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Abstract

This report presents a specification of a bare-bones runtime system (RTS) kernel for real-time
usage. The interface is described as an Ada package. The primary intended users of this interface
are developers of Ada runtime systems and RT'S extensions such as the ARTEWG CIFO. The
main reason for developing “yet another kernel specification”, and the unique feature of this
kernel, is the goal of accommodating independently developed RTS components which share
machine resources and scheduling policies. As a result, a newly developed RTS component can
co-exist and be interoperable with a standard Ada RTS with no need for internal documentation
or changes as long as they both conform to the conventions specified here.

1 Introduction

This report describes the semantics and interface of a Run Time Kernel (RTK) for real-time Ada
applications. The purpose of this kernel is to provide a unifying execution model that can be used
to explain the interaction of the standard Ada[l] tasking Run-Time System (RTS) with extended
runtime library (XRTL) components[4], such as CIFO[3] and ExXTRA[S6, 7].

1.1 Motivation and Background

The RTK is an outgrowth of the CIFO project of the Ada Runtime Environment Working Group
(ARTEWG). The CIFO is a “catalog” of application program interfaces for a collection of XRTL
“features and options”, which were contributed by ARTEWG participants over a period of several
years. Due to the incremental nature of the CIFO development, and its being conceived as a

catalog of options, it lacks a consistent execution model. This problem became very apparent at the
ARTEWG meeting of August 1990, which was devoted to “cleaning up” version 3.0 of CIFO.

The draft CIFO was found to have many semantic gaps and conflicts, most of which were related
to interactions between CIFO features and the standard Ada tasking model, and between different
CIFO features. Questions came up, like “What does it mean to suspend a task while it is holding
a lock?”, and “What happens to a task’s priority after it finishes a rendezvous, if the priority was
changed while in the rendezvous?”. There was no natural and simple way to address these questions.
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The source of the problem is that the CIFO adds a lot of features that are below the level of the
standard Ada tasking model (which by itself is very consistent and comparatively well defined). This
means that the terminology and semantics of the 1983 Ada standard are not adequate to define the
semantics of the CIFO or to explain the interactions with Ada tasking.

Several members of the ARTEWG volunteered to attempt to address this problem by defining a
low-level kernel interface that would support both the Ada RTS and the CIFO extensions. The goal
was also to use the execution model of that kernel as a tool to describe not just the semantics of the
higher level primitives (such as rendezvous, semaphores, etc.), but mainly their interactions. It was
also envisioned that the adoption of this approach by implementors would facilitate the development
of other RTS components without the need of source level integration and testing. This, in turn,
would result in the emergence of higher-quality products for the Ada real-time market. The result
of this effort is presented in this report.

This interface represents an attempt to minimize the dependencies on the Ada’s compiler run-time
model, but a complete isolation is not possible. An attempt has also been made to avoid assuming
anything special about the architecture of the underlying computer hardware, other than that there
is shared memory. Equal consideration has been given to single and multi-processor systems, and to
homogeneous and heterogeneous memory configurations. However, this document is still immature,
and it is possible (likely) that important cases have been missed.

A notable feature of the RTK is the unified treatment of priorities, which governs interruptibility,
resource locking, and processor scheduling. This model, which is similar to that under consideration
for Ada 9x [2], aids schedulability analysis, by reducing so-called priority inversion[8], and solves
several problems encountered with dangerous race conditions due to attempts to synchronize with
interrupt handlers [5, 11].

1.2 Organization

The next section contains a description of the execution model which is the basis of the RTK.
Section 3 contains the Ada package specification of the RTK, and Section 4 describes the semantics
of the RTK package. Section 5 provides some explanation of the rationale for the design of the RTK.
Section 6 is the conclusion.

2 The Execution Model

This section describes the execution model of the RTK, including the concepts of virtual processors,
priorities, interrupts, locks, suspension, dispatching and shared memory synchronization. Some
rationale is also provided. (More details of the design alternatives considered in the evolution of the
RTK, and reasons for the choices made, can be found in Section 5.)

2.1 Virtual Processors

A Virtual Processor (VP) is what the Ada reference manual calls a “logical processor”. It is similar
to what is sometimes called a “thread” [10], in that both are constructs designed to model software
components that may execute in parallel, either by interleaved execution on a single processor or on
a shared-memory multi-processor computer system.

The RTK is intended to allow each Ada task to be mapped exclusively and directly to a single VP
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for the task’s entire life-time. It is expected that when the RTK is implemented “on top” of an
existing operating system with light-weight processes, most of the subprograms in this interface will
simply provide a thin “facade” between the application and calls to the underlying OS services.

A consequence of this model is that there will be multiple logical “control blocks” for each Ada
task, including one for the VP (managed by the RTK), one for the Ada task (managed by the Ada
RTS), and possibly others for extensions to the Ada task model (managed by the XRTL). In our
view, admitting this fact is not a sign of a wrong approach, but rather, we believe that any possible
layering will introduce such duplication. There may be redundant information in the two control
blocks, but we expect that the VP control block (VCB) will be very small and simple.

A VP is a very light-weight executing entity with a very limited context. The VP context includes:

o Identification of the VP.

Hardware processor state, including the program counter and other registers.

Dispatching state, composed of certain components.

e Two priorities: base and active.

VP interrupt state and handler information.

All the VP’s in a system share access to the rest of the system state, which is assumed to include a
shared memory address space.

A VP may execute on different physical processors at different times. While a VP is executing on
a physical processor, it inherits the physical processor’s hardware interrupt state, including which
interrupts are disabled or masked, and hardware interrupt handler information.

2.2 Operations on VP’s

The RTK interface provides operations that affect the state of individual VP’s. Several of these
operations affect the state of the underlying system as well. The RTK operations on VP’s include:

e Obtaining the ID of a VP.

e Creating and destroying a VP.

o Setting a user-definable attribute value for a VP, and retrieving the value.

e Suspending the currently executing VP, and causing a suspended VP to resume execution.
o Seizing and releasing non-preemptable resources.

e Obtaining and changing the priority of a VP.

e Associating handlers with interrupts.

e Locking out interrupts.

e Sending a virtual interrupt to a VP.
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This set of operations is viewed as sufficient to serve as a basis for implementing the Ada RTS
and XRTL for real-time applications. In general, the features of the Ada RTS and the XRTL
are not provided directly by the RTK. For example, the CIFO options for suspending another
task, waiting for events, generic critical regions, and time services are not provided at this level.
Some other features which VP’s do not directly support include memory management, rendezvous,
queuing semaphores, time-delays, I/O buffers, and file descriptors. We believe that all these can be
implemented on top of the RTK efficiently.

The nature of the operations provided by the RTK, and the concern that they be efficiently imple-
mentable, dictate that they cannot be made completely safe against incorrect usage. Only those
combinations explicitly permitted are to be considered safe.

2.3 Locks

Locks are used to protect non-preemptable resources that are shared between VP’s. Before using
such a resource, a VP seizes the associated lock. While the VP is holding the lock, the RTK does
whatever is necessary to ensure that no other executing VP’s or interrupt handlers will seize the
lock. When the VP is done using the resource, it releases the lock.

2.4 Unified Priority Model

A unified priority model defines the interactions of the RTK operations that affect processor schedul-
ing, locking of non-preemptable resources, and interrupt processing, by enforcing priorities every-
where.

Every VP, lock, and interrupt handler has an integer priority. (As with Ada tasks, a numerically
greater priority value means greater urgency.) The ranges of priorities assigned to VP’s, locks, and
interrupt handlers are permitted to overlap (e.g. a VP priority may be higher than that of an
interrupt handler).

Each VP has two priorities:

1. a base priority;

2. an active priority.

The base priority of a VP is specified at the time the VP is created, and may be modified subsequently
by calls to the Set _Base_Priority operation. The active priority of a VP is the maximum of the
base priority of the VP and the priorities of the set of locks currently held by that VP, and the
interrupt handlers being currently executed by that VP.

Similarly, each interrupt handler has a base priority, which is set at the time the handler is bound
to the interrupt. (For the default interrupt handlers, this priority is pre-defined.) When the handler
is executing, its active priority is the maximum of its own base priority and the priorities of the
set of locks it is holding. The priority of an interrupt handler is usually the same as that of the
hardware interrupt, if such a notion exists on the specific platform. Though it is not standard in
Ada for interrupt handlers to have lower priorities than other program tasks, the choice of whether
to enforce this restriction for VP’s used to implement tasks is left to the Ada RTS implementation.

Note that it is a consequence of this model that a VP with a high priority can block the execution
of a lower priority interrupt handler. This is intentional. If the application has defined the priorities
in this manner, not blocking the interrupt would create priority inversion within the application.
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Each lock has a priority associated with it, which is a ceiling on the active priorities of its users.
That is, the priority of the lock is required to be at least as high as the maximum active priority
of every VP or IH that will ever attempt to seize that lock. It is the responsibility of the person
defining the priority of the lock to ensure that this rule is not violated. It is the responsibility of the
RTK implementation to enforce the rule, by raising an exception if a VP attempts to seize a lock
while its active priority is higher than the lock’s priority.

While a VP or IH is holding a lock, its active priority is raised temporarily to that of the lock (if
it is not already that high). An implementation is permitted to simplify this policy by disabling all
preemption (or interruption) — which is equivalent to raising the priority ceilings of all locks to the
maximum priority of all VP’s (or all VP’s and IH’s).

The active priority is used in dispatching, to allocate physical processors to VP’s. (It should also
be used for allocating any implementation defined resources.) If there is more than one physical
processor, it is not required that every VP be eligible to execute on every processor; however, among
the set of VP’s eligible to execute on a given processor at a given time the one executing shall have
the highest active priority among that set. Also, a VP shall not be able to preempt a processor from
another VP unless it has higher active priority than the other VP’s active priority.

The unified priority scheduling model is intended to ensure that, while a VP is holding a lock, no
other VP that might try to seize that lock will be allowed to execute. To enforce this in the presence
of dynamic priority changes, one more restriction is required: VP’s that are holding locks must
always be given scheduling priority over those that are not.

Beyond this, dispatching within the same active priority is required to be run-until-blocked, with
FIFO service of new arrivals. That is, a VP shall be allowed to continue executing until it suspends
itself, calls Yield, or is preempted by a VP with a higher active priority. A VP resuming after
suspension, or calling Yield, shall move to the tail of the queue at its priority level, and a VP that
is preempted shall retain its position in the queue for its priority. Note that Yield operation allows
a voluntary form of round-robin scheduling within the basic run-until-blocked model.

2.5 VP Dispatching State

The dispatching state of a virtual processor has several conceptual components, each of which may
be true or false. These correspond to information about the VP that is known to the RTK imple-
mentation, but which may not be stored explicitly in this form and is not directly visible to the user.
They are:

1. Suspendable — the VP cannot execute unless it is holding locks.
2. Holding Locks — the VP is holding one or more locks;
3. Ezecuting — the VP is running on some processor.

4. Destroyed — the VP has been destroyed.

The combination of these four state components defines the dispatching state of the VP. Not all
combinations of state components are possible. In particular, the set of possible states is:
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Susp | Holding | Exec | Dest | Possible State

Suspendable, holding locks
Suspendable, holding locks, ready
Normal suspended

Executing, holding locks

Normal executing

Ready, holding locks

Normal ready

Destroyed

e HEH A
HEAEAREAaA
HEEAEAEE RS
HE e

Some useful general rules follow from this table. A VP cannot be Suspendable, not Holding Locks
and Executing. Destroyed implies Suspendable, not Holding Locks, and not Executing. Executing
implies Holding Locks, or not Suspendable. Ready to execute implies not Suspendable; or Suspend-
able and Holding Locks.

Note that a Suspendable VP does not become suspended until all locks are released, and the VP
stops executing. That is, for a VP holding locks, suspension is a two-stage process. The first stage
is when the VP attempts to suspend itself. The second stage occurs when the VP releases its last
lock. This sequence allows a VP to check a data structure under the protection of a lock, and to
decide to suspend itself without the danger of a race between the suspension and resumption by
another VP.

Another reason for this two-stage suspension is that it allows a VP interrupt handler to suspend
the VP that it is interrupting. In this case, the second stage of the suspension takes place on return
from the interrupt handler.

2.6 Dispatching Points

Any point at which a VP may change state from Executing to not Executing is called a dispatching
point for that VP.

Certain RTK operations are defined to be dispatching points for the calling VP. At these points, the
RTK is required to determine whether the calling VP is entitled to continue executing according to
the dispatching policy, and to switch the processor to another VP if necessary.

There is an exception to this rule when an operation which is defined to be a dispatching point
is called from within an interrupt handler procedure (not directly from a VP). In this case, the
dispatching point shall apply to the interrupted VP, if any. That is, the dispatching point shall be
deferred until the interrupt handler procedure returns, and in the case of “nested” interrupts, the
dispatching point shall be deferred until the outermost handler returns.

2.7 Shared-Memory Synchronization Points

Certain points in the execution of a VP are specified as being shared-memory synchronization points.
These are not the same as the dispatching points. The RTK is designed to be compatible with a
shared-memory multiple-processor hardware architecture. With such an architecture, it is possible
for the local memory of one processor to become inconsistent with that of another processor. Even
with a single processor, when variables are stored in registers the value of a shared variable seen
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by one VP may be different than that seen by another VP that reads the value from memory. In
order to provide some degree of consistency in the views of shared data between VP’s, the concept
of synchronization point is introduced.

A synchronization point with respect to shared memory between two VP’s; T1 and T2, shall be a
pair of points P1 and P2 in the executions of the respective VP’s; such that the values of data read
from shared memory by T2 after the point P2 shall reflect all modifications made by T1 before the
point P1. Note that this definition is not symmetric.

This definition of a synchronization point with respect to shared memory is intended to be compatible
with the notion of synchronization used in Ada[l] for the effect of rendezvous on shared memory. It
is not intended to be related to the notion of “synchronization point” that is used in Ada to describe
the semantics of task abortion.

2.8 Interrupts, Traps, and VP Interrupts

The term interrupt is used generically for three similar but distinct kinds of events:

e hardware interrupts;
e traps;

e VP interrupts.

Hardware interrupts originate from external devices, arrive asynchronously, and are targeted to a
particular physical processor. “Pendingness” of a hardware interrupt is part of the state of the
physical processor. When a hardware interrupt arrives, which VP it interrupts (if any) depends on
chance. Therefore, the occurrence of a hardware interrupt should be transparent to the interrupted
VP. A hardware interrupt may also interrupt the RTK itself, and when it does, it must return control
to the RTK; an application interrupt handler cannot be allowed to propagate an exception or cause
an asynchronous transfer of control directly into the interrupted thread of control (which may be
the RTK).

Traps originate from the actions of the executing code (e.g. bus error, FPE, etc.), arrive syn-
chronously, and are usually repeatable and meaningful in the context of the executing code. Like
hardware interrupts, the “pendingness” of a trap is a part of the physical processor state, though
traps often cannot be blocked. If a trap occurs while a VP is executing, it should not be transparent
to the VP. Most such traps will probably be converted to exceptions by the action of the standard
Ada RTS. The execution of the RTK implementation is required not to raise traps (at least not any
that can be handled by an application); therefore, an application can treat RTK calls as atomic with
respect to application trap handlers.

VP interrupts originate from a VP executing the Interrupt_VP operation. They are targeted to
a specific VP, arrive asynchronously, and interrupt only the targeted VP. A VP interrupt may be
pending for more than one VP at the same time, so the “pendingness” of a VP interrupt is a property
of the VP. A VP interrupt is not transparent to that VP; in particular, it may need to cause an
asynchronous transfer of control in the VP. VP interrupts cannot interrupt the execution of the
RTK implementation, so an application can treat RTK calls as atomic with respect to VP interrupt
handlers.

The effect of any interrupt may be delayed if the affected VP is executing at an active priority that
is higher than that of the interrupt handler.
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Interrupts may be handled by procedures which are bound to the interrupt by an operation performed
by a VP. For the VP interrupt, the binding of handler procedure to interrupt is specific to the VP
which executes the binding operation. In contrast, for hardware interrupts and traps, the binding
of the handler procedure to the interrupt is global. The association of instances of interrupts to
handlers (i.e. which procedure to invoke) is done at the time the interrupt is delivered, and not
when it is sent. For example, suppose some interrupt has a handler Hd1_1, and there is an interrupt
pending, but because of priority rules it cannot be delivered. If the handler for that interrupt is
then replaced by Hd1l_2 before the interrupt is delivered, it is Hd1_2 that will be invoked when
the interrupt is finally delivered. If there is more than one processor, and the hardware routes
certain interrupts to specific processors, the Interrupt_ID type shall permit separate identification
of similar interrupts on different processors, so that a distinct handler may be provided for specific
processors.

If an application does not specify a handler for an interrupt, the RTK provides a default handler.
For hardware interrupts and traps, the action and priority of this handler shall be implementation
defined. For VP interrupts, the priority of the default handler shall be VP_Priority’first, and
the action need not be defined (see below).

Note that a VP interrupt handler with priority VP_Priority’first can never execute, since it will
never be higher than the priority of the VP to which the interrupt is targeted, so the action of the
handler does not need to be defined. If sent, such an interrupt will remain pending until the VP
binds a new handler, with a higher priority.

An interrupt handler is not a VP. Several RTK operations have defined effects on the “calling VP”.
Therefore, every interrupt handler is viewed as preempting the processor from some VP. During the
execution of an interrupt handler, the “calling VP” is considered to be the VP that the handler
interrupted. For a VP interrupt, the interrupted VP is the one to which the interrupt was sent.
For a trap, or a hardware interrupt handler, the VP is whichever one was executing at the time the
trap or hardware interrupt preempted the processor. This raises the possibility that there may have
been no application VP running at the time. For traps, this possibility can generally be ignored,
since the RTK and any underlying system should be “debugged” enough not to raise traps. For a
hardware interrupt, it is virtually certain that the handler will sometimes execute at times when it
is not interrupting any application VP. Under these circumstances, the “current VP” is undefined.

During the time the interrupt handler is executing, the interrupted VP is still considered to be
logically executing on that processor, so that it cannot be scheduled to execute on any other pro-
cessor. With VP interrupts, this property is very useful, since it enforces mutual exclusion between
the VP and handlers for VP interrupts that are targeted to that VP, and provides a capability for
“asynchronous transfer of control”. By binding appropriate handlers, one VP can use VP interrupts
to signal another VP to raise an exception in itself, suspend itself, or yield control of its processor
to other VP’s of the same priority.

Another consequence of this model is that if a VP is at a lower active priority than the handler,
sending a high-priority interrupt to the VP immediately raises the effective scheduling priority of
the VP to the level of the handler, if it is not already that high. Thus, if the VP is not currently
executing because it has been preempted, a high enough priority VP interrupt will cause the VP
to be scheduled, so that the VP interrupt handler can execute. Of course, the VP will execute the
handler, rather than resuming where it was preempted.

2.9 Resource ID’s

In the RTK there are certain finite resources, that cannot safely be shared between independently
developed RTS subsystems. These resources include VP interrupt ID’s, suspension ID’s, and VP
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attribute ID’s. An attempt by two independent subsystems to use such a resource will cause inter-
ference between the operations of the subsystems, with chaotic results. For example, if operations of
two subsystems attempt to bind handlers for the same VP interrupt, one of the handlers will get the
interrupt, and the other will fail. Similarly, if an operation implemented by one subsystem causes a
VP to suspend itself, an operation of an independent subsystem should not release the VP with the
same suspension ID.

For each of these ID types, the RTK implementation shall provide at least four distinct values. Each
RTS subsystem should use no more than one value of each of theses types, and it should be designed
to permit changing the specific value easily. For example, this might be done by providing a user-
tailorable constant for each value used. This requirement includes the Ada tasking implementation.

Hardware interrupt and trap ID’s are also resources that cannot be shared between RTS subsys-
tems. Fach RTS component that uses such ID’s should document these uses, since they may cause
conflicts when the component is combined with other RTS components. However, because hardware
interrupts and traps are not interchangeable, conflicts in their usage are not likely to be resolvable
by simple user tailoring.

3 Ada Package Specification

The XRTL interface to the RTK shall be by the following Ada package specification. The comments
indicate the subsection of this document that describe the semantics of the RTK declarations that
immediately follow each comment.

with System;
package RTK is
-— § 4.1 Ezceptions and Error Checking
Optional_Checks_Performed: constant Boolean:= impl.-defined static const.;

RTK_Error: exception;
Locking_Error: exception;
- §4.2VPID’s

Max_VP_IDs: constant:= wmpl.-defined static const.;
type VP_ID is private;
Null_VP: constant VP_ID;
function Is_Valid(VP: VP_ID) return Boolean;
function Self return VP_ID;
-— § 4.3 VP Creation and Destruction
type Init_State is impl.-defined type;
subtype VP_Priority is Integer range impl.-defined static range;
Max_VPs: constant:= impl.-defined static const.;
procedure Create_VP

(Priority: VP_Priority;

Initial_State: Init_State;

Entry_Point: in System.Address;

VP: out VP_ID);
procedure Destroy_VP(VP: in out VP_ID);
-— § 4.4 User-definable VP Attributes
Null_Attribute: System.Address:= impl.-defined static const.;
type Attribute_ID is range impl.-defined static range;
procedure Set_Attribute

(VP: VP_ID;

Attribute: Attribute_ID;
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Value: System.Address);
function Get_Attribute
(VP: VP_ID;
Attribute: Attribute_ID) return System.Address;
-— § 4.5 Suspension and Resumption
type Suspension_ID is range impl.-defined static range;
procedure Suspend_Self(Suspension: Suspension_ID);
procedure Resume_VP(VP: VP_ID; Suspension: Suspension_ID);
-— § 4.6 Locks
type Lock_ID is limited private;
subtype Lock_Priority is Integer range wmpl.-defined static range;
Max_Locks: constant:= impl.-defined static const.;
procedure Initialize_Lock (Lock: in out Lock_ID; Priority: Lock_Priority);
procedure Finalize_Lock(Lock: in out Lock_ID);
procedure Seize_Lock(Lock: in out Lock_ID);
procedure Release_Lock(Lock: in out Lock_ID);
function Self_Is_Holder(Lock: Lock_ID) return Boolean;
-— § 4.7 Dynamic Priorities
procedure Set_Base_Priority(VP: VP_ID; Priority: VP_Priority);
procedure Set_Base_Priority(Priority: VP_Priority);
function Base_Priority(VP: VP_ID) return VP_Priority;
function Base_Priority return VP_Priority;
procedure Yield;
-— § 4.8 Interrupts
type Interrupt_ID is impl.-defined type;
subtype VP_Interrupt_ID is
Interrupt_ID range wmpl.-defined static range; ;
subtype Interrupt_Priority is Integer range impl.-defined static range;
type Interrupt_Info is impl.-defined type;
type Handler_Info is impl.-defined type;
function Current_Priority
(Interrupt: Interrupt_ID) return Interrupt_Priority;
procedure Interrupt_VP
(VP: VP_ID;
VP_Interrupt: VP_Interrupt_ID;
Info: Interrupt_Info);
procedure Attach_Interrupt_Handler
(Interrupt: Interrupt_ID;
Priority: Interrupt_Priority;
Handler_Address: System.Address;
Info: Handler_Info:= impl.-defined static const.);
procedure Detach_Interrupt_Handler
(Interrupt: Interrupt_ID);
private
type VP_ID is umpl.-defined type;
Null_VP: constant VP_ID:= mpl.-defined static const.;
type Lock_ID is impl.-defined type;
end RTK;
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4 Semantic Description

This section describes the semantics and intended usage of the RTK operations. The subsections are
organized according to groups of related declarations: exceptions and error handling in Section 4.1;
VP ID’s in Section 4.2; VP creation and destruction in Section 4.3; user-definable VP attributes in
Section 4.4; suspension and resumption in Section 4.5; locks in Section 4.6; dynamic priorities in
Section 4.7; interrupts in Section 4.8; interrupt handlers in Section 4.9.

4.1 Exceptions and Error Checking

Optional_Checks_Performed: constant Boolean:= impl.-defined static const.;

RTK_Error: exception;
Locking_Error: exception;
Description

The RTK may check for certain errors, and raise certain exceptions when the errors are detected.
The general meanings of these exceptions are:

1. RTK_Error — An RTK operation was called in an illegal context or with an illegal parameter
value, or an implementation-defined limit was exceeded.

2. Locking_Error — A lock was used inconsistently, or not according to the priority rules.

These exceptions shall be raised only for the conditions described here.

Whenever an exception is raised by an RTK operation, the operation shall have no other effect. In
particular, it shall not change the state of any VP or any lock, or consume storage.

In order not to impose excessive overhead on RTK implementations, most error checks are specified
as being optional. A check is specified as being optional by the phrase “if optional checks are
performed” in the corresponding “Error Handling” specification. The RTK implementation shall
either perform all the optional checks, and the associated error handling, or shall perform none of
them. The value of the Optional_Checks _Performed constant shall specify whether the optional
checks are performed. If an optional check is not performed, and the error occurs, the effect on the
system is undefined. That is, the entire system may fail. If an optional check is performed, the error
handling shall be as specified for the operation. For most errors the handling is to raise a specified
exception. By using an unchecked RTK implementation, the user shall accept the full burden of
using RTK operations correctly.

If an exception propagates to the end of the (main) procedure executed by a VP, it shall result in
the destruction of the VP. (See definition of the Destroyed state in Section 2.5, and Destroy_VP in
Section 4.3.)

4.2 VP ID’s

Max_VP_IDs: constant:= wmpl.-defined static const.;
type VP_ID is private;
Null_VP: constant VP_ID;
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function Is_Valid(VP: VP_ID) return Boolean;
function Self return VP_ID;

Description

The VP_ID type shall be used to identify virtual processors. Each value of the VP_ID type shall
identify a unique virtual processor, except for the Null_VP constant, which does not identify any
VP. Variables of the VP_ID type shall be implicitly initialized to the Nul1_VP value. Other values of
the VP_ID type shall (only) be obtained by the Create_VP operation.

Max_VP_IDs shall be a lower bound on the number of VP’s that may be created, serially, over the
life of a system. Values of the VP_ID type shall not be re-used by the RTK implementation; that
is, each value of the VP_ID type shall not identify more than one VP between system start-up and
system shut-down. The range of values of the VP_ID type shall be sufficiently large to guarantee
that at least Max_VP_IDs VP’s can be created.

Note that Max_VP_IDs is distinct from Max_VPs, which is lower bound on the number of VP’s that
may exist at one instant.

The Is_Valid function shall return the value True if and only if the specified ID is valid. A value
of the VP_ID type shall be vwalid if and only if it identifies some VP that has been created by the
Create_VP operation, and has not subsequently been destroyed. Note that the value Null_VP is not
a valid VP ID.

The Self function shall return the ID of the calling VP. If Self is called from within an interrupt
handler it shall return the ID of the VP whose execution was interrupted by the handler, if any. If
self is called from within a hardware interrupt handler and there was no VP executing when the
interrupt handler was invoked, Self shall return an invalid VP ID (which may be Null_VP). For
efficiency, it is recommended that this operation be implemented as a short in-line operation.

Error Handling

There are no error conditions for these operations.

4.3 VP Creation and Destruction

type Init_State is impl.-defined type;
subtype VP_Priority is Integer range impl.-defined static range;
Max_VPs: constant:= impl.-defined static const.;
procedure Create_VP
(Priority: VP_Priority;
Initial_State: Init_State;
Entry_Point: in System.Address;
VP: out VP_ID);
procedure Destroy_VP(VP: in out VP_ID);

Description

The Init_State type is used to specify the initial hardware state of a VP. This will be machine-
specific, and will typically be a record type including at least the addresses to be loaded into the
stack pointer and base registers.
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The Max_VPs shall be a lower bound on the number of VP’s that the system is capable of supporting
at one time, if and only if there is such a predefined limit. Otherwise, Max_VPs shall be zero.

The Create_VP operation shall create a virtual processor. The Priority parameter specifies the
base priority of this VP. The Entry_Point parameter specifies the address of the instruction where
the VP is to start executing. This shall be a parameterless Ada procedure. Ordinarily, the procedure
should be defined as a library unit, or immediately within a package that is a library unit. This
restriction is to prevent “dangling reference” problems, and would not need to be followed where
the RTK operations are used by an Ada tasking implementation, when the compiler and tasking
implementations are able to ensure against dangling references. The Initial_State parameter
specifies the values of any other registers that need to be initialized when the VP starts execution,
including any information needed by the compiler to reference objects declared in enclosing lexical
scopes. The ID of the new VP is returned via the VP parameter. This shall be a new value of the
VP_ID type, not used previously for any other VP.

A newly created VP shall have the state components:

1. Suspendable = true;
2. Holding Locks = false;
3. Executing = false;

4. Destroyed = false.

The suspension ID (see Section 4.5) of the newly created VP shall be a special value such that
Resume_VP with any suspension ID shall resume that VP. This special value shall not correspond to
any value of the type Suspension_ID.

The Destroy_VP operation shall destroy the VP specified by the VP parameter, release any locks
held by that VP, and shall recover any system resources allocated by the Create_VP operation that
created that VP. Before the operation, the specified VP ID should be valid. After the operation,
the value of the VP parameter shall be set to Null_VP, and the specified VP ID value shall become
invalid.

Note that destroying a VP asynchronously is possible, but is hazardous, in the same way as is Ada
task abortion. The VP may be holding pointers to dynamically allocated (i.e. heap) objects. The
storage occupied by such objects may never be recovered.

Note that a VP may destroy itself. An interrupt handler may also destroy the VP that it interrupts.
When a VP destroys itself the effect shall be immediate.

Error Handling

Create_VP will fail if there are insufficient RTK storage resources available to create a new VP.
(This refers to data structures used by the RTK implementation, and does not include stack storage
for the VP, which is not a responsibility of the RTK.) Storage_Error shall be raised for this error.

Create_VP will fail if the range of possible VP ID values has been exhausted (see Max_VP_IDs). In
this case, RTK_Error shall be raised.

Destroy_VP should not be called while the VP to be destroyed has local lock ID variables that have
been initialized but have not yet been finalized. (This may create dangerous dangling references
to lock variables, or reclaimed system storage.) It is not considered feasible to check for this error
without special compiler support, so checking is not required, even if optional checks are performed.
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RTK_Error shall be raised for this error, if the system is able to detect it; otherwise, the effect is
undefined.

Destroy_VP should not be called with an invalid VP ID. RTK_Error shall be raised for this error if
optional checks are performed; otherwise, the result is undefined.

In general, after Destroy_VP, no further reference should be made to the the ID of the destroyed
VP, which has now become invalid. RTK_Error shall be raised for this error if optional checks are
performed; otherwise the result is undefined.

4.4 User-Definable VP Attributes

Null_Attribute: System.Address:= impl.-defined static const.;
type Attribute_ID is range impl.-defined static range;
procedure Set_Attribute

(VP: VP_ID;

Attribute: Attribute_ID;

Value: System.Address);
function Get_Attribute

(VP: VP_ID;

Attribute: Attribute_ID) return System.Address;

Description

The Attribute_ID type shall be used to identify a specific user-definable attribute of a VP. The range
of this type is implementation-defined, but shall include at least four values. Each RTS subsystem
that makes use of a value of this type shall document this use, and should be designed to permit
changing the specific value easily. For example, this might be done by providing a user-tailorable
constant for each value used. This requirement includes the Ada tasking implementation.

Null_Attribute shall be the default value of every user-definable VP attribute.

The Set_Attribute operation shall associate Value as the specified user-definable attribute of the
specified VP. This value shall replace the previous user-definable attribute of that VP.

The Get_Attribute operation shall return the value of the specified user-definable attribute of
the specified VP. If the Set_Attribute operation has not been used to associate a user-definable
attribute value for that VP and attribute ID, Null_Attribute shall be returned.

Error Handling

Set_Attribute should not be called with an invalid VP ID. RTK_Error shall be raised for this error
if optional checks are performed; otherwise, the effect is undefined.

Set_Attribute should not be called with an invalid attribute ID. Constraint _Error shall be raised
for this error, if optional checks are performed (whether or not the compiler has suppressed constraint
checks); otherwise, the effect is undefined.

Get_Attribute should not be called with an invalid VP ID. RTK_Error shall be raised for this error
if optional checks are performed; otherwise, the effect is undefined.
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Get_Attribute should not be called with an invalid attribute ID. Constraint _Error shall be raised
for this error, if optional checks are performed (whether or not the compiler has suppressed constraint
checks); otherwise, the effect is undefined.

4.5 Suspension and Resumption

type Suspension_ID is range impl.-defined static range;
procedure Suspend_Self(Suspension: Suspension_ID);
procedure Resume_VP(VP: VP_ID; Suspension: Suspension_ID);

Description

The Suspension_ID type is used to identify the subsystem (or reason) that caused a VP to suspend
itself and to ensure that only a Resume_VP operation with a matching ID can undo the suspension.

The Suspend_Self operation shall cause the calling VP to become suspendable, and associate the
specified suspension ID with that VP. If the VP is holding locks, it shall continue executing; oth-
erwise, it shall stop executing immediately. If a VP is suspendable and releases the last lock it is
holding, it shall stop executing immediately. If the VP is already suspendable, the operation shall
still be permitted, and the new suspension ID shall replace the suspension ID previously associated
with that VP. If the VP is not holding any locks this operation is a dispatching point for that VP,
at which the VP shall change state from Executing to not Executing. If this operation is called from
within an interrupt handler, the effect shall be to suspend the interrupted VP, if any, at its next
dispatching point. If the interrupt handler did not interrupt any VP, calling this operation is an
error.

The Resume_VP operation shall cause the Suspendable state component of the VP specified by the
VP parameter to be set to False, if the VP is suspendable with the specified suspension ID, or it’s
suspension ID is the “special” value that is assigned to VP’s when they are first created. This
operation shall be a dispatching point for the calling VP. If the VP is not suspendable, resuming it
is not an error; the operation shall simply have no effect.

Error Handling

Suspend_Self should not be called from a context where Self is undefined. (This may only happen
inside a hardware interrupt handler.) RTK_Error shall be raised for this error if optional checks are
performed; otherwise, the effect is undefined.

Suspend_Self should not be called with an invalid suspension ID. Constraint_Error shall be raised
for this error if optional checks are performed (even if the compiler has suppressed constraint checks);
otherwise, the effect is undefined.

Resume_VP should not be called with an invalid VP ID. RTK_Error shall be raised for this error if
optional checks are performed; otherwise, the effect is undefined.

Resume_VP should not be called with an invalid suspension ID. Constraint_Error shall be raised for
this error if optional checks are performed (even if the compiler has suppressed constraint checks);
otherwise, the effect is undefined.

Resume_VP should not be called if the VP is suspendable with a different suspension ID, other than
the special value assigned to VP’s when they are first created. RTK_Error shall be raised for this
error if optional checks are performed; otherwise, the effect is undefined.
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4.6 Locks

type Lock_ID is limited private;

subtype Lock_Priority is Integer range impl.-defined static range;

Max_Locks: constant:= impl.-defined static const.;

procedure Initialize_Lock (Lock: in out Lock_ID; Priority: Lock_Priority);
procedure Finalize_Lock(Lock: in out Lock_ID);

procedure Seize_Lock(Lock: in out Lock_ID);

procedure Release_Lock(Lock: in out Lock_ID);

function Self_Is_Holder(Lock: Lock_ID) return Boolean;

Description

The Lock_ID type shall be used to identify locks. A lock is used to control concurrent access to
certain system resources. Each lock shall be in one of the following states:

1. Uninitialized; — same as finalized
2. Locked;
3. Unlocked.

Each object of type Lock_ID shall be implicitly initialized to the Uninitialized state. It can make
the transition to the Locked state only via the Seize_Lock operation, and can become unlocked
only through the Release_Lock and Destroy_VP operations. Each lock that is in the Locked state
shall be held by a unique VP. A lock shall only be released by the VP that is holding it. Each lock
shall have a fixed priority associated with it. Whenever a VP is holding a lock, its active priority
shall not be lower than that of the lock. In particular, the VP holding the lock shall not be able
to be preempted from its processor by any other VP that may attempt to seize the same lock. It
is an error for a VP to attempt to seize a lock when its active priority is higher than that of the
lock. While a VP is holding a lock, it shall remain eligible to execute, even if it is suspendable. If a
suspendable VP releases the last lock it is holding, it shall stop executing.

Note that operations which modify lock objects must be implemented atomically, and therefore
require the address of the lock object. This implicitly requires that the Ada implementation of “in
out” parameters for the Lock type must pass the address of the actual parameter. Insuring atomicity
requires that the bodies of such operations must be implemented in a fashion that depends on the
underlying machine or operating system.

Max_Locks shall be the maximum number of locks that the system is capable of supporting at one
time, if and only if there is such a predefined limit. Otherwise, it shall be zero.

The Initialize_Lock operation shall initialize the Lock to a the Unlocked state, with the specified
priority. If Finalize Lock has been call previously for Lock and Finalize_Lock has not been
subsequently called for it, this is an error. Creating a lock object may consume system resources, in
addition to local memory resources in the environment where it is declared. Responsibility for the
recovery of such resources, via the Finalize_Lock operation, is with the user.

The Finalize_Lock operation shall restore the Lock to the Uninitialized state, and recover all system
resources that may have been allocated by the preceding Initialize Lock operation. Performing
this operation on a lock that is in the Locked or Uninitialized state is an error.

The Seize_Lock operation shall change the state of the lock L to the Locked state, and raise the
active priority of the calling VP to the priority of the lock, if it is not already that high. It shall
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be implemented in such a way as not to cause the calling VP to stop executing. If the lock is in
the Uninitialized state, or is already held by the same VP, or the active priority of the calling VP
is higher then the priority of Lock, it is an error. This operation is a not a dispatching point. This
operation shall be a synchronization point with respect to shared memory, between the VP seizing
the lock and the VP that previously held the lock.

Note that locking out VP’s executing on the same processor is accomplished by the priority scheme,
which prevents the dispatching of all VP’s that may contend for the lock. Locking out interrupt
handlers must be accomplished by disabling or masking the interrupts whose handlers may contend
for the lock. Finally, on multi-processors, a VP that attempts to seize a lock that is held by a VP
executing on another processor will be required to “busy-wait” until the lock is released.

The Release_Lock operation shall change the state of Lock to Unlocked, and restore the active
priority of the calling VP to the maximum of its base priority and the priorities of any locks the
VP is still holding. If the lock is in the Unlocked state, or the calling VP is not holding the lock,
or the lock is in the Uninitialized state, or the lock was not the last one to be seized by the calling
VP, this is an error. Locks are required to be released in the reverse order in which they are seized
(i.e. LIFO order). This operation shall be a dispatching point for the calling VP, at which the VP
may change state from Executing to not Executing. This operation shall be a synchronization point
with respect to shared memory, between the VP releasing the lock and the next VP to seize it.

Note that consideration should always be given to protecting the section of code between Seize_Lock
and Release_Lock operations, with an exception handler that contains a Release_Lock operation
on that lock. Otherwise, there is risk that an exception will be raised and the lock will not be
released, leading to system failure. The exception handler should use the Self_Is_Holder operation
to determine whether to call Release _Lock.

The Self_Is_Holder function shall return the value True if and only if the calling VP is the holder
of the specified lock. It may be used in an exception handler, to determine whether a lock was held
when the exception was raised.

Error Handling

Initialize Lock will fail if the system is unable to initialize the lock, due to there being insufficient
system resources. In this case, Storage_Error shall be raised.

Initialize_Lock should not be called for a lock that is not in the Uninitialized state. RTK_Error
shall be raised for this error, if optional checks are performed; otherwise, the effect is undefined.

Finalize_Lock should not be called if the lock is in the Locked or Uninitialized state. RTK_Error
shall be raised for this error if optional checks are performed; otherwise, the effect is undefined.

Seize_Lock should not be called if the lock is in the Uninitialized state. RTK_Error shall be raised
for this error if optional checks are performed; otherwise, the effect is undefined.

Seize_Lock should not be called if the lock is already held by the calling VP, or the active priority
of the calling VP is higher than the priority of the lock. Locking Error shall be raised for this error
if optional checks are performed; otherwise, the effect is undefined.

Seize_Lock may fail due to a deadlock. (This can happen if there are multiple processors, or due
to a previously undetected error.) Even if optional checks are performed, the system is not required
to detect this error. Locking Error shall be raised if the system detects this error. Otherwise, the
VP’s involved in the deadlock will wait, preventing lower priority VP’s (and possibly also higher
priority VP’s) from executing on the same processors.
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Release_Lock should not be called for a lock that is in the Uninitialized or Unlocked state. RTK_—
Error shall be raised for this error if optional checks are performed; otherwise, the effect is undefined.

Release_Lock should not be called if the lock is not held by the calling VP, or the lock is not the
last to be seized by that VP, or the lock was seized within an interrupt handler and was not released
before return from the handler. Locking Error shall be raised for this error if optional checks are
performed; otherwise, the effect is undefined.

Self_Is_Holder should not be called for a lock ID that is in the Uninitialized state or if Self is
undefined. RTK_Error shall be raised for this error if optional checks are performed; otherwise, the
effect is undefined.

4.7 Dynamic Priorities

procedure Set_Base_Priority(VP: VP_ID; Priority: VP_Priority);
procedure Set_Base_Priority(Priority: VP_Priority);

function Base_Priority(VP: VP_ID) return VP_Priority;
function Base_Priority return VP_Priority;

procedure Yield;

Description

The Set_Base_Priority operations set the base priority of a VP to a specified value. These opera-
tions affect the VP’s in whatever state they are, without changing the rest of the state. The version
with VP parameter sets the priority of the VP specified by the VP parameter to the priority specified
by Priority. The version without the VP parameter sets the priority of the calling VP.

The base priorities of the affected VP’s, as perceived by the calling VP via the Base_Priority
function, shall be changed before the operation returns. If the affected VP is the same as the caller,
or is not executing and is eligible to execute on the same processor, any effect on its active priority
shall also be felt before the operation returns. If the affected VP is executing on a different processor,
or is not eligible to execute on the same processor, such an effect shall not occur later than the next
time the affected VP reaches a dispatching point. If the affected VP is currently interrupted, and the
handler has a lower priority, then the priority shall be raised to the new value in order to complete
the handler execution.

A Set_Base_Priority operation shall implicitly raise the active priority of the calling VP so that
it is not lower than the specified new priority for the duration of the operation. After the operation
has completed, the active priority shall revert to its previous value, or to its newly set value if the
executing VP set its own priority. Completion of Set_Base_Priority shall be a dispatching point
for the calling VP. Calling the version of Set_Base_Priority that implicitly applies to the calling
VP from an interrupt handler is an error if Self at that point is undefined.

Note that if the base priority of a VP is lowered while it is holding locks or executing an interrupt
handler, this change in the base priority does not affect the active priority of the VP until it releases
all locks and returns from any interrupt handlers. Note also, that the rules in Section 2.5 apply to
the scheduling of a VP whose priority has been changed, in relation to other VP’s of the same active
priority.

The Base_Priority functions shall return the base priority of the specified VP. For the form without
the VP parameter, the priority returned shall be that of the calling VP. If the value of VP is invalid,
it is an error.
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Note that the Base_Priority functions are dangerous. A concurrent Set_Base_Priority operation
performed on another processor or by an interrupt handler may render the value returned by either
of these functions invalid. Therefore, they should only be used in situations where the application
design guarantees that such concurrent changes cannot occur or will not cause errors.

The Yield operation is intended to permit voluntary round-robin sharing of processors between VP’s
of equal priority, by causing the calling VP to yield its physical processor to an eligible VP if one
exists. If the calling VP is not holding any locks, the effect shall be to move the calling VP to the
end of the queue of VP’s with the same active priority. If the calling VP is holding locks, the effect
of the Yield is deferred until the last held lock is released. This operation does not suspend the VP,
or change its base or active priority. It operation shall be a dispatching point for the calling VP. If
this operation is called from within an interrupt handler, the effect shall be to cause the interrupted
VP, if any, to execute the Yield operation at its next dispatching point. If Yield is called where
Self is undefined it is an error.

Error Handling

Set_Base_Priority should not be called with an invalid VP ID. RTK_Error shall be raised for this
error if optional checks are performed; otherwise, the effect is undefined.

Set_Base_Priority should not be called with an invalid priority. Constraint_Error shall be raised
for this error if optional checks are performed (regardless of whether the compiler has suppressed
constraint checks); otherwise, the effect is undefined.

Set_Base_Priority should not be called without a VP parameter when Self is undefined. RTK_-
Error shall be raised for this error if optional checks are performed; otherwise, the effect is undefined.

Base_Priority should not be called with an invalid VP ID. RTK_Error shall be raised for this error
if optional checks are performed; otherwise, the effect is undefined.

Base_Priority should not be called without a VP parameter when Self is undefined. RTK_Error
shall be raised for this error if optional checks are performed; otherwise, the effect is undefined.

Yield should not be called when Self is undefined. RTK_Error shall be raised for this error if
optional checks are performed; otherwise, the effect is undefined.

4.8 Interrupts

type Interrupt_ID is impl.-defined type;
subtype VP_Interrupt_ID is
Interrupt_ID range wmpl.-defined static range; ;
subtype Interrupt_Priority is Integer range impl.-defined static range;
type Interrupt_Info is impl.-defined type;
type Handler_Info is impl.-defined type;
function Current_Priority
(Interrupt: Interrupt_ID) return Interrupt_Priority;
procedure Interrupt_VP
(VP: VP_ID;
VP_Interrupt: VP_Interrupt_ID;
Info: Interrupt_Info);
procedure Attach_Interrupt_Handler
(Interrupt: Interrupt_ID;
Priority: Interrupt_Priority;
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Handler_Address: System.Address;

Info: Handler_Info:= impl.-defined static const.);
procedure Detach_Interrupt_Handler

(Interrupt: Interrupt_ID);

Description
Values of the Interrupt_ID type shall be used to identify interrupts.

The VP_Interrupt_ID subtype shall identify a range of (conceptual) interrupts that can be raised
by a VP in itself or another VP, but cannot be raised by the hardware.

The Interrupt _Priority subtype shall identify the range of priorities that may be associated with
interrupts. Each interrupt shall have an associated priority, which shall be defined by the hardware
and system. In some extreme situations VP’s may be able to have higher base priority than hardware
interrupts, or all interrupts may have a single priority, which is higher than that of any VP.

The Interrupt_Info type shall be used to pass additional machine dependent and interrupt depen-
dent information to the interrupt handler.

The Handler_Info type shall be used to specify additional machine-dependent and interrupt-
dependent information about the interrupt handler. For example, this type may be used to specify
whether the handler is to execute in privileged mode, or whether specific interrupts are to be masked
or unmasked.

The Current_Priority function shall return the priority of the current handler which is bound to
the specified interrupt. This shall be the priority at which the interrupt attempts to preempt a
physical processor, and shall be the same as the active priority at which a handler for that interrupt
executes, subject to the further priority effects of locks which that handler may acquire. In the
absence of any other active binding, the priority of the default binding for that interrupt shall be
returned.

The Interrupt_VP operation shall cause the specified VP interrupt to be raised in the specified VP,
subject to the rules of priorities. The Info parameter shall specify machine-dependent and interrupt-
dependent information to the interrupt handler; it may be omitted for certain implementations. If
the interrupt cannot be handled immediately, because the specified VP is not executing or has higher
active priority than the interrupt, the interrupt shall remain pending until it can be handled. If the
specified VP has not attached any handler for the interrupt, the default handler shall apply (which
has priority too low to interrupt the VP). While an interrupt is pending, any subsequent arrivals of
instances of the same interrupt shall be ignored; that is, the RTK shall not provide any queuing of
interrupts. If more than one VP interrupt ID is pending, they shall be handled in an order consistent
with interrupt priorities. If the value of the VP parameter is invalid, it is an error. In this case, if
optional checks are performed, the operation shall simply be a dispatching point, and shall have no
other effect. In any case, this operation shall be a dispatching point for the calling VP.

The Attach_Interrupt_Handler operation shall bind the subprogram with the entry point specified
by Handler_Address as the handler for Interrupt. The Interrupt_Priority parameter specifies
the base priority of the handler execution, as well as the ability of the interrupt to cause preemption.
The Info parameter may be used to specify additional machine-dependent information about the
handler, such as whether it is to execute in privileged mode or whether certain interrupts are to
be masked or unmasked; this parameter may be omitted, for certain implementations. If there is a
handler already attached to the interrupt, it is replaced by the new handler, with the new priority
and other information. Multiple interrupts may be attached to the same handler. The combinations
of priorities and interrupts supported will depend on the hardware architecture. All such limitations
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shall be documented. The system should (but is not required to) raise an exception whenever these
limitations are violated.

The Detach_Interrupt_Handler operation shall restore the system default handler for the specified
interrupt. Any pending interrupts shall be preserved.

Error Handling

Interrupt_VP should not be called with an invalid VP ID. RTK_Error shall be raised for this error
if optional checks are performed; otherwise, the effect is undefined.

Interrupt_VP should not be called with an invalid VP interrupt ID. Constraint_Error shall be
raised for this error if optional checks are performed (regardless of whether the compiler has sup-
pressed constraint checks); otherwise, the effect is undefined.

Attach_Interrupt_Handler may fail if the RTK does not permit a user handler to be attached
to the specified interrupt. RTK_Error shall be raised for this error (regardless of whether optional
checks are performed).

Attach_Interrupt_Handler should not be called with an invalid VP interrupt ID. Constraint_-
Error shall be raised for this error if optional checks are performed (regardless of whether the
compiler has suppressed constraint checks); otherwise, the effect is undefined.

Attach_Interrupt_Handler may fail if the RTK does not support the specified handler priority
for the specified interrupt. Constraint_Error shall be raised for this error (regardless of whether
optional checks are performed).

4.9 Interrupt Handlers

procedure Interrupt_Handler
(Interrupt: Interrupt_ID;
Info: Interrupt_Info);

Description

An interrupt handler procedure shall have the form specified above. It shall not be declared within
another procedure, task, or block statement; that is, it may only be declared as a separate compila-
tion unit, or within a package that is a library unit. Additional compiler-specific measures, such as
the use of pragmas, may need to be taken to ensure: that the handler procedure can be called via its
address; that there is no problem due to elaboration-checking code associated with the procedure;
that the procedure code is not deleted during linkage, even though it may not appear to be called
from within the Ada program.

When the handler is invoked, the Interrupt parameter shall be the ID of the interrupt that caused
the handler to be invoked, and the Info parameter shall be any implementation-defined data asso-
ciated with the interrupt. The Info parameter may be omitted, for certain implementations.

When invoked, the handler shall execute with active priority at least equal to the priority of the
interrupt; in effect, it is the same as if it is holding a lock of the same priority as the interrupt while
it is executing. One consequence of this rule is that, an interrupt is not permitted to interrupt a
handler that is executing for a preceding occurrence of the same interrupt. The system shall manage
preemption, and disabling and masking of interrupts to ensure this behavior. If the physical processor
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makes a distinction between user mode and other (privileged) modes, it shall be implementation-
defined for each hardware interrupt and trap whether the handler shall execute in a normal user mode
or a privileged mode. This may depend on the Info parameter of Attach_Interrupt_Handler. VP
interrupt handlers shall execute in normal user mode.

Note that the user may manipulate the interrupt state (e.g. unmask, enable) from within an interrupt
handler using implementation specific mechanisms. However, this is not likely to be portable to other
systems. Furthermore, doing so may violate the assumptions of the RTK regarding the interrupt
state and the priority level in which the program runs. It is therefore the responsibility of the user
to ensure that system-wide invariants are not affected by these actions. For example, suppose an
application requires an interrupt handler running at priority 7 to enable, temporarily, an interrupt
of priority 2 (lower). The designer of the interrupt handler must then ensure that no violation of
locks usage will result, since the RTK is not in a state to detect it. The result of violating these
invariants is undefined.

While the handler is executing, if the handler interrupted a VP, the interrupted VP shall remain
logically “executing” on that physical processor. In particular, if there is more than one physical
processor, it shall not be possible for a an interrupted VP to resume execution on another processor
before the handler that interrupted it has returned.

Only the following RTK calls shall be permitted from within an interrupt handler:

e Self;

e Is_Valid;

e Max_VPs;

e Set_Attribute;
e Get_Attribute;
e Seize_Lock;

e Release_Lock;

e Self_Is_Holder;
e Max_Locks;

e Resume_VP;

e Suspend_Self;

e Interrupt_VP;

e Set_Base_Priority;
e Base_Priority;

e Yield.

When called from within an interrupt handler these operations shall have the normal effect, except
that:

1. Where the description of the operation refers to the “calling VP” it means the interrupted
VP; that is, the one that would be specified by the value returned by Self. Calling such
an operation is an error if the VP ID returned by Self is undefined, as it would be for a
hardware interrupt handler. The error handling for this situation is specified separately for
each operation.
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2. Where the description of the operation says that it is a dispatching point for the calling VP,
the dispatching point shall be deferred until control returns to the interrupted VP, if any. If
the interrupted VP was executing an RTK operation, the dispatching point shall be deferred
until the operation completes.

Within the handler procedure, the Seize_Lock, Release_Lock and Self_Is_Holder operations may
be used (with care) across processors, or to mask out higher priority interrupts and VP’s. Since
locks are required to be released in a LIFO order, and since executing a handler is like holding a
lock, if a lock is seized in the handler it is an error to fail to release it before the handler returns.
The Resume_VP and Interrupt_VP operations may be used to notify VP’s of significant events.
The Suspend_Self operation may be used to suspend the interrupted VP, if any, and the Yield
operation may be used to impose round-robin time-slicing within priority ranges.

If a user handler for a VP interrupt or trap attempts to propagate an exception, doing so shall
cause that exception to be raised in the interrupted VP. The exception shall be raised at the point
where the VP was executing when it was interrupted by the VP interrupt or trap. (Note that the
points where VP interrupts may occur are limited by the active priority of the VP, and may be
further limited by the RTS and compiler implementation.) When an exception is propagated from
a trap handler to the interrupted VP, and the implementation has caused the handler to execute
in privileged mode, it shall be the responsibility of the RTK implementation to ensure that the
processor is back in normal user mode.

User handlers for hardware interrupts are required to be “transparent” to the RTK. To enable the
application to respond quickly to critical events, the RTK implementation should generally allow
hardware interrupts during RTK operations wherever this is practical. In turn, user handlers for
hardware interrupts must return normally, so that any interrupted RTK operation can complete. It
is an error for a user handler for a hardware interrupt to propagate an exception, or call any RTK
operation, such as Yield, that is defined to apply to the calling VP. The preferred implementation
behavior in the face of such errors is to ignore the attempted propagation or erroneous RTK operation
and resume whatever processing was interrupted, but this may not always be practical to implement.

Error Handling

A hardware interrupt handler should not return before it has released any locks that it seized. The
treatment of this error is specified in Section 4.6.

A hardware interrupt handler should not attempt to propagate an exception. The treatment of this
error shall be to return from the interrupt handler, with no effect on the interrupted VP, if optional
checks are performed; otherwise, the effect is undefined.

A hardware interrupt handler should not call any RTK operation that is defined to apply to the
calling VP. RTK_Error should be raised for this error, if optional checks are performed; otherwise,
the effect is undefined.

An interrupt handler should not call any operations other than those in the list of permitted op-
erations. RTK_Error shall be raised for this error, if optional checks are performed; otherwise, the
effect is undefined.

5 Rationale

This section describes some of the alternatives that were considered in the evolution of this interface,
and reasons for the choices that were made.
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5.1 Ada Package Specification

We have intentionally chosen to specify one monolithic package instead of multiple small ones. This
was done to allow for maximum visibility among the RTK components in order to achieve maximum

efficiency without worrying too much about information hiding, types conversions, and procedural
interfaces (within the RTK).

5.1.1 Arbitrary Limits

Certain arbitrary limits are imposed on implementation-defined ranges. The current limits are that
there be at least four values supported for:

1. VP attributes;
2. VP interrupts;

3. suspension ID’s

The number four was chosen as a minimum lower bound. The RTK was designed to support RTS
extensions. It was generally felt that each RTS extension could probably get by with using only one
of each of these. The number four is therefore a lower bound on the number of independent RTS
extension components that can be supported.

Some of the ID’s are specified as types and some as subtypes. In both cases, the compiler will not
allow assigning out-of-range values to objects of those types. We have chosen to require the RTK
to raise a Constraint_Error in those cases when it detects such an illegal value (as when the user
has suppressed checks). The choice of Constraint_Error was due to the fact that we wanted it to
be the same as the exception the compiler might raise, so a user will not have to be worried about
two distinct exceptions for the same kind of error.

5.2 Exceptions and Error Checking
5.2.1 Error Handling

It was not clear what to do when the user of an RTK operation commits an error. The basic problem
is that the RTK is intended to be a low-level package. This means:

1. It will ordinarily be used only by packages in the extended run-time library, or by compiler-
generated code; we do not expect these packages or the compiler to make errors.
2. The overhead of checking, and providing recovery code, is not tolerable.

Still, just enumerating erroneous usages did not seem adequate, so the exception mechanism was
chosen.

Checking for run-time errors was made mostly optional, in order to allow very efficient implementa-
tions. However, based on the reasoning that unreliable or inconsistent raising of exceptions is just
about useless, or maybe even dangerous, we only allow the two extreme options:

1. Do all optional checks, and raise all exceptions as specified.
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2. Don’t do any optional checks, and never raise any exceptions.

We have had difficulty deciding exactly which exception to raise, and whether to attempt some form
of recovery other than raising an exception (i.e. suppressing the erroneous operation). The present
assignment of recovery actions is based on the assumption that it is better to raise an exception
immediately than to ignore the error, once an error is detected. Regarding which exceptions to raise,
we have taken the point of view that it is not necessary to uniquely identify each cause of error by
a separate exception.

5.3 VP ID’s

The reason for separating the concept of VP from that of task, and therefore the introduction of a
VP ID type distinct from the task ID type of the CIFO and the Ada tasking RTS, is to permit the
creation of VP’s that are not Ada tasks. The VP is intended to be a “lighter weight” entity than
an Ada task, one that does not carry all the semantic restrictions and implementation overhead of

Ada tasks.

The VP_ID type is not limited, since in order to use the operations on VP’s to build the RTS or
XRTL packages it will be necessary to store VP ID’s in various data structures (e.g. queues).

We have in mind that the VP_ID type would be implemented as a combination of pointer (or integer
index) with a generation number. (For example, a 64-bit ID might include 16 bits of pointer and
48 bits of generation number.) An invalid (i.e. dangling) VP ID can be detected by mis-match
of the generation number encoded within the ID with the generation number recorded within the
corresponding VP control block.

For example, suppose we know we can’t create more than 800,000 VP’s per second and assume
that a system will not run continuously for more than 10 years. An implementation could represent
a VP ID in 64 bits, as a pair consisting of 16-bit VP control block (VCB) offset and a 48-bit
generation-number of the VP relative to that VCB.

5.4 VP Creation and Destruction
5.4.1 Create_ VP

The procedure provided as an entry point for the VP is required to be defined as a library unit or
immediately within a package that is a library unit. This is because the RTK does not recognize
nested scope structures, or keep track of the lifetimes of execution environments. Allowing nested
procedures to be used could cause dangling reference problems. For example, if the VP procedure
were declared locally within another procedure and referred to objects declared within that proce-
dure, the VP would run into trouble when the lexically enclosing procedure returned, and the objects
local to the procedure were deallocated. This restriction is needed only for extended run-time library
packages that may use the RTK. In fact, since Ada allows nested tasks, if the RTK is used as a
basis for implementing an Ada tasking system, nested procedure-like constructs generated by the
Ada compiler will need to be used. If nested procedures are used, specifying the environment (e.g.
via a so-called static link, or display), can be done via the initial state parameter.
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5.4.2 Destruction vs. Termination

We considered adding a new VP dispatching state, so a VP could be “killed” (e.g. by an unhandled
exception) but still have a valid ID, so that when other VP’s executed operations on that ID the
result would be defined. This is similar in concept to an Ada task being “completed” but not yet
“terminated”. However, adding such a state did not really solve the problem of sudden VP death,
and it made the interface more complicated. It would just postpone the dangling reference problem,
until we eventually recover the storage of the VP. It does not completely remove the need for internal
checking either, since at least the Resume_VP operation needs to check whether the VP is alive or
dead, as well as whether the ID is valid.

5.5 User-Definable VP Attributes

We have decided to define the type of the user attributes as System.Address not so much because
of their “generic” nature, but rather to allow their usage as pointers to user-defined structures.

5.6 Suspension and Resumption
5.6.1 Suspension ID’s

The Suspension_ID type was added in order to provide protection against unintended resumption
of a VP. That is, we do not want a VP that suspended itself using an operation in some RTS
package (e.g. for Ada rendezvous) to be resumed accidentally by the action of some add-on package.
This feature is intentionally weaker than queuing constructs, such as POSIX “condition variables”
and classical semaphores, in order to reduce the implementation burden. If queuing operations are
needed, the user can associate a queue and lock with the suspension ID, and do something like this:

procedure Block is

begin
Seize_Lock(L);
Enqueue (Self);
Suspend_Self (Suspension) ;
Release_Lock(L);

end;

procedure Un_Block is
VP: VP_ID;

begin
Seize_Lock(L);
Dequeue (VP) ;
Resume_VP (VP ,Suspension) ;
Release_Lock(L);

end;

We had a problem with defining the suspension ID of a newly created VP (since it is created in the
Suspendable state). Since it is the responsibility of the user to initially resume that VP, we had to
decide on the appropriate ID. We could allocate a dedicated ID (such as Suspension_ID’first) for
this purpose, but that would require each extension component to deal with two ID’s. It would also
remove one value from the set of available ID’s. Instead, we have decided to define the suspension ID
of a newly created VP, as being a “special” value, so that a Resume_VP with any suspension ID will
affect that VP and resume it. Thus, each component will deal with its “own” ID only and not worry
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about this special one. Since there is no way to suspend with such a special ID, this arrangement
does not pose any danger of confusing the ID’s.

5.6.2 Only Suspending Self

There was pressure from some ARTEWG members for the capability for one VP to suspend another,
asynchronously. This idea was rejected for the RTK, due to difficulty defining the interaction with
other features, and concern for the implementation complexity. For example, on a multiprocessor
system, in order to ensure that the VP being suspended had actually stopped executing, it would
be necessary for the VP executing the Suspend operation to wait; this would make the operation
into a synchronization operation on the same order of complexity as rendezvous, which would be
contrary to the objective of keeping the RTK “low level”.

5.6.3 Two-stage Suspension

There was some controversy over the idea of a VP continuing to execute after it had “suspended”
itself. Some would have preferred the effect to always be immediate. To still be useful, the Suspend_-
Self operation would then have to release all locks, atomically with the suspension, or there would
be risk of dangerous races with the VP that executes the resume operation. Releasing all locks
would also have been necessary in order to maintain the essential implementation invariant of the
non-queuing model of resource locking, that a VP cannot be suspended while holding locks. One
problem with this solution is that it breaks the visible pairing of locking and unlocking operations,
and there would be no checking for unintentional release of locks. It would also preclude the use of
self-suspension within a VP interrupt handler to suspend the interrupted VP.

5.7 Locks

The Lock type is limited, so that the implementation can allocate storage for a lock anywhere
(including on the stack), and keep everything in that storage, without worrying about assignment
operations clobbering it. If a user wants references to locks, he can use an array of locks (refer-
ence=index) or pointers to locks. The implementor can choose whether to make the declared object
actually be the lock (i.e. hold the lock state), or make it a number or pointer that identifies some
lock data object in the RTS storage. Which way it is done will not be visible to the user.

We provide initialize and finalize operations for lock ID’s, so that system storage associated with
the lock can be recovered. This leaves a danger of dangling references, but that seems to be an
unavoidable penalty for insuring that all storage can be recovered.

The locking operations use in out parameter passing. However, for some Ada compilers one may
need to use ’address.

5.7.1 No Lock Breaking

Lock breaking operations have been omitted, on the assumption that it is not safe to break a lock
so long as the holder is running. Thus, the only way to break a lock is to use a VP-interrupt on the
holder, if it has made this possible by binding a handler that will release the lock.
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5.7.2 Unification of Locks and Priorities

The operations provided by the RTK are closely related and tightly intertwined. This is a conse-
quence of inherent interactions at the implementation level, between control over interrupts, locking,
and processor scheduling. Two different approaches to handling these interactions were considered:

1. The low level operations can be viewed as semantically independent. A set of design rules
can be specified to allow the creation of a safe and reliable system, by avoiding dangerous
interactions. The user must enforce the rules. For example, if a lock is shared between an
interrupt handler and the rest of the program, the rule might be that the interrupt must be
disabled before the program attempts to seize the lock. There would need to be many other
such rules.

2. The interactions of the low level operations can be completely specified, in a way that is safe
and easily understood, by imposing a single unified priority scheme.

We have chosen to take the second approach, combining the semantics of locks with priorities. This
approach allows for a clean unifying model for the scheduling, dispatching, and preemption control
in the RTK. Separating the locking and interrupt mechanisms from priorities would require a much
more complicated semantic definition (at the RTK interface level) to address the various issues of
dynamic priority management and priority inheritance.

5.7.3 No Ceiling Changes

We decided not to provide an operation to change the ceiling priority of a lock for mode-changes.
Currently, one must finalize and re-initialize the lock, or use a different one in the new mode.
Allowing the lock’s ceiling to change while VP’s might be using a lock (and while VP priorities might
be changing concurrently) was considered too costly to implement correctly. The solution to the
need for changing ceilings is to choose the ceiling priority of each lock high enough to accommodate
the highest potential priority of each VP that may use the lock.

5.7.4 Relaxing the Ceiling Rule

The present ceiling rule for locks is that the active priority of a VP attempting to seize a lock not
be higher than the (ceiling) priority of the lock. This property, which is essential to the non-queuing
priority-based locking mechanism used between VP’ on the same processor, is hard to verify by code
inspection, since the active priority of a VP may change. There does not seem to be any good way
around the effects of explicit changes to VP’s’ base priorities, other than defining lock priorities as
the maximum anticipated priority of VP’s that may use the lock. In contrast, there is a convenient
solution to the changes due to inheritance. If we can guarantee that a VP can never use inherited
priority to preempt another VP, we can use the base priority in the ceiling rule, instead of the active
priority. This makes static checking for violations of the rule much easier.

We considered two ways to ensure that an executing VP can never be preempted on the basis of
inherited priority. The direct solution is a more restrictive preemption test: that a VP not be
allowed to preempt another VP unless its base priority is higher than the other VP’s active priority.
An indirect solution is to not allow a VP to migrate to a different processor while it is holding
locks. So far, we have held back from these changes, on the grounds that the present rule is more
obviously correct, and seems less likely to be invalidatde if we add a more general priority inheritance
mechanism.
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5.7.5 LIFO Lock-Releasing

LIFO order of unlocking is required in order to allow more efficient implementation of locks, through
the use of a stack structure to save and restore active priorities, and to prevent long-duration blocking
through “chaining” of overlapping critical sections.

5.8 Dynamic Priorities
5.8.1 No Active Priority Function

The Active_Priority function was intentionally deleted, since it would preclude an efficient im-
plementation of priority ceilings and priority inheritance, in which the dispatcher uses base priority
and recorded inheritance relationships directly, rather than explicitly computing active priorities.

5.8.2 Changing Priority

The active priority of the VP calling Set_Base_Priority is raised, temporarily, to the maximum
of its own previous active priority and the new priority specified by the parameter. It intentionally
does not include the current active priority of the affected VP in this maximum, for implementation
reasons. Including this priority would add complexity to this primitive. Unlike the new priority,
which is immediately available via the parameter; the active priority of the VP’s could only be
obtained by visiting the affected VP. This would probably involve locking other data structures,
worrying about order of locking, and other details. Since the calling VP can still raise its own
priority explicitly, the feature of raising the calling VP’s priority as part of the operation is only a
convenience. Note that a VP who wants to lower the priority of a higher-priority VP can still raise
its own beforehand.

Earlier, we included a version of Set_Base_Priority that applied changes to a list of VP’s, as
a single operation. This was deleted, because it gave an illusion that this would be an atomic
transaction, whereas we believe that implementing it as such would require global locking on a scale
and for a duration that would seriously hurt response time. An application needing to change many
priorities at once can assure atomicity with less locking overhead, since it can enforce the restriction
that all such changes be done by a single VP.

5.9 Interrupts

At first, we tried to treat hardware interrupts and traps exactly the same as VP interrupts. After
more analysis, we decided that there are significant enough differences in the underlying mechanisms
to justify some distinctions in the interface.

We have not included the lower level operations on interrupts which are in the ExXTRA and CIFO
proposals (e.g. masking and unmasking, enabling and disabling, clearing, acknowledging). To in-
clude these operations seems counter to the effort we have made to combine priority and interrupt
masking into a single lock concept. Moreover, almost any use of such low-level operations on inter-
rupts without inside-knowledge of the RTK implementation would risk breaking it. Another reason
for leaving these primitives out is that they are very system specific. We would be forced to either
leave out operations important to certain machines or include operations that could not be imple-
mented. They are not required for the completeness of the model and services that we provide here.
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We assume that these capabilities will be available, if needed, in some implementation defined form
(e.g. via machine-code inserts) or via some other packages in CIFO and ExTRA.

5.9.1 Interrupt Priorities

We have taken the viewpoint that the priority of an interrupt for preemption is the same as the
execution priority of the handler. There has been disagreement within the group whether this
restriction is needed. It seems to make sense that the handler’s execution priority might be higher
than the hardware preemption priority; in the extreme, a handler for a low priority interrupt may
need to run with ALL interrupts disabled. Of course, one can certainly raise the priority of the
handler as high as one wants after it starts to execute, but on some architectures this can be done
more efficiently as part of the initial transfer to the handler.

The RTK does not have to impose any specific order on the priorities of interrupts, but they must
be prioritized. This limits the ability of the RTK to support applications with non-linear interrupt
behavior. For example, suppose an application wants to allow interrupt 3 to be active when interrupt
5 is active, but wishes interrupts 1-5 to all be blocked when interrupt 6 is active. Currently, this
can only be done using implementation-specific extensions, and at the risk of breaking the RTK. If
a better solution can be found, it should be considered.

5.9.2 Return and Dispatch

Presently, we assume that return from every user interrupt handler is a dispatching point. That
is, if the handler performs any operation (such as Resume_VP or Suspend_Self) that changes the
dispatching state of a VP, return from the handler must be through the dispatcher. This may be
considered too much overhead. If so, a “return and dispatch” operation would need to be added.
This would be called by interrupt handlers that want to exit through the dispatcher; other interrupt
handlers would then exit without a dispatching point. We have left this out of the document, for
simplicity. It seems not to be too much overhead to let the RTK set a flag in operations that change
the dispatching state of a VP, and call the dispatcher during the return-from-interrupt only when
this flag is set.

5.9.3 Interrupts not Queued

The choice not to queue repeated occurrences of interrupts of the same ID is based on the premise
that the RTK provides direct linkage to the underlying hardware interrupt mechanism. Hardware
typically is capable of latching and holding only one occurrence of an interrupt, and further interrupts
are then ignored. Many devices will not interrupt again until the CPU acknowledges the previous
interrupt. Moreover, if an attempt were made to queue interrupts in software, some limit would
need to be imposed, due to memory requirements. For the latter reason, and for uniformity, the rule
that is applied to VP interrupts is the same as the one that is applied to hardware interrupts and
traps.

5.9.4 Default Actions for VP-Interrupts

We originally preferred treating the arrival of an unforeseen VP interrupt as a fatal error, which
would kill the VP and release all its locks. The big problem with this was how to suppress it, when
an application wants to ignore unwelcome VP interrupts. A VP would have to execute a binding
operation to replace the default handler, but it might receive an interrupt before it can execute this
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handler. Therefore, we chose to provide a default handler, with priority so low that the interrupt
handler would never execute. This has the effect of preserving any interrupt that comes in while
this default handler binding is in force.

5.9.5 Multiple VP Interrupts

The RTK is required to support several distinct VP interrupt ID’s, so that different RTS subsystems
(e.g. tasking implementation, and CIFO extensions) do not need to share the use of a single VP
interrupt. This does require documentation of VP interrupt usage, and tailoring of any “later”
addition to use an interrupt that is not yet in use, but does make such additions possible.

5.10 Excluded Topics

5.10.1 Assigning VP’s to Processors

There needs to be some way to limit the set of physical processors a given VP is allowed to execute
on. For now, the document takes the point of view that this would be the kind of addition that is
specific to a hardware architecture or implementation. We anticipate that implementations or other
standards will provide these capabilities. We believe that they can be added to the current interface
set without affecting its semantic consistency.

For example, one might add a package like this:

with RTK;
package Processor_Management is
type Processor_ID is ...;
procedure Enable_for_Processor(VP: VP_ID; P: Processor_ID);
procedure Disable_for_Processor(VP: VP_ID; P: Processor_ID);
end Processor_Management ;

5.10.2 General Priority Inheritance

There is no support for priority inheritance between VP’s. We do believe inheritance to be important,
and even mandatory for certain applications, and we hope that users who build blocking constructs
such as semaphores using the RTK consider some form of priority inheritance. Unfortunately the
cost of implementing inheritance must be paid in the most time critical parts of the RTK. We do
not wish to penalize those systems which do not require inheritance by mandating its inclusion.

If priority inheritance is required, several implementation choices are available. Inheritance can be
implemented by simply changing VP Base Priorities as needed. This approach can be expensive, as
it can introduce extra dispatching points into the system, and tricky book-keeping as well. These
problems are aggravated by the need for many-to-one inheritance in Ada tasking, as during task
activation or while a completed master task is waiting for its children to terminate.

An alternative approach, might use a package as follows:

with RTK;
package RTK_Inheritance is
procedure Create_Relationship(Grantor, Receiver: RTK.VP_ID);
procedure Destroy_Relationship(Grantor, Receiver: RTK.VP_ID);
end RTK_Inheritance;
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This package allows the RTK to build a graph to describe the inheritance relationships between
VP’s. Considering each VP as a node in a directed graph, Create_Relationship adds an edge
between Grantor and Receiver and Destroy_Relationship deletes it. Such a graph can allow the
RTK to perform inheritance by traversing the graph during dispatching, by following wait-for links
from the VP with the top base priority until an unblocked VP is found. Extra dispatching points
are avoided, and many-to-one inheritance can be supported.

For example, here is an implementation of blocking semaphores using this package, which is due to

Bruce Jones [9], of the ARTEWG:

with RTK;
package Semaphores is
type Semaphore is private;
procedure Acquire(S: in out Semaphore);
procedure Release(S: in out Semaphore);
private
type Semaphore is
record
RTK_Lock: RTK.Lock;
Q: VP_Q_Type;
Is_Locked: Boolean:= FALSE;
Owner: RTK.VP_ID;
end record;
end Semaphores;

with RTK;
with RTK_Inheritance;
package body Semaphores is
...declarations...
procedure Acquire(S: in out Semaphore) is
begin
RTK.Seize_Lock(S.Lock);
if not S.Is_Locked then
S.Is_Locked:= True;
S.0wner:= RTK.Self;
else
Enqueue(S.Q);
RTK_Inheritance.Create_Relationship(RTK.Self, S.0Owner);
RTK.Suspend_Self(RTK.Self, Suspend_ID);
end if;
RTK.Release_Lock(S.Lock);
end Acquire;

procedure Release(S: in out Semaphore) is
Waiter: RTK.VP_ID;
New_Q: VP_ID_Q_Type;
begin
RTK.Seize_Lock(S.Lock);
if (Is_Empty(S.Q)) then
S.Is_Locked:= FALSE;
S.0wner:= RTK.Null_VP;
else
S.0wner:= Dequeue(S.Q);
RTK_Inheritance.Destroy_Relationship(S.Owner, RTK.Self);
while (not Is_Empty(S.Q)) loop
Waiter:= Dequeue(S.Q);
Enqueue (New_Q, Waiter);
RTK_Inheritance.Destroy_Relationship(Waiter, RTK.Self);
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RTK_Inheritance.Create_Relationship(Waiter, S.0Owner);
end loop;
S.Q:= New_Q;
RTK.Resume (New_QOwner, Suspend_ID);
end if;
RTK.Release_Lock(S.Lock);
end Release;

end Semaphores;

Another detail that must be decided, if support is provided for general priority inheritance, is whether
to provide one-to-many inheritance, such as from a task to all of the children for whose activation
it is waiting, or from a completing master to all the dependents for whose termination it is waiting.
This must be weighed carefully, because it would complicate the implementation of the entire RTK,
and is certain to add to the runtime overhead.

5.10.3 No Timer Support

Operations involving time, such as a clock function, time-delay, or time-out facility, are intentionally
not included in the RTK. Logically, they would be at about the same level as a queued entry facility,
which is not included either; that is, one level above the RTK. We believe a time-out facility could
be built using a timer interrupt handler, a lock to protect a time-ordered queue, and the Resume_VP
operation.

5.10.4 No Memory Management

Support for memory management (e.g. virtual-to-physical address mapping) and dynamic storage
allocation has intentionally been left out. This is partly because of a desire to keep the RTK simple.
Memory management was also left out because the function is very dependent on the specific machine
architecture, and on the way in which the hardware is used by the system. It was also felt that
memory management can be added by the user; or the developer of the compiler or RTS, without
affecting the RTK interface defined here. For example, an address look-aside-buffer trap could be
handled by a trap handler that does not need to interact directly with the RTK implementation.

The memory allocation function was also believed to be implementable independently from the RTK.
In fact, it appears that the locking features of the RTK could be used to construct a safe memory
allocator.

6 Conclusion and Future Work

The RTK has already served a useful role by providing a framework for discussions that led to
working out some of the gaps and conflicts in CIFO 3.0. This version of the RTK is being submitted
for publication in order to provide background for CIFO 3.0, and because it may be useful to people
working on Ada runtime systems. The authors are interested in feedback from Ada users and
implementors. Any such feedback will be taken into account when the ARTEWG takes up the RTK
again.

The relationship of the RTK and Ada9X still needs to be addressed. The locking semantics of the
RTK was designed anticipating some of the revisions that have been proposed to the Ada tasking
model for Ada 9X, particularly Protected Records[2]. When the Ada 9X standard has firmed up, it
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will be interesting to see how much modification will be required to the RTK to support an Ada 9X
RTS implementation.

An effort should be made to see if various priority inheritance protocols can be implemented directly
using the RTK services. In particular it should be studied whether our notion of base and active
priority is sufficient to describe the rules and semantics of a system under priority inheritance. We
do not believe that the RTK needs to support the actual policies of PI, but instead it may be enough
to provide a small number of primitives, such as for keeping track of ownership of resources and
creating dependency graphs, to facilitate the implementation of more elaborate mechanisms.

As is the case with every interface specification, it is very beneficial to develop prototype imple-
mentations. This serves to check some of the assumptions behind the interface, and the various
trade-offs made. Of particular interest is the question of efficiency; this can only be checked by an
implementation. Also, in order to verify the claims that the proposed set of primitives is sufficient
to build higher-level components, like the CIFO, some examples of implementations of such compo-
nents using the RTK would be beneficial. Candidates include: task restart; asynchronous exceptions;
asynchronous transfer of control; time slicing; suspending another VP; blocking semaphores; priority
inheritance policies (including one-to-many inheritance); preemption control.

A family of prototype implementations of the RTK has been produced by students at the Florida
State University for the Motorola 68020 processor[12]. One version runs on a Sun workstation, using
the Sun UNIX! operating system, and another runs on a “bare” 68020 board. These implementations
have been tested enough to know that they work, and have helped iron out some details in the
interface definition. A multiprocessor implementation has also be built, as a layer over the single
processor implementation. This runs on four MVME133a computers connected by a VME-bus.

More prototyping is needed. In particular, the implementations mentioned above were tested using
the non-tasking support of a vendor-supplied Ada runtime systems, by simply ignoring the tasking
support of that RTS. This is a limitation. To verify the principle of using the RTK to add-on XRTL
components, it will be necessary to test the RTK under an Ada RTS. This will require construction
of a full Ada RTS over the RTK, which is compatible with the interface of an existing Ada compiler.
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