Ada Run-Time Kernel: The Implementation®

Pratit Santiprabhob (pratit@cs.fsu.edu)
Chi-Sing Chen (cschen@cs.fsu.edu)
T.P. Baker (baker@cs.fsu.edu)

Department of Computer Science B-173
The Florida State University
Tallahassee, FL 32306-4019

October 13, 1991

Abstract

In this paper we describe prototype implementations
of a unified priority based runtime kernel (RTK) for
Ada. The kernel has a novel feature, namely the unified
treatment of priorities. The same priorities govern in-
terruptibility, resource locking, and processor schedul-
ing, so that priority inversion is minimized. The main
goal behind the development of the RTK is to ac-
commodate independently developed runtime system
(RTS) components which share machine resources and
scheduling policies. The RTK has been implemented
on both single processor and multiprocessor architec-
tures. The implementation, as well as problems and
limitations encountered during the course of the im-
plementation, is the main topic being discussed here.

Keywords: real-time system, Ada, kernel, run-time
system, virtual processor, thread of control, tasking.

1 Introduction

The Ada Run-Time Kernel (RTK) is a runtime system
kernel for real-time usage proposed by the ACM Ada
Runtime Environment Working Group (ARTEWG).
The RTK provides a unifying execution model that can
be used to explain the interaction of the standard Ada

*This work is supported in part by the State of Florida High
Technology and Industry Council Applied Research Grants Pro-
gram. This paper has been submitted to the First Software
Engineering Research Forum, Tampa, Florida.

[7] tasking Run-Time System (RTS) with extended
runtime library (XRTL) components. The execution
model can also be used as a tool to describe both se-
mantics and interactions of the higher level primitives
such as rendezvous, semaphores, etc. Priorities, which
govern interruptibility, resource locking, and proces-
sor scheduling, are treated uniformly by the RTK. The
primary intended users of the RTK are developers of
Ada RTS’s and RTS extensions. It is envisaged that
if the RTK is adopted, a newly developed RTS com-
ponent can co-exist with a standard Ada RTS without
the need of source level integration and testing. This
would facilitate and encourage the development of high
quality products for the Ada realtime market. The in-
terface to the RTK is given as an Ada package. Details
concerning the package specification, as well as other
details of the RTK can be found in the paper of Baker
and Pazy [4].

The authors have implemented the RTK on both a sin-
gle processor and multiprocessor machines. The pur-
poses of the implementations are to test the viability
and efficiency of the RTK and to gather feedback for
the improvement of the kernel’s specifications. The
prototypes have in fact already contributed to some
improvements in the RTK specification, which eventu-
ally lead to the current version in [4].

In Section 2, we briefly describe the execution model of
the RTK. The general structure of the implementation
is described next in Section 3. Major design problems
and limitations encountered during the implementa-
tion of the prototypes are discussed in Section 4. De-
tails specific to the multiprocessor implementation are
given in Section 5. A listing of the RTK package spec-
ification of our UNIX! implementation is included in
Appendix A.

1UNIX is a trademark of AT&T.

Ada Run-Time Kernel: The Implementation

2 Execution Model

The execution model of the RTK is based on the con-
cept of Virtual Processor (VP). A VP is a construct
designed to encapsulate a software component that can
execute in parallel with other similar components. In
the RTK, besides the VP there are the concepts of In-
terrupt and Lock.

Two types of interrupt are supported: system inter-
rupts (hardware interrupts and software traps) and VP
interrupts. While a system interrupt interrupts an ac-
tual physical processor, a VP interrupt, which is orig-
inated by a VP, is a virtual interrupt targeted to one
specific VP. Since a hardware interrupt is managed by
the underlying hardware interrupt mechanism it may
interfere with the execution of the RTK code; since a
VP interrupt is managed by the RTK it may not inter-
rupt the RTK. Each interrupt has either a user-defined
or a default Interrupt Handler (IH) attached to it. An
interrupt handler for a system interrupt is global. On
the other hand, one for a VP interrupt is local to a VP
to which the VP interrupt is targeted.

A lock is an abstract of a non-preemptable shared re-
source. When a VP wants to use a resource, it seizes
an associated lock before it starts using the resource,
and releases the lock after it finishes using the resource.
While a lock is being held by a VP, the RTK ensures
that no other executing VPs or interrupt handlers will
seize the lock. In the RTK’s unified priority model, pri-
orities are assigned to all VPs, IHs, and locks. These
priorities are used in determining interruptibility, lock-
ing, and processor scheduling. Every time a VP is cre-
ated, a lock is initialized, or an IH is attached, a user
is responsible for assigning an appropriate priority to
the VP, lock, or TH, respectively. Note that VPs can
be destroyed, locks can be finalized, and IHs can be
detached, at any time by a user.

A VP corresponds to what the Ada reference manual
[7] refers to as a logical processor. As the name implies,
a VP in many ways mimics operations and features of
a physical processor. The context of a VP includes:
an identification, a hardware context (including the
program counter and other registers), a dispatching
state, a VP interrupt state and handler information,
and two priorities (base and active). The base pri-
ority is a priority initially assigned to a VP when it
is created; the priority can later be changed, by the
Set_Base_Priority operation. The active priority is
a priority at which a VP is currently executing. It is
the maximum of the base priority of the VP, and the
priorities of the set of locks currently held by the VP

and the IHs currently being executed by the VP. The
dispatching, i.e. the allocation of a physical processor
to a VP, is done according to the VP’s active priority.
A VP, once dispatched, is allowed to continue execut-
ing until it suspends itself or is preempted by a VP
with higher active priority. There are a number of op-
erations on VPs provided by the RTK. The operations
are described in detail in [4].

A priority assigned to a lock must be the maximum
of the active priorities of all the VPs and IHs that
will ever attempt to seize the lock. When a VP (or
an TH) has successfully seized a lock the active pri-
ority is raised to the lock’s priority (if it is not al-
ready that high). It is an error for a VP (or an IH)
to attempt to seize a lock that has a priority lower
than its active priority. If the optional checking of er-
rors is to be performed by the implementation of the
RTK, the RTK is required to raise an exception when
this error is detected. This locking mechanism, which
is essentially the same as that proposed for Ada 9X
protected records [1], guarantees within a single pro-
cessor: mutual exclusion, no priority inversion?, and
consequently no deadlock. An implementation of the
RTK on a multiprocessor architecture has to come up
with extra mechanisms to guarantee these properties.
A scheme implemented for a particular multiprocessor
architecture, which is based on a notion of global lock,
is explained in Section 5.

The unified priority model also implies that all inter-
rupts having priorities lower than the current active
priority of a VP (or an IH) are disabled with respect
to the execution of the VP (or the IH) during the pe-
riod in which the active priority is maintained.

Even though the unified priority model of the RTK has
somewhat complicated the implementation, it provides
a rich semantic model. For example, it solves the prob-
lem of reliably using a hardware interrupt to signal an
event to a waiting task. This problem is discussed for
Ada in [3], and illustrated for POSIX 1003.4a thread

primitives by Kleiman in [5].

The problem can be described abstractly as follows. A
thread at some point during its execution will check a
flag to see if a particular event has occurred. If the
event has occurred the thread will proceed with its ex-
ecution. Otherwise it will go to sleep waiting for the
event to occur. Later, when the event occurs; a sig-
nal handler is invoked to set the flag and wake up the
thread (if it is sleeping). Note that there is a gap be-

2 A priority inversion occurs when a job with lower priority
blocks an execution of another job whose priority is higher. See
[6] for more details.

Copyright ©1991 by P. Santiprabhob, T.P. Baker, and Chi-Sing Chen. All rights reserved. 2

Ada Run-Time Kernel: The Implementation

tween the checking of the flag and the time the thread
actually goes to sleep. If the event occurs right in that
gap, a signal handler will set the flag after the thread
has checked it, and will try to wake up the thread be-
fore the thread has gone to sleep. Consequently, the
thread will not notice that the event has occurred, and
miss the event.

Making a thread a VP, and a signal handler an IH, we
can use operations provide by the RTK to solve this
race condition as shown in Figure 1.

Dummy (a VP):
Seize_Lock(L);
if Event_Occur = True
then Event_0Occur:= False;
else Suspend_Self;
end if;
Release_Lock(L);

Foo (an IH):
Seize_Lock(L);
Event_Occur:= True;
Resume_VP (Dummy) ;
Release_Lock(L);

Figure 1: Solving race condition using RTK.

According to the RTK specification, the effect of
Suspend_Self is deferred, i.e. a VP is allowed to
continue its execution until all locks held by the VP
are released, if there are some locks being held by the
VP at the time it calls Suspend_Self. In addition,
Resume_VP has no effect if the VP is not suspended.
In our code here, once Dummy has successfully seized
the lock L the exeuction of Foo is blocked until L is
released. If the event has not yet occurred at that
point Dummy prepares itself to go to sleep by calling
Suspend_Self but this will not actually suspend Dummy
until L is released. Otherwise, Dummy will reset the flag
Event_Occur and proceed on its execution. On the
other hand, when an event occurs and Foo has suc-
cessfully seized the lock L, Dummy is blocked from going
to sleep until L is released. This ensures that either
Dummy successfully go to sleep before Foo can ever send
a signal to it, or the flag Event_Occur is set by Foo
before Dummy can prepare itself to sleep. Hence, the
race condition has been eliminated.

3 Implementation Specifics

A single processor version of the RTK has been imple-
mented by the authors on two different Motorola 68020
based machines. One has been implemented on the top
of SunOS? (UNIX) on a Sun 3/60 workstation, while
the other has been implemented on an MVME 133a
machine without any operating system. A multipro-
cessor version has also been implemented on multiple
MVME 133a machines connected together by a VME
bus. Each MVME 133a has its own local memory, that
can also be accessed remotely by other machines on the
same bus. Figure 2 shows schematic diagrams of the
single processor implementations. The multiprocessor
implementation is depicted by Figure 3.

For the single processor case, we implemented the RTK
on the top of either SunOS or the standard Verdix run-
time system. The current version of the multiprocessor
implementation, which is called MRTK, is built on the
top of the single processor RTK. The MRTK has an
interface similar to that of the RTK. An application
program should be able to use the interface provided
by MRTK to perform RTK operations within as well
as across the processors. Between MRTK and RTK,
there is a layer called Cross. This Cross layer provides
a conceptual link for MRTKs of different processors.
More details about the Cross layer are provided in Sec-
tion 5. According to the current set up, we have one
dispatcher per machine, which takes care of only VPs
created on that machine.

The code for the implementations is written in the Ada
language with machine code insertions for some low-
level routines. The code for the UNIX implementation
is compiled by the Verdix self-targeted compiler, Ver-
sion 6.0, while the code for the MVME 133ais complied

by the Verdix cross compiler, Version 5.7.

There are two main packages in the single processor
implementation. The first one is the RTK package,
which contains the code for operations specified by
the RTK specification, e.g. locking, scheduling, op-
erations on Virtual Processors (VPs), etc. The other
one is the Machine package which consists of low-level
routines that interface with the underlying operating
system and/or hardware. Machine includes routines
for manipulating runtime stacks of VPs and VP inter-
rupt handlers, attaching and detaching system inter-
rupt handlers, and disabling and enabling the system
interrupts. For the multiprocessor version, we have
two additional packages, the Cross package and the
MRTK package. Cross is implemented on the top RTK

3SunOS is a trademark of Sun Microsystems.

Copyright ©1991 by P. Santiprabhob, T.P. Baker, and Chi-Sing Chen. All rights reserved. 3

Ada Run-Time Kernel: The Implementation

RTK RTK
5un0OS Verdix
(UNIX) RTS
Sun MVME
3/60 133a
SunOS (UNIX) Implementation MVME 133a Implementation

Figure 2: Schematic diagrams of the single processor implementations.

Conceptual Link

MRTK| ¢+ |MRTK| : [MRTK| : | MRTK

Cross |e--»f Cross |e--» Cross f{«--+ Cross

RTK RTK RTK RTK
Verdix Verdix Verdix Verdix
RTS RTS RTS RTS
MVME MVME MVME MVME
133a 133a 133a 133a
VME Bus

Figure 3: Schematic diagrams of the multiprocessor implementation.

Copyright ©1991 by P. Santiprabhob, T.P. Baker, and Chi-Sing Chen. All rights reserved.

Ada Run-Time Kernel: The Implementation

and Machine. Cross serves two purposes. First, it pro-
vides support for the global locking mechanism across
the multiple machines. Second, it provides a commu-
nication mechanism for MRTKs running on different
machines, by which an application program running
on one machine can remotely request that an opera-
tion such as Interrupt_VP or Resume_VP be applied to
a VP on a different machine. MRTK, which is a higher-
level interface, is implemented on the top of Cross and
RTK. MRTK provides a uniform interface for operations
both within and across the processors. The Ada pack-
age dependencies of our implementations are shown in
Fig 4.

In the implementations, we reserve some of the high-
est priorities for the system interrupts. How many de-
pends on the number of levels of system interrupt that
the underlying operating system and/or hardware sup-
ports. For UNIX, we support the handling of UNIX
signals. A user can provide handlers for all 31 signals
except SIGKILL (9) and SIGSTOP (17) which cannot be
caught, blocked, or ignored as defined by the UNIX.
All signals have the same priority; therefore we reserve
the highest priority for the signals. In the MVME im-
plementation we support the handling of hardware in-
terrupts. We have 256 interrupts ranging from vector
number 0 to 255. Each interrupt falls in one of the
seven levels. We therefore reserve the seven highest
priorities for these interrupts.

4 Design Problems and Limita-
tions

During the course of the implementations we have en-
countered some design problems and some limitations
imposed by the available software and hardware. Some
of the problems are situations not explicitly covered by
the RTK specification. Some others are requirements
that we did not find simple and efficient ways to im-
plement. Among those, we have selected the major
ones to discuss below. These problems and limitations
occur in both single processor and multiprocessor im-
plementations.

For the Motorola 68020 (the MVME implementation),
we have no way of determining the level of a hardware
interrupt beforehand. In order to preserve the the ac-
tual hardware priority level of the hardware interrupt,
we have decided that the base priority of any hardware
interrupt handler is to be determined and assigned dy-
namically for each execution of the handler as the RTK
receives the interrupt. Note that a particular interrupt

can have different hardware priorities when generated
by different devices. Thus, in the MVME implemen-
tation, the priority specified by a user when attaching
a hardware interrupt handler does not actually have a
meaning.

While our implementation supports the full range of
priorities for locks, we restrict the range of base pri-
orities for VPs and VP interrupt handlers to be lower
than the range of priority reserved for the system in-
terrupts. This has been done solely for efficiency. Oth-
erwise, supporting the full range of base priorities for
VPs and VP interrupt handlers would incur more over-
head. The overhead is caused by an extra checking,
for whether a VP (or a VP interrupt handler) should
be executed with system interrupts disabled (and to
which level) due solely to its base priority when it is
not holding any locks. This extra checking needs to be
performed every time a VP (or a VP interrupt han-
dler) is dispatched. On the other hand, in our adopted
scheme the checking is confined to the locking opera-
tions. Note that system interrupts can still be disabled
during the execution of a VP or a VP interrupt handler
by simply seizing a lock with high enough priority.

The RTK specification presumes that the RTK either
is a layer beneath the Ada RTS or is integrated with
the RTS. As such, the RTS start-up is part of the boot-
ing of the Ada RTS. For our prototype we had to use
a commercial Ada compiler for which we did not have
RTS source code. This required that we implement
the RTK in a form that looks like a normal Ada com-
pilation, and design the RTK implementation so that
it can coexist with the compiler’s RTS. Specifically,
there must be an Ada procedure compiled and linked
as a main program to start up the RTS execution. The
problem is how to treat that main procedure. We de-
cided to treat the main procedure as a special VP called
Main_VP. The data structures for this Main_VP are ini-
tialized automatically in the body of the RTK package.
Note, however, that Main_VP is not actually a VP, and
when this main procedure exits, the whole execution
shuts down. We therefore assign the reserved lowest
priority to the Main_VP to guarantee that all other VPs
created and resumed by the Main_VP will have a chance
to execute before the Main_VP exits. A user can obtain
an ID of the Main_VP by calling Self. Using the ID, a
user can perform any RTK operation on the Main_VP.
In the case that the Main_VP is destroyed, the whole
execution will shut down only when there are no more
VPs waiting to be dispatched and no hardware inter-
rupt handlers attached.

Since VP interrupt handlers share the same runtime
stack with the VP to which they belong, a VP interrupt

Copyright ©1991 by P. Santiprabhob, T.P. Baker, and Chi-Sing Chen. All rights reserved. 5

Ada Run-Time Kernel: The Implementation

RTK

Machine

C:

Single processor implementations

MRTK

Cross

RTK

Multiprocessor implementation

Figure 4: Ada package dependencies.

handler may block the execution of a preempted VP
whose priority is raised (by the Set_Base_Priority
operation) to be higher than that of the VP interrupt
handler. This blocking occurs when the handler (whose
priority was originally higher than that of the VP) is
currently either executing or preempted by something
else. In this case an activation record of the handler
will be sitting above that of the VP on the stack, pre-
venting the VP from resuming its execution. This can
lead to a system deadlock or the runtime stack being
corrupted. To solve the problem, we employ temporary
priority inheritance for all VP interrupt handlers that
are blocking the VP. The handlers will then assume
the VP’s new priority, and have a chance to execute
to the end one by one in the LIFO order of the stack
space they occupied. Eventually, the blocking runtime
stack space will all be released, and the VP can resume
its normal execution. We unavoidably introduce tem-
porary priority inversion here in order to prevent the

deadlock.

The Set_Base_Priority operation, which allows a
user to dynamically change a base priority of an ex-
isting VP, is expensive, but unavoidable if such dy-
namic priority changing is essential to the application.
We have decided to make the operation totally unin-
terruptible; therefore we risk missing some important
system interrupts. However, if we let the operation
be interruptible and there is an interrupt whose han-
dler operates on the VP whose base priority is being
changed, the result of the interleaved execution will be
indeterminate.

The last major problem we encountered was with the
Ada exception propagation mechanism. As stated in

the RTK specification, an exception raised in an inter-
rupt handler should be propagated back to the inter-
rupted VP. To do this, we need to catch the exception
in the handler and reraise it in the interrupted VP
without having the exception propagated through the
RTK code. Since we have no access to the source code
of the Verdix compiler’s runtime system, we have not
found a way to provide the mechanism.

5 Multiprocessor Case

5.1 Overview

As stated before, we implemented the multiproces-
sor version of the RTK on top of the single processor
MVME version. VPs, interrupt handlers and ordinary
locks are maintained locally by the RTK running on
each processor. Main objectives of the current multi-
processor implementation are to provide an interpro-
cessor locking mechanism that respects VP priorities,
and an interprocessor communication mechanism by
which an operation such as Interrupt_VP can be per-
formed remotely on a VP that resides on a different
processor. Both of the mechanisms are implemented
in an Ada package called Cross. On top of Cross,
we have another Ada package named MRTK, which pro-
vides a uniform interface that hides the distribution.
The two additional packages and their dependencies
are depicted in Figure 4.

In order to implement an interprocessor locking mech-
anism, we create a set of locks called global locks that

Copyright ©1991 by P. Santiprabhob, T.P. Baker, and Chi-Sing Chen. All rights reserved. 6

Ada Run-Time Kernel: The Implementation

all VPs on all processors are allowed to seize. These
global locks are used to protect resources shared by
all processors. When a VP wants to access such a re-
source it has to seize the associated global lock. While
the interprocessor communication mechanism allows a
VP to request an operation be applied to another VP
that resides on a different processor, a VP is precluded
from seizing a non-global lock on a different processor.
This allows us to implement non-global locks in a more
efficient manner.

5.2 Hardware and Limitations

Multiple MVME133a machines are connected through
a VME bus. Each MVME133a machine has on-board
local memory. The machines can access their own lo-
cal memory without recourse to the VME bus, and
they can remotely access others’ local memory via the
VME bus. There is also shared memory, which can be
accessed by all of machines on the bus.

It is clear that both of mechanisms we want to im-
plement need to use the VME bus. The architecture
of the hardware available to us imposes the following
limitations:

e slow bus speed
A processor that wants to access data remotely
through the VME bus must obtain bus mastership
before it can execute a VME bus cycle. Therefore
the access time for remote memory is much longer
than for local memory.

o fized bus priority

The VME bus arbitrates between processors ac-
cording to a fixed priority scheme, based on the
physical position of the machines. We will call
this fixed bus priority of each processor its priv-
tlege, to distinguish it from the active priority of
the processor, which is that of the VP or interrupt
handler that happens to be executing.

e broadcast interrupt
From our understanding of the hardware available
to us, the only way for one processor to interrupt
another processor is to issue a VME bus interrupt,
that is broadcast to all the processors on the bus.

5.3 Interprocessor Locking

Since an interprocessor locking mechanism must access
globally shared data structures through the VME bus,

the accesses are expensive and must be kept as infre-
quent as possible. There are three problems, namely
bus contention, enforcing VP priorities, and avoiding
race conditions, to be addressed in the design of an in-
terprocessor locking mechanism that respects VP pri-
orities.

To solve the first problem, the bus contention, it is nec-
essary to avoid busy-waiting on globally shared vari-
ables. This is done by having a processor that fails in
an attempt to grab a shared variable (using an atomic
instruction such as test-and-set or compare-and-swap)
busy-wait on a local variable instead of the shared vari-
able. A processor that is busy-waiting on a local vari-
able will be awakened by the processor that releases
the shared variable via a remote write operation into
the local variable on which it is busy-waiting. This re-
lieves the contention for the bus and allows processor
with lower privileges to have a chance to access global
variables through the VME bus without starvation.

Since we have decided to make the processor waiting
for an already-seized global lock busy-wait on its local
variable, it is easy for us to enforce the VP priorities
in granting of the global lock. When the global lock
is to be released, we only need to scan through a list
of processors waiting for the lock, and grant the lock
to the processor that is executing the highest priority
VP.

Now, there can be a race condition during the scanning
of the list of waiting processors. Note that this scan-
ning must be done before we decide to either free the
global lock, if we find that no one is waiting for the lock,
or to grant it to the highest priority processor waiting
for it. The race condition occurs when a new processor
tries to seize the global lock after the scanning has al-
ready started but before it has finished. The newcomer
could be missed. The newcomer should already be, or
will be, busy-waiting on its local variable. So, if the
newcomer has the highest priority, it will be a priority
inversion. On the other hand, if the scanning does not
find anyone else waiting for the lock and decides to re-
lease the lock, the newcomer will continue spinning on
its local variable until someone else seizes the lock and
later releases it. At worst, this could lead to deadlock.
To prevent these undesired situations from occurring,
we have a flag which is reset at the beginning of each
scan. Every time a processor tries to seize the global
lock, it sets the flag. Therefore, all we need to do is to
check at the end of each scan to see whether the flag
has been set by any newcomers. If it has been set we
need to rescan the list of waiting processors.

Copyright ©1991 by P. Santiprabhob, T.P. Baker, and Chi-Sing Chen. All rights reserved. 7

Ada Run-Time Kernel: The Implementation

5.4 Interprocessor Communication

A remote procedure call model is used for the inter-
processor communication. Each VP has a block of
space in shared memory, called a communication block,
which stores the information related to the services the
VP requests from another processor. This space is de-
clared and allocated in the package Cross. Whenever
a VP wants to request some RTK operation be per-
formed on another processor it writes the request into
its communication block and enqueues the request on
a per-processor queue in shared memory. The queue is
ordered according to the priority of the VP making the
request. After the request has been enqueued, the re-
questing processor will busy-wait for the response. We
provide two ways that a request can be detected by the
target processor. Normally each processor will period-
ically poll its own queue for requests. In case of a more
urgent request, the index of the target processor will
be written into a shared space and an interrupt will be
broadcasted over the VME bus. When the interrupt is
received, every processor will check the shared space.
Only the processor which is targeted will serve the re-
quest. Meanwhile, the other processors will resume
their work. The broadcasting of an interrupt should
only be used for an extremely urgent request, since it
will interrupt all the other processors on the VME bus.
Either way, when the target processor gets the request
and has acted upon it, a response is sent to the proces-
sor from which the request originated. Only when the
response is received is the requesting processor freed
to continue with its own work.

6 Conclusion

This paper describes the design of prototype imple-
mentations of the RTK on both single processor and
multiprocessor architectures. Problems encountered
during the course of the implementations are also dis-
cussed. The current version of multiprocessor imple-
mentation is built on the top of the single processor

RTK.

The research is still going on. We are currently working
on improvements to our prototypes. The full evalua-
tion of the implemented RTK, including performance
testing, is also underway, for both single processor and
multiprocessor cases. The evaluation could result in
further recommendations for both the implementations
and the specification of the RTK. We also hope to have
a chance to implement the RTK on different architec-
tures, as well as to use an Ada compiler that allows us

to install the RTK under its RTS, in the future.

References

[1] Ada 9X Project Office, “Ada 9X Mapping Docu-
ment, Volume I”, Draft Ada 9X Project Report,
Office of the Under Secretary of Defense for Acqui-
sition (August 1991).

[2] T.P. Baker, “A Stack-Based Resource Allocation
Policy for Realtime Processes”, Proceedings of the
IEEE Real-Time Systems Symposium, (December

1990).

[3] T.P. Baker, “Comment on: ‘Signaling from within
Interrupt Handlers””, Ada Letters XI,1 (Jan-
uary/February 1991) 17-18.

[4] T.P. Baker and Offer Pazy, “ A unified priority-
based Kernel for Ada”, submitted to ACM SIGAda
Ada Letters.

[5] S. Kleiman, “Synchronization in asynchronous sig-
nal handling environment”, IEEE POSIX working
paper P1003.4-N0299, IEEE (May 23, 1991).

[6] L. Sha, R. Rajkumar, and J.P. Lehoczky, “Prior-
ity inheritance protocols: an approach to real-time
synchronization”, Technical Report, CMU-CS-87-
181, Computer Science Department, Carnegie Mel-
lon University, Pittsburgh, PA 15213 (November
13, 1987).

[7] U.S. Department of Defense, Military standard Ada
programming language, ANSI/MIL-STD-1815A,
Ada Joint Program Office (January 1983).

Copyright ©1991 by P. Santiprabhob, T.P. Baker, and Chi-Sing Chen. All rights reserved. 8

Ada Run-Time Kernel: The Implementation
A RTK package specification

with System;
with Util;
package RTK is

-- Exceptions and Error Checking
Optional_Checks_Performed: constant Boolean:= False;
RTK_Error: exception;

Locking_Error: exception;

-- VP ID’s

Max_VP_IDs: constant:= 1_000_000;

type VP_ID is private;

Null_VP: constant VP_ID;

function Is_Valid(VP: VP_ID) return Boolean;
function Self return VP_ID;

-— Creation and Destruction
type Init_State is
record
Stack_Addr: System.Address;
Stack_Size: Natural;
end record;
subtype VP_Priority is Integer range 0..99-1;
-- the highest priority is reserved for UNIX signals.
Max_VPs: constant:= 20;
procedure Create_VP
(Priority: VP_Priority;
Initial_State: Init_State;
Entry_Point: System.Address;
VP: out VP_ID);
procedure Destroy_VP(VP: in out VP_ID);

-- User-definable VP Attributes
Null_Attribute: System.Address
:= Util.Null_Procedure’address;

type Attribute_ID is range 1..10;
procedure Set_Attribute

(VP: VP_ID;

Attribute: Attribute_ID;

Value: System.Address);
function Get_Attribute

(VP: VP_ID;

Attribute: Attribute_ID) return System.Address;

-- Suspension and Resumption
type Suspension_ID is range 1..10;
procedure Suspend_Self (Suspension: Suspension_ID);
procedure Resume_VP(
VP: VP_ID;
Suspension: Suspension_ID);

-- Locks
type Lock_ID is limited private;
subtype Lock_Priority is Integer range 0..99;
Max_Locks: constant:= 20;
procedure Initialize_Lock(
Lock: in out Lock_ID;

Copyright ©1991 by P. Santiprabhob, T.P. Baker, and Chi-Sing Chen. All rights reserved.

Ada Run-Time Kernel: The Implementation

Priority: Lock_Priority);
procedure Finalize_Lock(Lock: in out Lock_ID);
procedure Seize_Lock(Lock: in out Lock_ID);
procedure Release_Lock(Lock: in out Lock_ID);
function Self_Is_Holder(Lock: Lock_ID) return Boolean;

-- Dynamic Priorities
procedure Set_Base_Priority(

VP: VP_ID;

Priority: VP_Priority);
procedure Set_Base_Priority(Priority: VP_Priority);
function Base_Priority(VP: VP_ID) return VP_Priority;
function Base_Priority return VP_Priority;
procedure Yield;

-- Interrupts
type Interrupt_ID is range 1..35;
-- for UNIX signals number 1 to 31, and four VP_Interrupts.
subtype VP_Interrupt_ID is Interrupt_ID range 32..35;
subtype Interrupt_Priority is Integer range 0..99;
type Interrupt_Info is range 0..0; == not in use.
type Handler_Info is range 0..0; -- not in use.
function Current_Priority

(Interrupt: Interrupt_ID) return Interrupt_Priority;
procedure Interrupt_VP

(VP: VP_ID;

VP_Interrupt: VP_Interrupt_ID;

Info: Interrupt_Info:= 0);
procedure Attach_Interrupt_Handler

(Interrupt: Interrupt_ID;

Priority: Interrupt_Priority;

Handler_Address: System.Address;

Info: Handler_Info:= 0);
procedure Detach_Interrupt_Handler

(Interrupt: Interrupt_ID);

private

end RTK;

Copyright ©1991 by P. Santiprabhob, T.P. Baker, and Chi-Sing Chen. All rights reserved.

