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Outline

1. The logic Q for Qualified Syllogisms
I Reasoning with Fuzzy Quantification, Usuality, and

Likelihood

2. Application to Nonmonotonic Reasoning
I Resolving some well-known “puzzles”



Objective of Q
To develop a formal logic that captures the reasoning in
syllogisms such as:

Most birds can fly.
Tweety is a bird.

It is likely that Tweety can fly.

and

Usually if something is a bird, it can fly.
Tweety is a bird.

It is likely that Tweety can fly.



Inuititive Motivation, Part 1
There is a natural connection between

Fuzzy Quantification (all, most, few, etc.)

and

Fuzzy Likelihood (certain, likely, unlikely, etc.)

in the sense that the statement

MOST birds can fly.

may be regarded as equivalent with

If x is a bird, then it is LIKELY that x can fly.



The underlying connection is provided by the concept of a
statistical sampling, to wit:

Given a bird arbitrarily selected from the population of all
birds, there is a high probability that it will be able to fly.



Psuedo Formalism
The foregoing equivalence may be expressed by

(Mx)(Bird(x)→ Can Fly(x))↔ (Bird(x)→ (L)Can Fly(x))

in which case, the foregoing syllogism reduces to an application
of classical Modus Ponens:

Bird(x)→ (L)Can Fly(x)
Bird(Tweety)

(L)Can Fly(Tweety)

This suggests that fuzzy quantification and likelihood can be
formalized by adjoining classical logic with an appropriate set of
operators.



Intuititive Motivation, Part 2
There is a similar connection between the foregoing two
concepts and

Fuzzy Usuality (always, usually, seldom, etc.)
Based on the same idea of a statistical sampling, one has that

USUALLY, if something is a bird, then it can fly.
or in symbols

(Ux)(Bird(x)→ Can Fly(x))
is equivalent with both

(Mx)(Bird(x)→ Can Fly(x))
and

Bird(x)→ (L)Can Fly(x)
Thus one should be able to also include usuality in an
extension of classical logic.



The Distinctions
Usuality expresses the results of past exprience with a
population,

Quantification expresses knowledge about the current state of
a population,

Likelihood expresses expectations about the future.

In practice, the latter two are derived from the former, i.e., both
quantification and likelihood are pragmatically rooted in past
exprience.



The Interrelations
Quantification Usuality Likelihood
all always certainly
most usually likely
many/about half frequently/often uncertain/about 50-50
few/some ocasionally/seldom unlikely
no never certainly not

This suggests that all three concepts can be modeled by the
same semantics.

Represent these modifiers by:
Q2, Q1, Q0, Q−1, Q−2,
U2, U1, U0, U−1, U−2,
L2, L1, L0, L−1, L−2.

Now define system Q 1.0 as follows.



Languages
Symbols:

1. an individual variable, denoted by x ,

2. individual constants, denoted generically by a,b, . . .,

3. some unary relation symbols, denoted generically by
α, β, . . .,

4. logical connectives, denoted by ¬,∨,∧,→, →̇, ¬̈, and ∨̈,

5. the foregoing quantifiers, Qi , usuality modifiers, Ui , and
likelihood modifiers, Li ,

6. the parentheses and the comma.



Formulas:

F1 = {α(x)|α is a relation symbol}

F2 = F1 ∪ {¬P, (P ∨Q), (P ∧Q)|P,Q ∈ F1 ∪ F2}

F3 = {(P → Q)|P,Q ∈ F2}

F4 = {L2(P→̇LiQ),L2(P→̇QiQ),L2(P→̇UiQ),
Q2(P→̇LiQ),Q2(P→̇QiQ),Q2(P→̇UiQ),
U2(P→̇LiQ),U2(P→̇QiQ),U2(P→̇UiQ)|
P,Q ∈ F2 ∪ F3, i = −2, . . . ,2}

F5 = {LiP,QiP,UiP, |P,Q ∈ F2 ∪ F3, i = −2, . . . ,2}

F6 = F4 ∪ F5 ∪ {¬̈P, (P∨̈Q)|P,Q ∈ F4 ∪ F5 ∪ F6}

All substitutions of individual constants for the individual
variable x .



Abbreviations:
(P∧̈Q) ¬̈(¬̈P∨̈¬̈Q)

(P→̈Q) (¬̈P∨̈Q)

(P↔̈Q) ((P→̈Q)∧̈(Q→̈P))



The first “Tweety” syllogism can now be expressed in a
language employing the individual constant Tweety and the
unary relations Bird and CanFly as:

Q1(Bird(x)→ CanFly(x))
L2Bird(Tweety)
L1CanFly(Tweety)

In words: For most x , if x is a Bird then x CanFly; it is certain
that Tweety is a Bird; therefore it is likely that Tweety CanFly.

And the related equivalence is:

Q1(Bird(x)→ Can Fly(x))↔̈(L2Bird(x)→̈L1Can Fly(x))



The syllogism can be derived by first using the first line and the
equivalence to derive

L2Bird(x)→̈L1Can Fly(x)

instantiating x with Tweety, giving

L2Bird(Tweety)→̈L1Can Fly(Tweety)

and then applying classical Modus Ponens using the second
line as

L2Bird(Tweety)→̈L1Can Fly(Tweety)
L2Bird(Tweety)
L1CanFly(Tweety)

giving the desired

L1CanFly(Tweety)



Semantics
Two notions of semantics are considered, based on:

1. Bayesian probability theory
I Probabilities are assigned to propositions subjectively,

without reference to an underlying universe.

2. L.A. Zadeh’s notion of Sigma Counts (restricted to crisp
predicates)

I A frequentist approach
I Probabilities are computed by counting individuals in an

underlying universe.



In both versions, an interpretation I for a language L consists of

I a likelihood mapping lI which associates each lower-level
formula with a number in [0,1], and

I a truth valuation vI which associates each upper-level
formula with a truth value, T or F .

The likelihood mappings satisfy the conditions for a probability
assignment. For the truth valuations, the interval [0,1] is
divided into five disjoint intervals that cover [0,1], such as

ι2 = [1,1] (singleton 1)
ι1 = [2

3 ,1)
ι0 = (1

3 ,
2
3)

ι−2 = (0, 1
3 ]

ι−2 = [0,0] (singleton 0)



Then for an upper-level formula of the formMiP (so that P is a
lower-level formula) set

v(MiP) = T iff l(P) ∈ ιi
For example, ifMi is L1 (standing for likely ), then

v(L1P) = T iff l(P) ∈ ι1
This leads to two well-defined semantics that validate the
foregoing syllogisms.

A Key Result: At the upper level, both semantics validate the
axioms and inference rules of Classical Propositional Calculus.



In addition, both semantics validate all formulas having the
forms (for open P and Q):

Qi(P → Q)↔̈Q3(P→̇LiQ)
Ui(P → Q)↔̈U3(P→̇LiQ)

which express salient aspects of the interrelations between
quantification, likelihood, and usuality.

Another general form validated by this semantics is

Qi(P → Q)↔̈(L3P→̈LiQ)

which includes the equivalence regarding Tweety discussed
previously.



Nonmonotonic Reasoning
Classical formal logical systems are monotonic in that adding
new information (axioms) always increases the set the
theorems (derivable from the axioms).

Reasoning is nonmonotonic when adding new information
cause one to go back and retract old conclusions.

Example:

Suppose that on Tuesday you are told ”Opus is a bird”. Then by
default (i.e., in the absence of any countervailing information)
you may conclude ”Opus can fly”.

But suppose that on Thursday you are told ”Opus is a penguin”.
Now, based on what you know about penguins, you must
retract the above and conclude that ”Opus cannot fly”.



General Problem of NMR
How to represent and manage this type of reasoning.

Well-Known Early Approaches

I Truth (or Reason) Maintenance — Jon Doyle, 1979, 1988
I Circumscription — John McCarthy, 1980
I Default Logic — Raymond Reiter, 1980
I Nonmonotonic Logic — David McDermott and Jon Doyle,

1980



Current Threads

I Belief Revision — The AGM Framework ( Alchourrón,
Gärdenfors, Makinson)

I 25 years in development by many contributors

I Answer Set Programming (an extension of Prolog)
I About 15 years in development by many contributors

Neither have so far yielded computational algorithms.



Applying Q to Nonmonotonic Reasoning
Requires four additional components.

First is needed a logic for likelihood combination.

For example, if by one line of reasoning one derives LikelyP,
and by another derives UnlikelyP, then one would like to
combine these to obtain UncertainP.

2 1 0 -1 -2
2 2 2 2 2 ∗
1 2 1 1 0 -2
0 2 1 0 -1 -2
-1 2 0 -1 -1 -2
-2 ∗ -2 -2 -2 -2

Table: Rules for likelihood combination.



Second is needed a means for providing such inference rules
with a well-defined semantics.

Simultaneously asserting LikelyP and UnlikelyP requires that P
have two distinct likelihood values, in which case the likelihood
mapping l would not be well-defined.

Resolved by means of a path logic, which portrays reasoning
as an activity that takes place in time.

Different occurrences of P in the derivation path (i.e., the
sequence of derivation steps normally regarded as a proof ) are
labeled with a time stamp.

Then the likelihood mapping can be defined on labeled
formulas, in which case each differently labeled occurrence of
P can have its own likelihood value.



Third one needs to distinguish between predicates that
represent kinds of things and those that represent properties of
things.

To illustrate, in the “Tweety” syllogism, “Bird” represents a kind,
whereas “CanFly” represents a property.

For this purpose employ typed predicate symbols, indicated by
superscripts as in Bird(k) and CanFly(p).



Fourth is needed a way of expressing a specificity relation
between kinds of things, together with an associated specificity
rule.

For example, if “All(Penguin(k)(x)→ Bird(k)(x)” is asserted in
the derivation path, asserting in effect that the set of penguins
is a subset of the set of birds, then one needs to make an
extralogical record that Penguin(k) is more specific than Bird(k).

Given this, one can apply the principle that more specific
information takes priority over less specific.



Collectively, these components comprise a system for a style of
nonmonotonic reasoning known as as default reasoning with
exceptions.

The problems associated with formulating this kind of reasoning
have been illustrated by a variety of conundrums, the most
well-known being the situation of Opus the penguin as
illustrated in the following figure.



Figure: Tweety can fly, but can Opus?



The puzzle can be resolved in the present system as shown in:

Figure: Tweety likely can fly, and Opus certainly cannot.

For Opus the inheritance of CanFly1 is blocked by the more
specific information ¬CanFly2.



Another famous puzzle, the Nixon Diamond.

Quaker

Pacifist

Republican

Nixon

Is-a

Is-a

Is-a

Is-not-a

Figure 5

Figure: Is Nixon a pacifist or not?



This can be resolved in the present system with:

Quaker k( ) Pacifist1
p( ) Republican k( ) Pacifist2

p( )¬

Nixon

Is-a Is-a

Most Most

Figure 6

Figure: It is uncertain whether Nixon is a pacifist.



Conclusion

I The logic Q for qualified syllogisms provides an intuitively
plausible method for default reasoning with exceptions.

I Future Reseach
I Applications

I Frame-based expert systems
I Robot motion planning

I Theory
I Rules governing typed predicate sytmbols
I Sound and semantically complete axiomatization


