Supplements to Luger, 6th ed.

Propositional Calculus

The *symbols* will be

1. propositional symbols: p_1, p_2, \ldots , denoted generically by P, Q, R, S, etc.

2. truth symbols: true, false

3. connectives: \neg , \lor , \land , \rightarrow , \equiv

4. parentheses: (and)

The propositions (or statements) are defined by:

- 1. Propositional symbols and truth symbols are propositions.
- 2. If P and Q are propositions, then so are $(\neg P)$, $(P \lor Q)$, $(P \land Q)$, $(P \to Q)$, and $(P \equiv Q)$.
- 3. Nothing is a proposition except as required by the above.

Parentheses are dropped when the intended grouping is clear. It is normally assumed that \neg has priority over \vee and \wedge , and that these have priority over \rightarrow and \equiv .

An interpretation (sometimes called a truth value assignment) for the propositional calculus is a mapping v: propositions $\rightarrow \{T, F\}$ defined by:

- 1. $v(p_i) \in \{T, F\}$, for all i
- 2. $v(\mathbf{true}) = T$ and $v(\mathbf{false}) = F$
- 3. $v(\neg P) = T \text{ iff } v(P) = F$
- 4. $v(P \vee Q) = T$ iff v(P) = T or v(Q) = T
- 5. $v(P \wedge Q) = T$ iff v(P) = T and v(Q) = T
- 6. $v(P \to Q) = T$ iff v(P) = F or v(Q) = T
- 7. $v(P \equiv Q) = T \text{ iff } v(P) = v(Q)$

Predicate Calculus

Luger adapts the syntax of Prolog. We begin with some alphabet characters consisting of:

- 1. the English alphabet letters, both uppercase and lowercase,
- 2. the numerals $0, 1, \ldots, 9$, and
- 3. the underscore character, _.

A *symbol expression* is any string of alphabet characters that begin with an English letter. Then the *symbols* are:

1. logical connectives: \neg , \lor , \land , \rightarrow , \equiv ,

- 2. punctuation: left and right parentheses and comma,
- 3. quantifiers: \forall and \exists ,
- 4. constant symbols: symbol expressions beginning with a lowercase letter,
- 5. variable symbols: symbol expressions beginning with an uppercase letter,
- 6. function symbols: symbol expressions beginning with a lowercase letter (distinguished from constant symbols by context), each having an arity indicating the number of arguments,
- 7. predicate symbols: same as function symbols, also distinguished by context,
- 8. truth symbols: true and false.

The *terms* are defined by:

- 1. Constant symbols and variable symbols are terms.
- 2. If f is an n-ary function symbol and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.
- 3. Nothing is a term except as required by the above.

A term is *closed* if it does not contain variable symbols. The *sentences* (also called (*first-order*) formulas) are defined by:

- 1. If p is an n-ary predicate symbol and t_1, \ldots, t_n are terms, then $p(t_1, \ldots, t_n)$ is a sentence, known as an atomic sentence. The truth symbols **true** and **false** also are atomic sentences.
- 2. If s_1 and s_2 are sentences, then so are $(\neg s_1)$, $(s_1 \land s_2)$, $(s_1 \lor s_2)$, $(s_1 \to s_2)$, and $(s_1 \equiv s_2)$.
- 3. If s is a sentence, then so are $\forall Xs$ and $\exists Xs$.
- 4. Nothing is a sentence except as required by the above.

A sentence is *closed* if either it does not contain variable symbols or all its variable symbols are within the scopes of quantifiers.

Different first-order languages are defined by different selections of constant symbols, function symbols, and predicate symbols. An interpretation I for a first-order language L consists of:

- 1. A nonempty set D_I serving as the domain, the elements of which are called individuals.
- 2. For each constant symbol a in L, assignment of a unique individual a_I in D_I . In this case, let I(a) denote a_I .
- 3. For each variable symbol V in L, assignment of a subset V_I of D_I (to serve as the range for possible values of V).
- 4. For each n-ary function symbol f in L, assignment of a function $f_I: D_I^n \to D_I$.
- 5. For each n-ary predicate symbol p in L, assignment of a predicate (relation) p_I on D_I^n .

Given an interpretation I for a first-order language L, a term valuation is a mapping I: closed_terms $\to D_I$, having the properties:

- 1. If t is a constant symbol a, $I(t) = a_I$.
- 2. If t is a function expression $f(t_1, \ldots, t_n)$, then $I(t) = f_I(I(t_1), \ldots, I(t_n))$.

Given an interpretation I for a first-order language L, a truth valuation is a mapping v: closed_sentences $\rightarrow \{T, F\}$ defined by:

- 1. $v(\mathbf{true}) = T$ and $v(\mathbf{false}) = F$.
- 2. For s atomic, having the form $p(t_1, \ldots, t_n)$, v(s) = T iff p_I holds for $(I(t_1), \ldots, I(t_n))$.
- 3. For s of the form $\neg s'$, v(s) = T iff v(s') = F.
- 4. For s of the form $s_1 \wedge s_2$, v(s) = T iff $v(s_1) = T$ and $v(s_2) = T$.
- 5. For s of the form $s_1 \vee s_2$, v(s) = T iff $v(s_1) = T$ or $v(s_2) = T$.
- 6. For s of the form $s_1 \to s_2$, v(s) = T iff $v(s_1) = F$ or $v(s_2) = T$.
- 7. For s of the form $s_1 \equiv s_2$, v(s) = T iff $v(s_1) = v(s_2)$.
- 8. For s of the form $\forall Xs'$, v(s) = T iff v(s') is true in D_I for every interpretation of X as an individual in D_I . (For simplicity, some details are blurred here.)
- 9. For s of the form $\exists Xs'$, v(s) = T iff v(s') is true in D_I for some interpretation of X as an individual in D_I . (For simplicity, some details are blurred here.)

A most general unifier (mgu) for a set of expressions \mathbf{E} is any unifier \mathbf{g} such that, if \mathbf{s} is a unifier for \mathbf{E} , then there exists a substitution \mathbf{s}' such that $\mathbf{s} = \mathbf{g}\mathbf{s}'$. E.g., $\{\text{fred/X,fred/Y}\} = \{\text{Z/X, Z/Y}\}\{\text{fred/Z}\}$.