Information Retrieval Applications in
Software Engineering

Sonia Haiduc

Assistant Professor
Department of Computer Science
Florida State University

Short Bio

ﬁ;’m it

g

What is Software Engineering?

How about Software
Engineering Research?

Information Retrieval Applications in
Software Engineering

Sonia Haiduc

Assistant Professor
Department of Computer Science
Florida State University

What is Information Retrieval?

SE Tasks Supported by
Information Retrieval

Concept/Feature Location
Impact Analysis

Traceability Link Recovery
Code Reuse

Bug Triage

Program Comprehension
Architecture/design recovery
Quality Assessment
Software Evolution Analysis
Automatic Documentation

Requirements Analysis

Defect Prediction and
Debugging

Refactoring

Software Categorization
Licensing Analysis
Clone Detection

Effort Estimation
Domain Analysis

* Web Services Discovery

SE Tasks Supported by
Information Retrieval

Concept/Feature Location
Impact Analysis

Traceability Link Recovery
Code Reuse

Bug Triage

Program Comprehension
Architecture/design recovery
Quality Assessment
Software Evolution Analysis
Automatic Documentation

Requirements Analysis

Defect Prediction and
Debugging

Refactoring

Software Categorization
Licensing Analysis
Clone Detection

Effort Estimation
Domain Analysis

* Web Services Discovery

Software Changes

Adding new features

Modifying existing Initial
features Development

Fixing bugs 2%

Software
Maintenance
& Evolution
75%

Improving performance

Adapting to changes in
hardware

Refactoring
Etc. Software Costs

Software Change is Difficult

(because software is hard to understand)

* Millions of lines of code
— S-class Mercedes-Benz : 20 million
— OpenOffice: 30 million
— Windows XP: 45 million

 Developed by large, distributed, and diverse teams

* Developers have to change software with:
— Limited domain knowledge
— Absence of the original developer
— Bad, missing, or out of date documentation

10

Concept Location

* Finding the implementation of a concept in the
code, i.e., a place in the source code where to start a

change

 Sources of information:

— Structure - the structural aspects of the source code (e.g.,
control and data flow, class diagrams)

— Dynamic — behavioral aspects of the program (e.g.,
execution traces)

— Text - captures the problem domain and developer
intentions (e.g., identifiers, comments) -> Text Retrieval

Text Retrieval for Concept Location

Method Class Score

T getFace org.eclipse.ui.JFace 0.99

2— nextEntry org.eclipse.jdt.IndexBlock 0.96

3 | getSeparator org.eclipse.jdt.core.Util | 0.95

4 | yalidate org.eclipse.jface.IDialog | 0.87

5 | setTextDlg | org.eclipse.ui.Text 0.86
evant Code Elements

TR Engine

|

Sf TRACE - fopenitppmenc.doc.

¢ Oﬂnﬂhlllln.

o) ementY
%

Code Text

- a

Source

Source Code Text

Method
1 | getFace

2 | nextEntry or
3 | getSeparator or

4 | validate

e |18 Qe

org.eclip
eclip:
eclip:
org.eclip

5 | setTextDlg | org.eclip:

Class

se.ui.JFace

Score

0.99

se.jdt.IndexBlock 0.96
se.jdt.core.Util | 0.95
se.jface.IDialog | 0.87

se.ui.Text

Results
Presentation

0.86

Problems

* Developers have a hard time

formulating good queries in unfamiliar
software systems

* The results of TR depend on the

qguality of identifiers found in the
source code

* The presentation of the results does
not offer enough information to
understand if the results are relevant

Problem #1

Query

* Developers have a hard time
formulating good queries in unfamiliar

Problem
software systems
* How can query formulation be made
Resea_rCh easy for developers?
Questions |, How can bad queries be improved?

Solution * Automatic query reformulation

Approaches

e Semi-automatic: Relevance feedback

— People can not always express well what they are looking for,
but can recognize it when they see it

— Developer provides feedback about relevance of search
results and query is automatically reformulated

* Fully automatic: Learning the best reformulation for
each query
— Developer needs not be involved

— Use machine learning techniques to learn the best
reformulation for queries based on their lexical properties

FileZilla Bug Report #3272

No confirm for delete in folder view

Reported by: trellmor
Priority: normal
Component: FileZilla client

Description

If you try to delete a folder by “right click ->
delete” in the remote folder window, it won’t
ask for confirmation.

Initial Query

confirm delete folder view

getRemoteFolder () o
get remote folder destination

viewUserSettings() x
view user settings pane cache

confirmFileTransfer() x

confirm file transfer popup window

\ﬂl

+ words in / documents

+folder +destination

+remote - view

- words in){’ documents
-confirm

Reformulated Query

get remote folder destination delete folder

Evaluation

Empirical evaluation - locating bugs in code based on text
found in bug reports

Patches in bug reports used for identifying buggy methods

3 large software systems, 18 queries

— Eclipse — IDE for Java (2500 KLOC)

— jEdit — programming editor (300 KLOC)

— Adempiere — enterprise resource planning (330 KLOC)

Results: 72% of cases queries reformulated using relevance
feedback led to better results

Refoqus: Automatically Determining
the Best Reformulation

* In relevance feedback, developers need to spend time
providing feedback - automated solution desirable

* Queries are different - different types of queries may
require different reformulation approaches (query
expansion, query contraction, etc.)

Training queries

Query properties
Best reformulation

Refoqus

New query

Query properties

!

LEARN
>

Best reformulation

Evaluation

* Empirical evaluation evaluation - locating bugs in code
based on text found in bug reports

* 6 software systems, 30 queries each

— Adempiere (330 KLOC) - jEdit (300 KLOC)
— Atunes (80 KLOC) - Mahout (110 KLOC)
— Filezilla (240 KLOC) - WinMerge (410 KLOC)

* Results: Refoqus outperformed any individual
reformulation technique; 85% of cases improved
results of TR-based concept location

Problem #2

Source Code Text

Problem

Research
Question

Solution

The results of TR depend on the

quality of identifiers found in the
source code

How can we improve the results of TR-based

concept location when bad identifiers are
present?

ldentifying and renaming bad identifiers

22

Lexicon Bad Smells

Poorly named identifiers can be misleading and impact
the results of TR techniques

Defined a catalog of bad smells in identifiers

Proposed a set of renaming operations to fix bad smells

Empirical evaluation on concept location

Results: improved TR-based concept location after
removing bad smells

Method
1 | getFace

2 | nextEntry or
3 | getSeparator or

4 | validate

5 | setTextDlg

8 \g|g|a

org.eclip
eclip
eclip
org.eclip
org.eclip

Score

se.ui.JFace 0.99

se.jdt.IndexBlock 0.96
se.jdt.core.Util |0.95
se.jface.IDialog | 0.87

se.ui.Text 0.86

Results Presentation

Problem

Research
Question

Solution

The presentation of the results does not
offer enough information to understand
if the results are relevant

How can the results of TR-based concept
location be presented in a more
informative way?

Automatic code summaries

24

Code Summaries

Brief but relevant descriptions of source code entities
(methods, classes, etc.)

Text retrieval and text summarization techniques
extract most representative information from code

User evaluation for method and class summaries

Results: users agreed with the summaries created
(score 3.2 out of 4)

Current work: people summarize code differently -
user studies

Software Changes

* Adding new features
* Modifying existing

Initial

features Development

* Fixing bugs 2%

* Improving performance Software

* Adapting to changesin Maintenance
hardware 75%

* Refactoring

* Etc. Software Costs

Text Retrieval for Concept Location

. Method Class Scorn
1 | getface orgedipsesd i ace 0.
2 Y exhpse i & 0.9
3 | getSeparator seguedipse i coreltd | 095
4 | valdate wgecipse facelalog | 087
5 |wetTestDlg | crgechpen.s Test nse

Relevant Code Elements

TR Engine

|

Source Code Text

Problems

* Developers have a hard time

/ formulating good queries in unfamiliar
g software systems

Query

* The results of TR depend onthe

quality of identifiers found in the

Source Code Text source code

Lo e o * The presentation of the results does
o T not offer enough information to

Results understand if the results are relevant

Presentation

Solutions

/ * Query reformulation

* |dentifying and renaming bad identifiers

* Automatic code summaries

Presentation

