are:

1. logical connectives: —, V, \, =, =,

7.
8.

. punctuation: left and right parentheses and comma,

quantifiers: ¥V and 3,
constant symbols: symbol expressions beginning with a lowercase letter,

variable symbols: symbol expressions beginning with an uppercase letter,

. function symbols: symbol expressions beginning with a lowercase letter (distinguished from

constant symbols by context), each having an arity indicating the number of arguments,
predicate symbols: same as function symbols, also distinguished by context,

truth symbols: true and false.

The terms are defined by:

1.
2.

3.

Constant symbols and variable symbols are terms.
If f is an n-ary function symbol and ¢1,...,t, are terms, then f(t1,...,t,) is a term.

Nothing is a term except as required by the above.

A term is closed if it does not contain variable symbols. The sentences (also called (first-order)
formulas) are defined by:

1.

2.

3.
4.

If p is an n-ary predicate symbol and t1,...,t, are terms, then p(t1,...,t,) is a sentence,
known as an atomic sentence. The truth symbols true and false also are atomic sentences.

If s1 and s are sentences, then so are (—s1), (s1 A s2), (81 V $2), (s1 = $2), and (s1 = s2).
If s is a sentence, then so are VX s and 34X s.

Nothing is a sentence except as required by the above.

A sentence is closed if either it does not contain variable symbols or all its variable symbols are
within the scopes of quantifiers.

Different first-order languages are defined by different selections of constant symbols, function
symbols, and predicate symbols. An interpretation I for a first-order language L consists of:

1.

2.

A nonempty set Dy serving as the domain, the elements of which are called individuals.

For each constant symbol a in L, assignment of a unique individual a; in D;. In this case,
let I(a) denote a;.

. For each variable symbol V' in L, assignment of a subset V; of Dy (to serve as the range for

possible values of V).

. For each n-ary function symbol f in L, assignment of a function f; : D} — Djy.

. For each n-ary predicate symbol p in L, assigment of a predicate (relation) p; on D}.

Given an interpretation [for a first-order language L, a term wvaluation is a mapping I :
closed_terms — Dy, having the properties:

1.

2.

If ¢ is a constant symbol a, I(t) = aj.

If ¢ is a function expression f(t1,...,t,), then I(t) = fr(I(t1),...,1(t,)).

Given an interpretation I for a first-order language L, a truth valuation is a mapping v :
closed_sentences — {T,F} defined by:

1.
2.

3.

v(true) = T and v(false) = F.
For s atomic, having the form p(t1,...,t,), v(s) = T iff p; holds for (I(t1),...,I(tn)).

For s of the form —s', v(s) = T iff v(s’) =F.

. For s of the form s; A s, v(s) = T iff v(s;) =T and v(s2) = T.
. For s of the form s1 V sg, v(s) = T iff v(s;) =T or v(s2) = T.

. For s of the form s; — s9, v(s) = T iff v(s1) =F or v(sy) = T.

For s of the form s1 = s9, v(s) = T iff v(s1) = v(s2).

. For s of the form VXs', v(s) = T iff v(s’) is true in Dy for every interpretation of X as an

individual in D;. (For simplicity, some details are blurred here.)

. For s of the form 3Xs', v(s) = T iff v(s’) is true in Dy for some interpretation of X as an

individual in D;. (For simplicity, some details are blurred here.)

A most general unifier (mgu) for a set of expressions E is any unifier g such that, if s is a
unifier for E, then there exists a substitution s’ such that s = gs’. E.g., {fred/X,fred/Y} = {Z/X,
7)Y }Hfred/Z}.

