Mining Information from Programming Video Tutorials

Esteban Parra

Florida State University

Tallahassee, Florida

parrarod@cs.fsu.edu

Software Engineering Video Tutorials

Deliver introductory or in-depth information regarding software engineering topics, such as:

- Programming language syntax
- Algorithms or data structures
- Use of APIs
- Error solving

Stacks and Queues

Derek Banas • 273K views • 5 years ago

Get the Code Here: http://goo.gl/OzbXM Welcome to my tutorial on **Java** Stacks and Queues. The **data structures** most are used to

Learn Programming in Java - Lesson 01 : Java Programming Basics

Michael Fudge • 210K views • 4 years ago

IMPORTANT: If you're going this this tutorial, from start to finish please begin with lesson 00. It explains how to get setup and where

Learn Java Programming - Try/Catch IndexOutOfBoundsException Tutorial

Daniel Ross • 1.6K views • 2 years ago

This tutorial builds on concepts from my **Exception** Handling: Try and Catch Tutorial. One of the things that I emphasized in that

Problem

- Challenging to quickly determine whether a video is relevant
- Description not always concise and informative

Automatic Tag Recommendation for Software Development Video Tutorials

Esteban Parra, Javier Escobar-Avila, Sonia Haiduc

SERENE

Florida State University

Tallahassee, Florida

parrarod@cs.fsu.edu, escobara@cs.fsu.edu, shaiduc@cs.fsu.edu

Problem

- Challenging to quickly determine whether a video is relevant
- Description not always concise and informative

Automatic Tag Recommendation

We aim to provide relevant tags describing the content of the video

Automatic Tagging Approaches

Information Retrieval-based

- TF-IDF
- LDA
- BM25F

StackOverflowbased

- IR SO-based Tagging
- TagMulRec

Closed-Source

- Cortical.io
- Google Cloud Video Intelligence

Automatic Tagging Approaches

Information Retrieval-based

- TF-IDF
- LDA
- BM25F

StackOverflowbased

- IR SO-based Tagging
- TagMulRec

Closed-Source

- Cortical.io
- Google Cloud Video Intelligence

Research Questions

RQ1 - What is the quality of the automatically produced tags?

- RQ1.1 Which approach produces the best tags?
- RQ1.2 Do *singularization* and *stemming* impact the performance of the approach?

RQ2 - Where do the relevant tags come from?

- Within the video (Extractive) title, description, transcript
- Outside of the video (Abstractive)

Building a Ground Truth

- 57 participants
 - At least 6 months of experience with Java
 - 15 undergraduate students
 - 39 graduate students
 - 2 professional developers
 - 1 faculty member
- 75 Java programming videos
 - Covering various topics
 - Created by various content creators
- Each participant annotated 3 to 5 videos

Pyramid Method

- Summarization assessment methodology
- Relies on multiple annotations
- Provides a reliable assessment of content selection quality in tagging
- Measures the informativeness a set of tags are based on the content of human annotations

Frequency = 1

Results RQ1.1 – Best Approach

- All the configurations of BM25F outperform the other tagging approaches
- Configurations of BM25F that leverage the transcript achieve the better performance
- The most informative tags are recommended within the first five tags
- The tags produced by Google Video Intelligence are the least informative
- TagMulRec performs better than other abstractive approaches

Results RQ1.2 - Preprocessing

- Both stemming and singularization improve the performance of the tagging approaches
- Singularization leads to a higher performance improvement than stemming
- The best tagging results are achieved by using BM25F(4,2,1) with singularization

RQ2. Provenance: Where do relevant tags come from?

Provenance: Tags Recommended by Developers

- 13.92% of the tags are abstractive
- 86.08% of the tags are extractive

Not in the video (13.92%)

Provenance: Tags Recommended by Developers

- 82.86% of the tags are present in the transcript of the video
- 49.17% of the tags are present in the description of the video
- 26.05% of the tags are present in the **title** of the video

Provenance: Tags Recommended by Developers

- 82.86% of the tags are present in the transcript of the video
- 49.17% of the tags are present in the description of the video
- 26.05% of the tags are present in the **title** of the video

Provenance: Relevant Tags by BM25F(4,2,1)

- 95.53% of the tags are present in the **transcript** of the video
- 79.11% of the tags are present in the **description** of the video
- 53.18% of the tags are present in the **title** of the video

Conclusions

- Developers use extractive tags more than abstractive tags to describe software development videos
- Tags extracted using BM25F are more informative than tags recommended by other approaches
- The most informative tags are obtained within the first five recommendations
- The transcript of the video is the major contributor towards the extraction of informative tags

User Comment Classification for Software Development Videos Using Neural Networks

Esteban Parra, Javier Escobar-Avila, Jordan Snow, Jordan Ott, Sonia Haiduc, Shayok Chakraborty, and Erik Linstead

SERENE

Florida State University & Chapman University

Use Comments

Often contain:

- Links to additional material
- Clarifications about the discussed concepts
- Solutions to errors that may occur in the tutorial
- Feedback

User comments are noisy

They contain a large number of irrelevant comments:

- Spam
- Insults
- Discussing unrelated topics

We aim to automatically identify the relevant comments

Dataset

 12 popular software development tutorials

• 6000 comments

Created by Poche et al.

Poche et. al. (2017) Analyzing User Comments on YouTube Coding Tutorial Videos. In: Proceedings of the 25th IEEE International Conference on Program Comprehension (ICPC'17), IEEE, Austin, TX, USA, pp 196{206

Automatic Classification Approaches

Traditional Classifiers

- •SVM
- Naïve Bayes

Neural Networks

- Feed Forward
- RNN
- CNN

Traditional Classifiers

SVM

 Separates two classes of samples by the maximal margin, in a high dimensional feature space

Naïve Bayes

 Linear probabilistic classier that uses Bayes' theorem to identify strong dependencies between features

Feature Schemes

Bag-of-Words (BoW)

- The features are the individual words of the text
- Represented by a worddocument matrix
- The normalized term frequency of each word in each document

Linguistic & Semantic (L&S)

- Measurable characteristics that distinguish irrelevant comments
 - Number of white spaces
 - Word duplication
 - Number of stopwords
 - Word similarity

Convolutional Neural Network (CNN)

1. Word embedding layer: Embeds words into lowdimensional vectors

- 2. Convolution layer with multiple filters and variable filter sizes
- 3. Max-overtime pooling layer
- 4. Fully connected layer with dropout and softmax output

Other NN architectures

Feed Forward (FF)

Composed of:

- A trainable embedding layer
- Five fully connected layers with dropout in between
- A single fully connected output layer

Recurrent Neural Network (RNN)

- LSTM architecture
- Composed of:
- A trainable embedding layer
- Two LSTM layers
- Two fully connected layers with dropout in between
- A single fully connected output layer

Research Questions

RQ1 - Do L&S features provide a better classification than BoW features when using SVM and NB?

RQ2 - How do deep learning approaches perform compared to the classification approaches used by the state of the art?

Evaluation metrics

Capacity to correctly identify relevant comments

$$Precision = \frac{correctly\ classified\ as\ relevant}{Total\ classified\ as\ relevant}$$

Ratio of correctly classified relevant comments from all the existing relevant comments

$$Recall = \frac{Comments\ classified\ as\ relevant}{Total\ relevant\ comments\ in\ the\ dataset}$$

Effectiveness of a classifier as a combination of precision and recall

$$FScore = 2 \cdot \frac{(Precision \cdot Recall)}{(Precision + Recall)}$$

Replication State-of-the-art

- We achieved the best performance by NB when using the unprocessed text, with an F-score of 0.78.
- Traditional classifiers are negatively impacted by the use of stopword removal and stemming.

Classifiers	Poché et al (2017)			Our replication		
	Precision	Recall	F-Score	Precision	Recall	F-Score
SVM(Unprocessed)	0.79	0.75	0.77	0.89	0.29	0.43
SVM(Stem)	0.77	0.73	0.75	0.83	0.19	0.31
SVM(Stop&Stem)	0.75	0.65	0.70	0.81	0.31	0.45
NB(Unprocessed)	0.63	0.71	0.67	0.75	0.82	0.78
NB(Stem)	0.62	0.76	0.68	0.75	0.72	0.74
NB(Stop&Stem)	0.62	0.73	0.67	0.74	0.71	0.72

Results RQ1 – Feature Schemes

The classifiers using linguistic and semantic features underperform classifiers that use BoW features on software development video comments

Approach	Precision	Recall	FScore
SVM (BoW)	0.89	0.29	0.43
NB (BoW)	0.75	0.82	0.78
SVM (L&S)	0.61	0.28	0.38
NB (L&S)	0.49	0.56	0.52

Results RQ2 – Neural Networks

The neural network architectures significantly outperform the state of the art classifiers across all the performance metrics

Approach	Precision	Recall	FScore
NB (BoW)	0.75	0.82	0.78
FF	0.88	0.89	0.88
LSTM	0.88	0.87	0.88
CNN	0.87	0.89	0.88

Conclusions

- Linguistic and semantic features do not perform well on comments for software development videos.
- All the Neural Network outperform traditional classifiers in terms of precision, recall and F-score.