The security of EPC Gen2 compliant RFID
protocols

Mike Burmester! and Breno de Medeiros?

! Department of Computer Science,
Florida State University, Tallahassee, FL 32306, USA
burmester@cs.fsu.edu
2 Information Security Consultant, Santa Clara, CA 95054, USA
breno@brenodemedeiros.com

Abstract. The increased functionality of EPC Classl Gen2 (EPCGen2)
is making this standard the de facto specification for inexpensive tags
in the RFID industry. EPCGen2 supports only very basic security tools
such as a 16-bit Pseudo-Random Number Generator and a 16-bit Cyclic
Redundancy Code. Recently two EPCGen2 compliant protocols that ad-
dress security issues were proposed in the literature. In this paper we
analyze these protocols and show that they are not secure and subject
to replay/impersonation and synchronization attacks. We then consider
the general issue of supporting security in EPCGen2 compliant proto-
cols and propose two RFID protocols that are secure within the restricted
constraints of this standard, and an anonymous RFID mutual authen-
tication protocol with forward secrecy that is compliant with the EPC
Class2 Gen2 standard.

Keywords: EPCGen2 compliance, security, anonymity, forward secrecy, un-
linkability.

1 Introduction

Radio Frequency Identification (RFID) is a promising new technology that is en-
visioned to replace barcodes and to be massively deployed for inventory manage-
ment, supply-chain logistics and retail operations. The advantage of RFID over
barcode technology is that it is wireless and does not require direct line-of-sight
reading. Furthermore, RFID readers can interrogate tags at greater distances,
much faster and concurrently. Perhaps one of the most important advantages
of RFID technology is that tags have read/write capability, allowing stored tag
information to be altered dynamically. A typical RFID system has three com-
ponents: tags, one or more readers, and a backend server. The communication
channel between the reader and the backend server is (usually) assumed to be
secure while the (wireless) channel between the reader and the tag is insecure.
To foster and promote the adoption of RFID technology and to support in-
teroperability, EPCGlobal [13] and the International Organization for Standards

(ISO) [16] have been actively engaged in defining standards for tags, readers,
and the communication protocols between them. A recently ratified standard is
EPC Class 1 Gen 2 (EPCGen2). This is a communication standard that creates
a platform on which to build interoperable RFID protocols. It supports efficient
tag reading, flexible bandwidth use, multiple read/write capabilities and ba-
sic security guarantees, provided by an on-chip 16-bit Pseudo-Random Number
Generator (RNG) and a 16-bit Cyclic Redundancy Code (CRC-16). EPCGen2
is designed to strike a balance between cost and functionality, with less atten-
tion paid to security which, arguably, at this stage in the development of RFID
technology may be justified.

In this paper we are concerned with the security of EPCGen2 compliant pro-
tocols. We recognize that there are situations in which one has to design security
into systems with restricted capability so as to promote low-cost widespread use.
In such situations it is important to employ protocols that offer the best level
of security within the constraints of the specification. Several RFID authen-
tication protocols that address security issues using lightweight cryptographic
mechanisms have been proposed in the literature. Most of these use hash func-
tions [21,20,25,15,1,3,11] and [23,12,19], which are beyond the capability of
most low-cost tags and are not supported by EPCGen2. Some protocols use
pseudo-random number generators [25,17,5,4,24], a mechanism that is sup-
ported by EPCGen2, but these are not optimized for EPCGen2 compliance.
Other protocols use timestamps (e.g. [23]), however these are also not supported
by EPCGen2.

The research literature for RFID security is already quite extensive and grow-
ing. We refrain from a comprehensive review of the literature, and refer the
interested reader to a fairly comprehensive repository available online at [2]. Re-
cently two RFID authentication protocols specifically designed for compliance
with EPCGen2 have been proposed [10,9]. These combine the CRC-16 of the
EPCGen2 standard with its 16-bit RNG to hash, randomize and link proto-
col flows, and to prevent cloning, impersonation and denial of service attacks.
In this paper we analyze these protocols and show that they do not achieve
their security goals. One may argue that, because the security of EPCGen2 is
set to only 16-bits, any RFID protocol is potentially vulnerable, for example
to ciphertext-only attacks that exhaust the 16-bit range of the components of
protocol flows. While this is certainly the case, such attacks may be checked by
using additional keying material and by constraining the application (e.g., the
life-time of tags). We contend that there is scope for securing low cost devices.
Obviously, the level of security may not be sufficient for sensitive applications.
However there are many low cost applications where there is no alternative.

The rest of this paper is organized as follows. Section 2 introduces the EPC-
Gen2 standard focusing on security issues. Section 3 analyzes two recently pro-
posed EPCGen2 protocols. Section 4 describes two “trivial” RFID protocols
whose security is reduced to the security constraints of EPCGen2, and an anony-
mous RFID protocol that complies with the EPC Class 2 Gen2 standard. Sec-
tion 5 considers an extension that captures a kill functionality.

2 The EPCGen2 standard

The EPC Class 1 Generation 2 UHF Air Interface Protocol [13] specifies the
operation and functionality of passive RFIDs. It defines the physical and logi-
cal requirements for interrogator-talks-first systems that operate in the 860-960
MHz frequency range. Readers (interrogators) transmit information to tags by
modulating an RF signal. Tags receive both transmitted information and operat-
ing energy from the RF signal. The readers receive information from the tags by
transmitting a continuous-wave RF signal, which the tags modulate (backscat-
ter). EPCGen2 deals with the medium access control layer (air interface) and
the tag identification layer (physical interactions) of RFID systems. These lay-
ers involve RF signaling, managing tag populations, tag singulation (identifying
individual tags), collision arbitration (resolving collisions in multi-tag environ-
ments), and conformance requirements. A particular attractive feature of EPC-
Gen?2 is that it provides for high-speed reading and sortation. The following
minimal on-chip tag persistent memory (non-volatile) features are specified:

— Reserved memory that contains a 32-bit kill password (KP) to permanently
disable the tag and a 32-bit access password (AP).

— EPC memory that contains: the parameters of a cyclic redundancy code
CRC-16 (16 bits), protocol control (PC) bits (16 bits), and an electronic
product code EPC that identifies the object to which the tag is (or will be)
attached (at least 32 bits).

— TID memory that contains sufficient information to identify to a reader the
(custom/optional) features that a tag supports and tag/vendor specific data.

— User memory that allows user-specific data storage.

EPCGen2 also provides for optional user memory and password-protected ac-
cess control. Two basic mechanisms to protect the tag < reader channels are
supported:

— A 16-bit Pseudo-Random Number Generator and,
— A 16-bit Cyclic Redundancy Code.

2.1 The Pseudo-Random Number Generator

A pseudo-random number generator (RNG) is a deterministic function that on
input a random binary string, called seed, outputs a sequence of numbers that
are indistinguishable from random numbers. RNGs are constructed from pseudo-
random bit generators (RBGs). A RBG stretches a random seed of length & to a
pseudo-random binary string of length ¢ > k. This string can be partitioned into
blocks of length m to get an m-bit RNG. The length of the random seed must be
selected carefully to guarantee that the numbers generated are pseudo-random.

Each number generated by a RNG is said to be drawn by the generator.
If the numbers drawn by a RNG (or the bits drawn by a RBG) cannot be
predicted given the outcomes of prior draws, then the RNG (RBG) is said to be
cryptographically secure.

EPCGen2 does not detail the structure of the implemented 16-bit RNG;
however it does specify the minimum security levels that should be supported:

1. Probability of RN16: The probability that a pseudo-random number
RN16 drawn from the RNG has value r is bounded by:

0.8/2' < Prob(RN16 = r) < 1.25/2'F.

2. Drawing identical sequences: For a tag population of up to 10,000 tags,
the probability that any two or more tags simultaneously draw the same
sequence of RN16s is < 0.1%, regardless of when the tags are energized.

3. Next-number prediction: A RN16 drawn from a tag’s RNG is not pre-
dictable with probability better than 0.025%, given the outcomes of all prior
draws.

Strength of EPCGen2 Compliant RNGs. The strength of a cryptographic
RNG is usually expressed in terms of the average maximum length of the se-
quences of drawn numbers that are indistinguishable from random sequences.
With this in mind, we interpret the requirements above as imposing minimal
security requirements on the RNGs specified by EPCGen2:

1. The first “randomness” requirement implies that the value of a drawn num-
ber cannot be too biased. This requirement, while certainly satisfied by cryp-
tographically secure RNGs, is actually too weak by itself to imply much in
the way of pseudo-randomness. For instance, a simple counter that incre-
ments from 0 to 2'6 — 1 and then cycles back satisfies this condition.

2. The second “collision” requirement needs a detailed examination. A well
known approximation for the collision problem is n = 4/2dIn(1/(1 — p))
[22,18], where n is the number of integers drawn randomly with uniform
distribution, d the size of the range of the integers, and p the probability
that at least two integers have the same value. From this approximation we
see that when n is close to v/d then the probability of collision is greater
than 50%. When p = 0.1% and n = 10,000 we get that d is approximately
236, That implies that observing two successive numbers (36-bits) drawn
from the RNG of two or more tags still guarantees a fairly unbiased (and
random-looking) sequence, at least as far as collisions are concerned.

3. The third EPC requirement for the next-number prediction also needs ex-
amination. Let RBG be the pseudo-random bit generator that defines the
RNG. For the cryptographic security of RBG, the next-bit prediction should
be p = 0.5 + ¢, € negligible. This expression can be used to compute the
next-number prediction. Let By be the bit-sequence of prior numbers. The
prediction for the next 16-bit number is:

i=15
P = H Prob (b¢+1|B0b0 e bi) = p16 = (05 + 8)16,
=0

where by1,...b;,b;11, ..., are the bits drawn by the RBG after By. EPCGen2
bounds P by 0.025%. Taking (0.5 +)¢ < 0.025% we see that ¢ is bounded
0.094. This is not sufficiently small to provide cryptographic security for the
16-bit RNG, and suggests that the 0.025% bound should be lowered at least
one order.

In conclusion, in particular with respect to Condition 2, a reasonably con-
servative assumption is that the standard for EPCGen2 guarantees the pseudo-
randomness of at least two RN16s (32-bits), and probably more, before there is
a need to re-seed the key. If Condition 3 were to be interpreted in the absence
of restraints on the number of prior draws, then at least 3-4 RN16s (48-64-bits)
drawn from the RNG should be indistinguishable from pseudo-random.

2.2 The 16-bit Cyclic Redundancy Code

CRCs are error-detecting codes that check accidental (non-malicious) errors
caused by faults during transmission. In EPCGen2, a CRC-16 is used to pro-
tect the information transmitted by both readers and tags. The CRC-16 al-
gorithm maps arbitrary length inputs onto 16-bit outputs as follows: an n-bit
input p is first replaced by a binary polynomial p(z) of degree n — 1, and then
reduced modulo a specific polynomial g(x) of degree 16 to a polynomial re-
mainder r(z) : p(x) = q(x)g(z) + r(x). The remainder has degree less than 16
and corresponds to a 16-bit number. For EPCGen2, the polynomial g(z) is the
irreducible polynomial: !¢ 4+ 22 + 2% 4+ 1 (over the finite field GF(2) of two
elements). CRC-16 will detect burst errors of 16-bits or less, any odd number of
errors less than 16, and error patterns of length 2 [13].

CRCs by themselves are not suitable for protecting against intentional (ma-
licious) alteration of data. They do not provide the one-wayness required by
message digest codes: they are linear codes whose one-wayness is comparable to
XOr-sums.

3 Weaknesses of currently proposed EPCGen2 compliant
RFID protocols

In this section we consider two recently proposed EPCGen2 compliant protocols:
the Duc-Park-Lee-Kim protocol [10] and the Chien-Chen protocol [9]. The first
protocol is designed to support untraceability and uncloneability; the second to
support the same security features, but also to provide forward secrecy. We shall
show that both protocols fall short of their claimed security.

In the protocols below we use the following notation: S is the backend server,
R the reader, 7 the tag. We assume that S and R are linked with a secure
channel, and for simplicity, only consider the case when the authentication is
online.

3.1 The Duc-Park-Lee-Kim RFID protocol and its weaknesses

In this protocol [10] each tag 7 shares two values with the backend server S:
a 32-bit key and a 16-bit key. The tag stores these in its non-volatile memory
and the server S stores them in a database DB. The 16-bit key is initialized
K «— K;p;t and updated with each successful authentication of the tag by the
server. The 32-bit key is assigned the tag’s EPC. The protocol has four passes.

1. R — 7: a query request.

2. T - R — S: a random 16-bit nonce r, My = CRC(EPC||r) ® K, and
C =CRC(r @ M).
S checks C and that: M; @ K = CRC(EPC]|r) for some (K, EPC) in DB.
If the checksum fails or if it cannot find a match then it rejects 7.
S computes My = CRC(EPC||AP||r) @ K and updates the key K of 7 in
DB: K — RNG(K).

3. § — R: Ms, and details that identify the object to which the tag is attached,
depending on the reader’s privileges.

4. R — T: Ms, “end session”.
T checks that: My® K = CRC(EPC||AP||r). If this is valid then it updates
the key K: K «— RNG(K).

This protocol is subject to a synchronization attack as observed by Chien-
Chen in [9]: if the adversary prevents the tag in Pass 4 from receiving an “end
session” instruction, the tag will not update its key while the server will have
updated the corresponding key in DB. Consequently the server will not be syn-
chronized with the tag and any future attempts by the tag to get authenticated
will fail. However there is another important weakness, caused by the linearity
of CRC-16. The adversary can easily forge the response (r', M1, C") of a tag T
in any session by simply using an earlier response (r, M7, C) obtained by inter-
rogating 7 (as a rogue reader) or eavesdropping. Indeed let:

1. 7' be a random 16-bit number.

2. A=CRC(00||r®r') and B=CRC(A®rar).

3. M{ =M, ¢ A= |[CRC(EPC||r)® K| & CRC(00||r & 1’)
= CRC(EPC||r")® K.

4. C'=C®B=CRC(M;er)®CRC(A®dr&r')=CRCM1o A
= CRC(Mj&r").

Clearly (r', M;,C") is valid for any query request, and so the adversary will
succeed in impersonating the tag 7.

3.2 The Chien-Chen RFID protocol and its weaknesses

This protocol [9] is an extension of the Duc-Park-Lee-Kim protocol, designed to
address its weaknesses, as well as to offer forward secrecy. Each tag 7 stores three
values in non volatile memory: a 32-bit EPC, a 16-bit key K and a 16-bit access
key P. For each tag the backend server S stores six values in a database D B: the

tag’s EPC, two 16-bit keys Koq, Kpew , two 16-bit access keys Pyiq, Ppew and
DATA. The values of the key K and the access key P that the tag stores and
the corresponding values of the keys K1q, Knew and Poyg, Pphew that the server
stores are updated with each successful tag authentication so as to preserve
synchronization. The protocol is described below.

1. R — 7: a random nonce Nj.
2. T - R — S: a random nonce No, and M; = CRC(EPC||N1||N2) @ K.
S checks that M; = CRC(EPC||N1||N2) @ K; for some (K;, EPC), j €
{new,old}, in DB.
If S cannot find a match then it rejects 7 and sends a “failure” message to
R.
Else it updates the keys of 7: Kpq «— Kpew — RNG(Kpew), Poia —
Prew < RNG(Ppew) in DB, and computes My = CRC(EPC||N2) @ P},
j € {new, old}, using the j-value in M.
. 8§ = R: My and DAT A, with product information.
4. R - T: Ms.
T checks that My = CRC(EPC||N2) & P.
If this is valid it updates its keys: K «— RNG(K), P «— RNG(P).

w

There are several weaknesses with this protocol. One weakness concerns the
synchronization of keys in Pass 4: the protocol does not protect tags against re-
peated synchronization attacks. Indeed, the first time the adversary prevents the
tag from getting its confirmation in Pass 4, the tag will not update (K, P), while
the server will have updated the corresponding values of the tag in DB: K «—
Knew; Knew «— BRNG(Kpew) and Pojg < Prew, Prew «— RNG(Phew). Then, if
the value of (K, P) stored by the tag prior to the attack was (Kpew, Prew), after
the attack it will be (K4, Poia). Suppose the attack is repeated. The server will
accept the tag’s response in Pass 2 because the tag uses the value (K4, Poia) in
DB. But this will be discarded by the server when it updates its keys. However
the tag will not update its keys in Pass 4 if it is prevented from getting a confir-
mation Ms. It follows that the adversary will succeed in desynchronizing the tag
after the second attempt. Desynchronization will also result from two successive
reading failures by a tag.

This protocol shares the weakness of the Duc-Park-Lee-Kim protocol re-
sulting from the linearity of CRC-16. In this case, the adversary can forge a
response N4, M| to any challenge Ni of the server by using an earlier proto-
col flow (N7; No, M7) obtained by interrogating the tag (as a rogue reader) or
eavesdropping. Indeed, let:

1. N/ be a random nonce.

2. Bl :N{@Nl and Bg :Né@Ng.

3. A= CRC(00||By||B2).

4. M{ =M, ® A= [CRC(EPC||N1||N2) @ K] & [CRC(00||B1||Bz2)]
= CRC(EPC||N{||N}) @ K.

Then NJ, M is a valid response to the challenge Nj.

4 Secure EPCGen2 protocols

We next consider three “trivial” RFID authentication protocols (TRAPs) that
comply with EPCGen2, and whose security is reduced to the minimum levels of
statistical behavior of RNGs guaranteed by this standard.

The first protocol TRAP-0, is a toy example to illustrate that the RNG of
EPCGen2 cannot be used to securely link protocol flows. We then show how
to modify the RNG so that we get security. This will give us TRAP-1. The
next protocol, TRAP-2, is an extension that provides anonymity, but not for-
ward secrecy. The last protocol, TRAP-3, supports strong privacy (with forward
secrecy).

4.1 A trivial RFID protocol that is EPCGen2 compliant

This protocol uses the 16-bit RNG supported by EPCGen2, seeded with a 16-bit
key K. For each tag 7 with identifier ¢d(7), the server S stores in a database
DB an entry of the form: < id(7), K >, used to identify the tag. We assume that
the server S and the reader R are linked by a secure (private and authenticated)
channel.

TRAP-0

1. §=R — T : A 16-bit random nonce N.
T computes L = K @ N and draws M from RNG(L).
2. T >R=38: id(T), M.
S computes L' = K @ N, where K is the key of ¢d(7), and draws M’ from
RNG(L).
If M’ = M then the tag 7 is authentic. Else it is rejected.
3. §= R : “end session”.

4.2 Analysis of TRAP-0

The security of TRAP-0 is based on the statistical behavior of the RNG of
EPCGen2 as specified by the three EPCGen2 constraints in Section 2.1. TRAP-0
has two major weaknesses that result from the fact that a 16-bit RNG is used as a
security tool to link the challenge-response flows of a protocol instance. The first
concerns ezhaustive-key attacks: since RNGs are deterministic, an exhaustive
search on all possible 2!¢ key (seed) values can be used to determine the key
(alternatively, a pre-computed table of RNG entries can be used). One way to
prevent such attacks is to use additional keying material (we shall do this in
Section 4.4).

A second weakness concerns related-key attacks: EPCGen2 does not specify
any protection of its RNGs against attacks in which the adversary exploits values
drawn from RNGs whose keys are related. We next discuss these attacks, and
consider an approach that may be used to deal with them.

The related-key problem

— Search problem. Given RNG(K & N;), N;, i = 1,...,t and N # N;: find
RNG(K®N).

— Decision problem. Given RNG(K®N,), N;; i =1,...,t and N, X # N;: is
X =RNG(K@®N)?

Clearly if the adversary can compute RNG(K @ N) for a fresh nonce N, given a
history of RNG(K®N;), N;,i=1,...,t, obtained by eavesdropping on protocol
flows, then the adversary can forge a session with challenge N. Although we have
not as yet presented an anonymous TRAP (we shall do this in Section 4.5), if
values drawn from a RNG are used as pseudonyms, then the adversary will be
able to disambiguate tags if it can solve the related-key decision problem. The
related-key problem described above is for passive attacks. In an active attack,
the adversary can select the numbers N;, i = 1,...,¢, adaptively (but not N or
X). Protecting protocols against adaptive attacks is usually much harder.

There are several ways to deal with such attacks. The solution we consider
here involves modifying the 16-bit EPCGen2 RNG so that it is hard to link its
inputs and outputs.

4.3 Constructing a PRF family from a RNG

We briefly describe a construction, due to Goldreich-Goldwasser-Micali [14]. Let
G be an n-bit RNG and K an n-bit number. Denote by Go(K) the first n-bit
number output by G and G1(K) the next n-bit number. Let X = X1, Xo, ..., X4,
t > n, be a t-bit number and Gx (K) = Gx,(Z;—1), where

Zi1 = (Gx, oy (- (Gx, (G (K))))

Define the function fr : {0,1}* — {0,1}" by fx(X) = Gx(K). It is shown
in [14] that the family F, = {fx }|x|=n is a pseudo-random function (PRF).

In our TRAP protocols we shall use fx(X) as a RNG: since F,, is a PRF,
fr(X) is secure against attacks that exploit correlated values of X. The first
number drawn from fx (X) will be Gx (K). If a second number has to be drawn
then, in the last step of the construction above we take either the second or the
third n-bit number output by G(Z;_1), depending on whether X; = 0 or X; = 1;
for the t-th draw, we take either the ¢-th output number or the (¢ + 1)-th output
number of G(Z;_1).

4.4 TRAP-1: a trivial EPCGen2 RFID protocol

To deal with exhaustive key attacks and related-key attacks on TRAP-0 we
use two 16-bit numbers Ko, K7 as key, and evaluate fx, (K1 @ -) on 16-bit
number inputs. In particular, for the 16-bit number N, we draw numbers from
fro (K1 @ N) instead of fx(N). Observe that if N and L = fg, (K1 & N) are
given, then there are roughly 2'° pairs (Kj, K1) for which L = fg;(K{ @ N),
each one being equally likely to be (Kg, K1). The search range is narrowed as

more values (N;, L;) become available: to prevent attacks in which partial infor-
mation about the seed may be leaked, the tag’s key (Ko, K1) may be updated
during the execution of the protocol. We shall do this in our last TRAP protocol
(Section 4.7). Finally note that since the value fx, (K1 @ N) is the output of an
EPCGen2 RNG, it is subject to the minimal security requirements of EPCGen2
given in Section 2.

TRAP-1

1. § =R — T7: A 16-bit random nonce .
7T computes L = K1 @ N, and draws a 16-bit number M from fg,(L).
2T ->R=84dT), M.
S computes L' = K1 ® N, where K = Ky||K; is the key of id(7), and draws
M’ from fg,(L").
If M’ = M then the tag 7 is authentic. Else it is rejected.
3. § = R : Details of T (obtained from T'ID), “end session”.

Security is based on the fact that fx, (K1 @ -) is a PRF, since it is generated by
a RNG. The numbers drawn from fx, (K1 @ N) are 16-bit numbers drawn from
an EPCGen2 RNG, pseudo-randomly rearranged to thwart related-key attacks.
These numbers are bound by the EPC constraints in Section 2.1. Consequently
we have:

1. Robustness against passive attacks. Suppose that the adversary obtains the
values of authenticators M of one or more tags for several sessions. Since
these are drawn using independent seeds, the probability of predicting the
next authenticator is bounded by the EPCGen2 probability of drawing a
number from a RNG.

2. Robustness against active attacks. Since the tag’s response is linked to the
reader’s challenge, a replay attack will fail. Furthermore, since the numbers
M generated by a tag 7 are drawn from its RNG (with key K), by the next-
number EPCGen2 prediction requirement, the adversary cannot predict their
value with probability better than 0.025%.

The security of the TRAP protocols is discussed in a more formal setting in
Section 4.6 and the Appendix.

4.5 TRAP-2: a trivial anonymous EPCGen2 RFID protocol

Our next protocol, TRAP-2, extends TRAP-1 to capture anonymity. For this
protocol each tag 7 stores two numbers, a 16-bit pseudonym P and a 32-bit key
K = Ky||K1; the server S stores in a database DB for each tag an entry of the
form: < 4d(7T), K >. Initially P and K are assigned random values.

TRAP-2

1. §=R — 7: A 16-bit random nonce N.
T computes L = (K1 & P)||N and draws two 16-bit numbers M, M; from
fKo (L)

2.7T—-R=S8: P, M.
7T updates P «— M;.
S computes L' = (K7 @ P)||N and draws M’ from fk,(L') for every key
K = Ky||K; in DB. If there is a match M’ = M then tag 7 is authentic.
Else it is rejected.

3. § = R: Details regarding tag 7, and “end session”.

TRAP-2 is a simple extension of TRAP-1. Anonymity is assured because the
pseudonyms P are pseudo-random, and because they are updated after each
interrogation (by authorized or rogue readers). We shall discuss in more detail
the security of this, and the other TRAP protocols, in the following section.

4.6 The security of EPCGen2 compliant protocols

EPCGen2 is a standard for Class 1 tags that have restricted memory (particu-
larly non-volatile) and circuit footprint. It provides for high speed reading and
sortation of tags. This standard focuses on reliability and efficiency and will
only support a very basic level of security, provided by a 16-bit RNG. In our
first two protocols, TRAP-1 and TRAP-2 we have used this RNG to secure
protocol flows: we added an extra 16-bits of keying material to make it harder
to invert the RNG and to prevent related-key attacks. Obviously this will af-
fect the efficiency of the interrogating process: identification will take longer and
may lead to reading failures. Also the additional non-volatile memory means
that the TRAP protocols can only be used with tags that are at the top end of
the EPCGen2 standard.

The EPC Air Interface Protocol [13] covers a wide range of tag types. The
Class 1 tags we shall consider in this paper are the most basic passive tags.
Class 2 tags are covered by the same specifications, but are allowed to have
additional memory. In the last part of this section we consider TRAP-3, a Class 2
mutual authentication RFID protocol that supports strong privacy (with forward
secrecy). For this protocol we require that each tag has a 48-bit key, and use a
32-bit RNG. We shall assume the same minimum security level of EPCGen2 as
specified in Section 2.1, extended to allow for 32-bit RNGs.

Our TRAP protocols are based on the protocols O-TRAP [5] and O-FRAP [24])
that are secure in the Universal Composability (UC) framework [6-8]. The main
feature of these protocols is that their protocol flows are pseudo-random. In the
Appendix we describe O-TRAP and show how to adapt it to get a security proof
for TRAP-2 in the UC framework, provided a sufficiently large seed for the RNG
is used, so as to prevent the adversary from distinguishing its output from ran-
dom numbers. Similarly, the security proof of O-FRAP can be adapted to get a
proof for TRAP-3.

4.7 An EPC Class2 Gen2 compliant protocol that supports strong
privacy

Our last protocol is a mutual authentication protocol. This protocol uses a 32-
bit RNG and 48-bit keys, to support security. For reliability the transmitted
messages are (only) 16-bit numbers. Each tag 7 stores a 16-bit number P and
a 48-bit key K = Ky|| K1, where K is 32-bits long. The server S stores for each
tag 7 in a database DB an entry with two 48-bit keys K°'¢ K" that is:

< id(T), K", K >

Initially P is assigned a random value, K°“", K are assigned the same random
value, and K° is null.

TRAP-3

1. §=R — T7: A 16-bit random nonce N.
T computes L = (K7 @ P)||N, draws three 32-bit numbers M, Ma, M3 from
fKo (L), parses M1 = M10||M11 and M3 = M30||M31 into 16-bit numbers,
and sets M «— Mjig.

2. T >R=S: P, M.
7T updates P «— M.
S computes L' = (K1®P)||N and draws M1, M}, M} from fx,(L'), for every
K7, j € {old, cur} in DB, parses M| = M{,||M{, and M} = M},||M},, and
sets @ «— M.
If for some K7 in DB there is a match Mj, = M, then 7 is authentic: for
j = cur it updates K{!¢ « K K¢« M) ||Mj; for j = old it updates
Keur e My||M;,
Else 7 is rejected.

3. §=R: Q, details regarding the tag, “end session”.

4. R—-T: Q.
T checks that Q = Mag; if so, it updates K «— Mo || Ms.

The security of TRAP-3. TRAP-3 extends TRAP-2 to capture forward se-
crecy. To prove forward secrecy we need to show that the adversary cannot (a)
desynchronize the updating process of the key K of a tag 7 and, (b) link a tag
whose key is compromised to earlier protocol flows (obtained by eavesdropping).
For (a) there are two cases to consider. If the adversary is passive then the
value of the key K of 7 is the same as the value K" stored in DB for 7. If
the adversary is active and prevents 7 from receiving the confirmation @, or if
a rogue reader interrogates 7, then the value of K is K°% —even if such attacks
are repeated. For (b) observe that if a tag’s key K is compromised then the
earlier flows [N; P, M; Q] cannot be linked because they are pseudo-random.
Observe that this protocol is optimistic [24]: if the server stores the values
P for each tag 7, then these can be used to disambiguate the tag 7 when the
adversary is passive (an eavesdropper) or inactive. Finally, as with the protocols
O-TRAP and O-FRAP [5,24], a compromised tag can be traced back to its last

completed interrogation with an authorized reader, since it will not update its
key K until it receives a (valid) confirmation Q.

5 Adding a kill functionality

Our TRAP protocols can be extended to include a kill feature for tags. In this
section we show how this is done for TRAP-2. Observe that to disable a particular
tag, the server must first authenticate that tag.

5.1 TRAP-2*: a TRAP with kill functionality

EPCGen2 specifies four states that tags may implement: open, ready, secure and
killed. Open is the initial state; ready is a holding state until the tag receives the
next message from the reader; secure is a state into which a tag transitions on
receiving an authenticator from the reader; killed is a state into which a secured
tag transitions on receiving a kill mandate. A killed tag will not respond to any
challenge, and cannot be resurrected.

In TRAP-2* each tag 7T stores a 16-bit number P and a 32-bit key K =
Ky||K1, as in TRAP-2, but also stores an additional 32-bit kill-key K P. The
server S stores in a database DB, for each tag 7, an entry of the form:

<1d(7T),K,KP, EPC, state_tag, kill_mandate >,

where state_tag specifies the state of the tag and kill_mandate is either null or kill.
Initially K and P are assigned random values, state_tag is open and kill_mandate
is null.

TRAP-2*

1. =R — T7: A 16-bit random nonce N.
T updates its state to ready, computes L = (K; @ P)||N and draws two
16-bit numbers M, M; from fg,(L).

2.7T -R=S8: P, M.
7 updates P «— M;.
S computes L' = (K; @ P)||N and draws two numbers M’, M from fg,(L’)
for every key K in DB.
If there is a match M’ = M then 7T is authentic: S updates 7’s state_tag in
DB to secure. Else the tag is rejected.
If the value of kill_mandate of a secure tag 7T is kill, then the server S parses
KP = KPy||KP; into 16-bit numbers and draws a 16-bit number @ from
frp, (KPL® P)||N).

3. If the value of kill_mandate of a secure tag 7 in DB is null then:
S = R: Details regarding the tag, and “end session”.

4. If the value of kill_mandate of a secure tag 7 in DB is kill then:
S=TR: @, and “end session”.
R—-T: Q.

T: If the value of state_tag is ready then T parses KP = KPy||KP; and
draws a number Q' from fxp,((KP; @ P)||N).
If Q' = Q then 7T transitions to a killed state.

5.2 Security analysis of TRAP-2*

We only discuss the security of the kill functionality. As noted earlier, non-
corrupted tags that receive a kill mandate will always assume a killed state.
However a tag may be prevented from receiving the kill mandate () by the
adversary. In such cases even though the value of state_tag in the database DB
is killed, the tag is not killed. However the tag is, for all practical purposes,
disabled: each time it attempts to get identified by an authorized reader, it will
only receive a kill mandate.

Concluding remarks

The EPCGen2 standard for Class 1 tags focuses on reliability and efficiency and
supports only a very basic security level. Designing EPCGen2 compliant RFID
protocols that are secure is particularly challenging because the only security
tool that is available in this standard is a 16-bit RNG.

In this paper we have shown that two recently proposed EPCGen2 compliant
RFID protocols fail to provide adequate security and are subject to imperson-
ation attacks and synchronization attacks. We proposed two basic RFID authen-
tication protocols, TRAP-1 and TRAP-2 that are EPCGen2 compliant, whose
security is reduced to the minimal security levels supported by this standard,
and have shown how to add a kill functionality. Finally we proposed a mutual
authentication RFID protocol that provides strong anonymity and that complies
with the EPC Class2 Gen2 standard.

Acknowledgement

The authors thank the anonymous reviewers for helpful comments and sugges-
tions.

References

1. ATENIESE, G., CAMENISCH, J., AND DE MEDEIROS, B. Untraceable RFID tags via
insubvertible encryption. In Proc. ACM Conf. on Computer and Communication
Security (ACM CCS 2005) (2005), ACM Press, 92-101.

2. AVOINE, G. http://lasecwww.epfl.ch/ gavoine/rfid/.

3. AVOINE, G., AND OECHSLIN, P. A scalable and provably secure hash based RFID
protocol. In Proc. IEEE International Workshop on Pervasive Computing and Com-
munication Security (PerSec 2005) (2005), IEEE Computer Society Press.

4. BURMESTER, M., DE MEDEIROS, B., AND MOTTA, R. Robust, Anonymous RFID
Authentication with Constant Key-Lookup. In Proc. ACM Symposium on Informa-
tion, Computer and Communication Security (ASIACCS’08), (2008), ACM Press,
283-291.

5. BURMESTER, M., VAN LE, T., AND DE MEDEIROS, B. Provably secure ubiquitous
systems: Universally composable RFID authentication protocols. In Proceedings
of the 2nd IEEE/CreateNet International Conference on Security and Privacy in
Communication Networks (SECURECOMM 2006) (2006), IEEE Press.

6. CANETTI, R. Studies in Secure Multiparty Computation and Application. PhD
thesis, Weizmann Institute of Science, Rehovot 76100, Israel, June 1995.

7. CANETTI, R. Security and composition of multi-party cryptographic protocols.
Journal of Cryptology 13:1 (2000), 143-202.

8. CANETTI, R. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. IEEE Symp. on Foundations of Computer Science (FOCS 2001)
(2001), IEEE Press, 136-145.

9. CHIEN, H.-Y., AND CHEN, C.-H. Mutual authentication protocol for rfid conforming
to EPC class 1 generation 2 standards. Comput. Stand. Interfaces 29, 2 (2007), 254—
259.

10. DANG NGUYEN Duc, JAEMIN PARk, H. L., AND KiM, K. In Enhancing Security
of EPCyglobal Gen-2 RFID Tag against Traceability and Cloning (2006), Symposium
on Cryptography and Information Security, SCIS 2006.

11. DimvitrIoU, T. A lightweight RFID protocol to protect against traceability and
cloning attacks. In Proc. IEEFE Intern. Conf. on Security and Privacy in Commu-
nication Networks (SECURECOMM 2005) (2005), IEEE Press.

12. DimviTRrIOU, T. A secure and efficient RFID protocol that can make big brother
obsolete. In Proc. Intern. Conf. on Pervasive Computing and Communications,
(PerCom 2006) (2006), IEEE Press.

13. EPC GrLoBAL. EPC Tag Data Standards, vs. 1.3.
http://www.epcglobalinc.org/standards/EP Cglobal_Tag_Data_Standard TDS_
Version_1.3.pdf

14. GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. How to construct pseudoran-
dom functions. Journal of the ACM 33, 4 (1986).

15. HENRICI, D., AND MULLER, P. M. Hash-based enhancement of location privacy for
radio-frequency identification devices using varying identifiers. Proc. IEEE Intern.
Conf. on Pervasive Computing and Communications (2004), 149-153.

16. ISO/IEC. Standard # 18000 — RFID Air Interface Standard.
http://www.hightechaid.com/standards/18000.htm

17. JUeLs, A. Minimalist cryptography for low-cost RFID tags. In Proc. Intern. Conf.
on Security in Communication Networks (SCN 2004) (2004), vol. 3352 of LNCS,
Springer, 149-164.

18. MENEZES, A., VAN OORSCHOT, P., AND VANSTONE, S. Handbook of Applied Cryp-
tography. CRC Press, 1996.

19. MOLNAR, D., SOPPERA, A., AND WAGNER, D. A scalable, delegatable pseudonym
protocol enabling ownership transfer of RFID tags. In Proc. Workshop on Selected
Areas in Cryptography (SAC 2005) (2006), vol. 3897 of LNCS, Springer.

20. OHKUBO, M., Suzuki, K., AND KiNOsHITA, S. Cryptographic approach to
“privacy-friendly” tags. In Proc. RFID Privacy Workshop (2003).

21. SHARMA, S. E., WEIss, S. A., AND ENGELS, D. W. RFID systems and security
and privacy implications. In Proc. of the Workshop on Cryptographic Hardware and
Embedded Systems (CHES 20002) (2003), vol. 2523 of LNCS, Springer, 454-469.

22. STINSON, D. Cryptography Theory and Practice, Second Edition. CRC Press, Inc.,
Boca Raton, 2002.

23. Tsubpik, G. YA-TRAP: Yet another trivial RFID authentication protocol. In Proc.
IEEEFE Intern. Conf. on Pervasive Computing and Communications (PerCom 2006)
(2006), IEEE Press.

24. VAN LE, T., BURMESTER, M., AND DE MEDEIROS, B. Universally composable and
forward-secure RFID authentication and authenticated key exchange. In Proc. of the
ACM Symp. on Information, Computer, and Communications Security (ASIACCS
2007) (2007), ACM Press, 242-252.

25. WEIS, S., SARMA, S., RIVEST, R., AND ENGELS, D. Security and privacy aspects
of low-cost radio frequency identification systems. In Proc. Intern. Conf. on Security
in Pervasive Computing (SPC 2003) (2003), vol. 2802 of LNCS, Springer, 454-469.

Appendix: The security of TRAP-2

We first describe the protocol O-TRAP [5] and show the modifications needed
to get TRAP-2. We then state our main result and briefly discuss the security
framework.

In O-TRAP, each tag 7 stores two n-bit numbers: a pseudonym P and a
key K, where n is the security parameter. The server S has two databases,
DB and DB’: for each tag 7, the server S stores in DB an entry of the form
< id(T),K >, and in DB’ and entry of the form < d(7),P,K >. DB is
indexed by the (authorized) keys K while DB’ is indexed by the pseudonyms
P. Initially P and K are assigned random values. Let Hg (+) be a hash function
with pseudorandom values.

O-TRAP

1. § =R — 7: An n-bit random number N.
T computes M = Hg(N||P).
2.T—->R=S8: P, M.
7T updates P «— M.
S accepts the tag 7 as authentic if:
either there exists an entry (¢d(7), P, K) € DB’ with M = Hg (Rgys||P),
or there exists an entry (id(7), K) € DB with M = Hg (Rgys||P).
Else the tag is rejected.

We have:

Theorem 1. [5] O-TRAP guarantees availability, anonymity, and authentica-
tion in the Universal Composability (UC) framework [6-8] provided the keyed
hash function is chosen from a pseudo-random function family {Hr ()} K|=n-

A key feature of this protocol is that it is optimistic, that is its security
overhead is minimal when the adversary is passive (an eavesdropper) or inac-
tive, since in this case the server S needs to do only one key-lookup in DB’
to find the pseudonym of 7 and then authenticate the tag (we have constant
key-lookup [4]). TRAP-2 is not optimistic, however in all other respects is very

similar to O-TRAP. For both protocols the pseudonyms P and authenticators
M are pseudo-random. In TRAP-2, M is drawn from fg, (K1 @ P||N), whereas
in O-TRAP it is Hx(P||N). Consequently M is a pseudo-random number de-
termined by: the key K, the pseudonym P, and the challenge P. It follows that
one can use the same steps as in the security proof for O-TRAP to get a proof
for TRAP-2. We need however to make certain that fx,(K1 @ -||-) is a PRF,
which in our case is guaranteed if the length of the seed is sufficiently long to
prevent the adversary from distinguishing its output from random numbers.

The UC-framework. UC security is based on notions of interactive indistin-
guishability of real from ideal protocol executions. This requires:

1. A mathematical model of real protocol executions, where honest parties are
represented by probabilistic polynomial-time Turing machines that correctly
execute the protocol as specified, and adversarial parties that can deviate
from the protocol in an arbitrary way. The adversarial parties are controlled
by a single (PPT) adversary A that (1) has full knowledge of the state of
adversarial parties, (2) can arbitrarily schedule the actions of all parties, both
honest and adversarial, and (3) interacts with the environment in arbitrary
ways, in particular can eavesdrop on all communications.

2. An idealized model of protocol executions, where the security properties are
defined in terms of an ideal functionality F, a trusted party that all parties
may invoke to guarantee correct execution of particular protocol steps. The
ideal-world adversary S 4 is controlled by the ideal functionality, to reproduce
as faithfully as possible the behavior of the real adversary.

3. A proof that no environment can distinguish (with better than negligible
probability) real- from ideal-world protocol runs by observing the system
behavior.

In the real world the adversary A interacts with the protocol parties using com-
mands such as REFRESH, START, SEND and END, to cause the beginning of
a new server interrogation period, to make available a tag for interrogation, to
send a challenge to a tag and get its response, or to send a response to the server,
etc. The goal of A is to prevent an honest tag from (i) getting accepted by the
server (availability), (i7) getting authenticated, and (ii7) being anonymous. The
ideal adversary S4 has the same goals, but this time the interactions are with
the ideal-world functionality F. We get UC-security if no PPT environment Z
can distinguish real- from ideal-world simulations. For more details the reader
is refered to [5,24].

