Bounding Summations

Mathematical Induction:

To Prove:
n
å
i = 1 
 i   = 
(n ( n + 1 ) )/ 2
when n = 1, the sum equals  (1 ( 1 + 1 )) / 2 = 1 : so this checks out.

Assume true for n, and the prove n + 1

n+1
å i     =
i = 1
n
å i + ( n + 1 )   =
i = 1
 (n (n  + 1 ))/2 + n +1
                           = (n + 1)[n/2 + 1]
                           = (n + 1)( (n + 2)/2))    done!
Induction for bounds:

Prove

n
å
k = 0 
3k   = 
O ( 3 n )
recall
n
å
k = 0 
3k   = 
(3n+1 - 1 )/(3 - 1 ) = (3n+1 - 1 )/2
must show that
n
å
k = 0 
3k  £ 
c 3 n for some c ³  0 and n ³  n0
first
0
å
k = 0 
3k  = 
1     £    c 3 0 = c,     c = 1 works for n = 0
assume
n
å
k = 0 
3k  £  
c 3 n
then n + 1
n+1
å 3k    =
i = 0
n
å 3k + 3n+1      £
i = 0
 c 3 +  3 n+1
                           = (1/3 + 1/c) c 3 n+1
                           £  c 3 n+1 
provided that (1/3 + 1/c)   £ 1 Þ 1/c £ 1 - 1/3 Þ c ³  3/2

Some Tricks:

bound each term
 n
å k   £
k = 1
n
å n = n2
k =1
 
     n
for   å ak,     if  ak £  amax " k = 1....n ,       £
        i = 1
n
å  amax = namax
k = 1
bound with Geometric Series
           if ak+1 / ak £  r " k then  ak+1 £  rak £  r2ak-1... £ a0rk+1 therefore
   n
 å ak  £
  k = 0
  n
 å   a0rk   =   a0((rk+1 -1) / (1 - r))
  k = 0
 
if r < 1 then  a0( 1 / (r _ 1) )  =   ¥
 å   a0rk
  k = 0
Example
  ¥
 å   k / 3k  =
  k = 0
  ¥
 å   ak
  k = 0
(ak+1) / ak = (k + 1) / 3k+1 * 3k / k = (k + 1) / k * 1/3 £ 1/3 * 2/1 = 2/3 as (k + 1 ) / k £ 2 (equality when k = 1)
  ¥
 å   k / 3k   £
  k = 1
  ¥
 å 1/3 (2/3)k = 1/3 ( 1 / (1 - 2/3)) = 1
  k = 1

Harmonic Series (as a counter example)

  ¥
 å   k-1  =
  k = 1
lim   
n ® ¥ 
   n
 å   k-1  = lim Q( ln n)  =  + ¥
                     n ® ¥ 
  k = 1
So this Diverges

(ak+1) / ak = (1 / (k + 1)) / 1/k = k / (k +1) < 1 but not!! £  c < 1

Splitting Sums
          A lower bound for

  n
 å   k  ³
  k = 1
   n
 å 1 = n
  k = 1
is
 n
 å   k  =
  k = 1
 n/2
 å   k     +
  k = 1
   n
 å   k   ³
  k = n/2 + 1
 n/2
 å   0  +
  k = 1
   n
 å   n/2    ³
  k = n/2 +1
0 + (n/2)2 W (n2/4)
ignoring initial terms
  n
 å ak   =
  k = 0
  k0-1
 å ak     +
  k = 0
   n
 å ak    =     O(1)  +
  k = k0
   n
 å ak 
  k = k0

 

 ¥
 å   k2  / 2k =
  k = 0
  2
 å   k2  / 2k +
  k = 0
¥
 å   k2  / 2k   £     O (1) +
  k = 3
       ¥
9/8 å (8/9)k
           k = 0
((k + 1)2 ) / 2k+1 * 2k / k2 = ((k + 1)2 ) / 2k2 £ 8/9
with k £ 3 Þ O (1)

 

Hn =

 

  n
 å 1/k  £
  k = 0
 ë lg nû
 å
  i = 0
 2i- 1
 å 1/ ( 2i + j )
  j = 0
£

 

 ë lg nû
 å
  i = 0
 2i- 1
 å 1 / 2i  £
  j = 0
ë lg nû
 å 1     =       lg n   +   1
  i = 0
Approximation by integrals
       n
 £   å f (k)     £
      k = m
 
     n
£     å f (k)     £    
     k = m
  n
å 1 / k  ³
  k = 1
= ln ( n + 1 )
 n
å 1 / k  £
 k = 2
   = ln n
 n
å 1 / k  £
 k = 1
 ln n + 1

 

Summations - 2 of 2