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Abstract

We consider the schedulability of a set of independent periodic tasks under fixed pri-
ority preemptive scheduling on homogeneous multiprocessor systems. Assuming there is
no task migration between processors and each processor schedules tasks preemptively
according to fixed priorities assigned by the Rate Monotonic policy, the scheduling prob-
lem reduces to assigning the set of tasks to disjoint processors in such a way that the
schedulability of the tasks on each processor can be guaranteed. In this paper we show
that the worst case achievable utilization for such systems is between n(21/2 — 1) and
(n+ 1)/(1 + 2101y swhere n stands for the number of processors. The lower bound
represents 41 percent of the total system capacity and the upper bound represents 50 to
66 percent depending on n. Practicality of the lower bound is demonstrated by proving
it can be achieved using a First Fit scheduling algorithm.

1 INTRODUCTION

This paper addresses the problem of determining whether a given set of hard-deadline periodic
tasks can be scheduled on a given homogeneous multiprocessor configuration. Such hardware
configurations are becoming increasingly common, as the computational demands of real-time

systems go up faster than the increases in the speed of single processors.

The preemptive scheduling of hard-deadline periodic tasks on various models of single and
multiprocessor systems has been studied by a number of researchers. This work can be
categorized according to whether the assignment of priorities to tasks is fixed or dynamic.

The merits of dynamic versus static priorities are difficult to compare; merits of each approach

*This work was partially funded by the Ada Joint Program Office under the Ada Technology Insertion
Program, through HQ U.S. Army CECOM, Software Engineering Directorate.



have been mentioned in various papers [6, 7] but it is hard to say that one is better than the
other. It is generally known that dynamic priority schemes allow a higher level of processor
utilization, but fixed priority scheduling gives more predictable performance under transient

overloads.

Schedulability conditions in terms of task utilization have been derived for multiprocessor
systems using dynamic priority assignment, such as the earliest deadline first (EDF') policy
[8, 9]. In the simplest case, when the deadlines of tasks are the same as their periods,
schedulability is guaranteed so long as the sum of the task utilizations does not exceed the
full capacity of the total number of processors. However, comparable schedulability in terms
of total task utilization have not yet been done for multiprocessor systems with fixed priority

assignment. In this paper, we consider the case of fixed priority assignment.

For multiprocessor fixed priority systems, scheduling techniques can be further categorized
according to the dynamic or static character of the assignment of tasks to processors. With
static binding, a task is assigned to a processor permanently through all of its executions.
With dynamic binding, the task-to-processor assignments may be changed during execution
of the tasks. Rajkumar, Sha and Lehoczky [4] and Dhall and Liu [2] argue that dynamic
binding is not appropriate for multiprocessor systems under priority scheduling. Therefore,

in this paper, we concentrate on systems using static binding.

We assume the tasks assigned to each processor are assigned priorities according to the Rate
Monotonic (RM) policy. Liu and Layland have shown in [1] that RM scheduling is optimal
among fixed priority assignments for a single processor. Precise tests are given in [5, 6] for
determining whether a system of tasks is schedulable. However, the simplest and probably
the most widely used schedulability test is the Liu and Layland result that the processor
utilization for a system of m tasks must exceed m(2'/ — 1) before any task can miss its
deadline. We call this the minimaz utilization, since it is the minimum utilization over all
maximal task sets, where a maximal task set is one that “fully utilizes” the processor in
the sense that it can be scheduled but the execution time of any one of the tasks cannot be
increased without causing some task to miss its deadline. The minimax utilization in the
environment of a single processor system is also called the worst case achievable utilization
since it is the minimum utilization bound for guaranteed schedulability. The limit of the
worst case utilization, m(21/m — 1), as m approaches infinity is In2. Thus, for utilizations
between 1 and In2 schedulability is guaranteed for all tasks sets; for utilizations between In2
and 1 schedulability can be guaranteed only by more precise analysis, and not for all task

sets.



If RM scheduling is used for the set of tasks on each processor, the multiprocessor scheduling
problem reduces to assigning a set of m tasks to n processors. An optimal algorithm should

be able to schedule a set of tasks using the least number of processors possible.

The optimal task-to-processor assignment problem is at least as hard as the bin packing prob-
lem, which is known to be NP-hard [3]. Therefore, unless P = NP, there is no polynomial

time bounded algorithm to get an optimal task-to-processor assignment.

Several heuristic algorithms are developed and analyzed in [2, 3]. The effectiveness of the
algorithms is analyzed in terms of the number of bins/processors required to schedule a given

set of tasks.

We are interested in extending this work to obtain a multiprocessor schedulability condition in
terms of total task utilization, similar to the Liu and Layland minimax formula, for situations
where the number of processors n is fixed. That is, we want to find the multiprocessor worst
case achievable utilization bound U,,;,(n), which is the greatest lower bound on the total
utilizations of task systems that are not schedulable on n processors. It will follow that we
can safely schedule a set of tasks as long as their total utilization does not exceed Uy, (n).
At first glance, it might seem that an optimal task-to-processor assignment algorithm should
be able to achieve a utilization between In2 and 1 on each processor, for a total utilization
of at least n -In2. This is not true. We will show that the worst case achievable utilization
Upin(n) lies between n(2'/% — 1) and (n 4 1)/(1+ 21+ for n > 2.

The remainder of the paper is organized as follows. In Section 2, we define our system model
and the scheduling algorithm, review some of the related work and discuss why the previous
work is not directly applicable to our problem. Section 3 proves the worst case achievable
utilization under our model. Section 0.4 discusses the quality of the bounds, and utility of

the lower bound as a practical schedulability test. Section 0.5 concludes.

2 Background

2.1 System Model

Our system model is based on that of [1]. In short, we assume we have a set of indepen-
dent periodic tasks whose periods are equal to their deadlines. A few more assumptions
are imposed in order to apply the model to multiprocessor environments. The additional

assumptions are:

1. Each processor has the same computing power and executes independently of the others.

2. Utilization for each task is less than or equal to 1.



3. Once a task is assigned to a processor it executes only on that processor.

We define some of the symbols used in this paper as follows:

1. 7; : 7th task in the system.

2. C; : computation time required for 7;.

3. T; : period of 7.

4. C;/T; : utilization of 7;.

5. F; : ith processor in the system.

6. m; : number of tasks assigned to P,.

7. w; : current utilization of P;. i.e. u; = Sum of utilizations of all tasks assigned to P;.

8. U : total utilization of the tasks in the system. i.e. U = 31", C;/T;. where m is the

total number of tasks in the system.

2.2 First Fit Scheduling (FFS) Algorithm and Related Work

The First Fit (FI') algorithm is a heuristic polynomial time bin packing algorithm. The
simplicity and effectiveness of this algorithm make it a good alternative to an optimal bin
packing algorithm which requires exponential execution time. FFS is the application of FF

to the problem of task-to-processor assignments. Here we describe the assignment procedure

of FFS:

Step 1: set 2 =1
Step 2: set =1

Step 3: if 7; is schedulable on P; according to the sufficient schedulability condition given
in [1] (i.e., u; < m;(24™ — 1)),
then assign 7; to P; and go to step 5

Step 4: set j =7+ 1;
if 7 < total number of processors then go to Step 3;

else Declare Failure and Stop

Step 5: set 1 =i+ 1;
if 1 < total number of tasks in the system then go to Step 2;

else Declare Success and Stop



The performance of this and other similar algorithms have been analyzed in several studies
[2, 10]. However, in those studies, the effectiveness of the algorithms is measures by the
number of bins/processors required for a set of tasks, as compared to the optimum. Such a
bound does not translate into a solution to our problem, which is to find a lower bound on
how high the total utilization needs to go before we have to worry about missing deadlines,

for a given hardware configuration with a fixed number of processors.

In order to see the inadequacy of such results to our problem, we consider (below) one of the
theorems presented in [2] for FI'S. (Similar but worse bounds are known for the number of
processors for the next-fit algorithm. However, it turns out that whether we use the next-fit

algorithm or FI'S makes no difference for the utilization bounds derived in the present study.)

Let N be the number of processors required to feasibly schedule a set of tasks
by the Rate Monotonic First Fit Scheduling (RMFFS) algorithm and Ny be the
minimum number of processors required to feasibly schedule the same set of tasks.

Then, as Ng approaches infinity, 2 < limy, 0o N/No < 4 % 21/3/(1 + 21/3).

First, we can’t use this as a schedulability test for RMFFS, since it requires us to know Ny.
Second, even if we did know Np, the result above would not give us a very tight bound.
Consider the set of n tasks whose utilizations C;/T; are 0.5 4+ ¢ for all 7;. The minimum
number of processors required to feasibly schedule this set of tasks is obviously Ng = n. The
theorem does not guarantee schedulability using RMFFS unless the number of processors is
at least 2n. However, the total utilization U of this set of tasks is 0.5n as € — 0. This is less
than the worst case achievable utilization bound we are going to present for 2n processors,
which is 2n(2'/2 — 1) ~ 0.828n.

Various formulas given in other studies [2, 3] also are stated in terms of the number of bins
as in above example, and therefore cannot be used to derive a bound in terms of the total

task utilization. This motivated our study.

3 Worst Case Achievable Utilization Bound in Multiprocessor Systems

In this section we give a condition for schedulability with fixed priority scheduling on homo-
geneous multiprocessor systems in terms of the total utilization U of tasks, by proving the

following theorem.

Theorem 1 The worst case achievable utilization Uy, (n) with fized priority preemptive
scheduling on a homogeneous multiprocessor system with n > 2 processors is bounded as
follows:

n(2"7% = 1) < Upin(n) < (n 4 1)/(1 4 2"/ (1)



Proof of the upper bound:

In order to prove the upper bound, we show that for any n > 2 there is a set of tasks with
total utilization U = (n+1)/(14 2"+ 4 ¢ which cannot be scheduled (by any algorithm)
if € > 0.

We use a set of tasks similar to the set used in [2]. Consider the set of tasks {r; = (C}, T})|i =
0,...,n}, where C; = of, T; = C;, a = 2"/t and g = a + 1.

When any of two tasks in the set are scheduled on a single processor they will either fully
utilize [1] the processor or one of them will miss the deadline. In order to verify this, we
apply the critical time zone argument, described in [1], to analyze the schedulability of task
sets on a single processor with Rate Monotonic scheduling. The critical time zone for a task
7; is a time interval between a request for 7; and the corresponding deadline, such that the
available time to execute 7; (after the time used by higher priority tasks is taken away) is
minimized. It is shown in [1] that a critical time zone occurs between time 0 and time 77,

when 7; is requested simultaneously with all higher priority tasks at time 0.

Consider any pair of tasks 7; and 7; where 7 < j. Since 7; has a shorter period, it gets higher
priority according to Rate Monotonic scheduling. For the schedulability of 7;, there are two

mutually exclusive cases to consider:
1. T; + C; > T; (see Figure 0.1)
In this case, 7; and 7; are exactly schedulable together on a single processor if T; — C; =

C, and 7; overflows if T; — C; < C}.
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For j =i+ 1, we have j —i= 1. Since T; - C; = Cj(=5=), Ti = C; = C;(2) = C}. This
means 7; and 7; are exactly schedulable together on a single processor.

Otherwise, 7 > 141,50 j —¢ > 1 and T; — C; < ;. This means 7; and 7; are not
schedulable together on a single processor.

2. T; 4+ C; < Tj (see Figure 0.2)

From our choice of values for the task periods, it follows that T; < 27}, so in this case
7; and 7; are exactly schedulable together on a single processor if 7; — 2C; = C;, and

7; overflows if T; — 2C; < C;.
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Figure 1: Critical zone for 7; when T; + C; > T
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Figure 2: Critical zone for 7; when T; + C; < T
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For e = 0 and j = n, we have j —i = n and so *—=—= = === = 5 = 0. It

follows that T; — 2C; = C;, and so 7; and 7; are exactly schedulable together on a single
processor.

al—itl_9

Otherwise, j —1 < n, s0 *—=== < 0, and T; — 2C; < ;. This means 7; and 7; are not

schedulable together on a single processor.

Adding up the utilizations of all of these tasks, we get U = (n 4 1)/(1 + 2/(*+1)). Now,
consider increasing U by ¢ > 0 and distributing a non-zero amount of ¢ to each task in
the system. That is, consider increasing C; by ¢; > 0 where > j¢; = ¢. If any pair of
tasks are scheduled on a processor, one of them will miss the deadline. However, ¢ can be
arbitrarily small, since each of the ¢;’s can be arbitrarily small. We have shown that this set
of tasks might be scheduled using n processors, but the task set becomes unschedulable with
an arbitrarily small increase in total utilization. This shows that we have an upper bound

on the worst case achievable utilization, Uy, (n).



Proof of the lower bound:

IN order to prove the lower bound, we show that for any set of tasks and for any n > 2 the
FFS algorithm can produce a schedulable task-to-processor assignments using n processors
as long as U < n(2'/%2 - 1).

The proof is by induction on the number of tasks. Let m denote the total number of tasks
in the system. Note that by an assumption made in Section 2.1, C;/T; < 1 for all tasks 7;.

(Basis case):

When m = 1, we have only one task and we can schedule it on one processor, since C;/T; < 1.
It follows trivially that for every n > 2, if U < n(21/2 — 1), FFS produces a schedulable task-
to-processor assignment using n processors.
(Induction case):
Assume the lower bound holds when m < k. Consider the case when m = & + 1.
We want to show that, for every n > 2, if U = Zfill C;)T; < 71(21/2 — 1) then FFS produces
a schedulable assignment for all £ + 1 tasks using n processors.
In this case we can reason from the given condition on U as follows:

k+1

STyt < (2t - 1)

=1

k
= 3. Ci/Ti+ (Crg1/Thgr) < n(2/2 - 1)

=1

k
= Y Ci/Ti <n(2'? = 1) = Cyp1 [Tipr

=1

k
= Y CYTi<(n=1)2"7 = 1)+ (22 = 1) = Cr1 /To
=1

There are two mutually exclusive cases:

1. Cry1/Tryr > 242 — 1.

In this case we can reason from the given condition on U as follows:
k
STCYT < (n = 1)(2Y% = 1) + (212 = 1) = Crg1 /T
i=1
k
= Y Ci/Ti < (n—1)(2/2 - 1)
i=1

Given the above condition, we want to show that k£ tasks are schedulable using n — 1

Processors.



There is a special case to consider when n = 2. If n = 2, Y2F_, C;/T; < 21/2 — 1 so tasks

T1,..., T are schedulable using n — 1 processors, which in this case is one processor.

For n > 2, by the induction hypothesis, & tasks are schedulable using n — 1 processors.
Consider scheduling the task 75x41. Since 7y, ..., 7% are schedulable using n — 1 proces-
sors, even if the FF'S algorithm is not able to schedule 7441 on any of the processors

Py, ..., P,_, it still should be able to schedule 7541 using F,.

2. Crgr1/Tep1 < 272 — 1.

By the induction hypothesis, for any n > 2 FFS is able to produce a schedulable
partition for the set of tasks 7y,..., 7, using n processors, because the given condition
U= Efill C;/T; < 71(21/2 — 1) implies Zle C;/T; < n(21/2 —1). When £k tasks are
scheduled on n processors there should be at least one processor P; with u; < 21/2 — 1,
because otherwise U > n(2'/2 — 1). Among those processors whose utilization is less
than or equal to 2/2 — 1, let P; be the processor whose index i is the largest. That is

to say pick P; such that Vi=1...,(us < 212 11 < i).

Now, assume that FFS cannot schedule 7447 on any of the processors Py,..., P,. In
particular, consider the case of F;. If m; = 1, we have utilization with 7441 of u; +
(Cry1/Te+1) < 2(21/2 — 1), so Tg+1 would be schedulable. Thus, the only condition

under which FFS is not able to schedule 7441 on F; is if:
1
m; > 2 and u; + Cyg1/The1 > mip1 (2mi41 = 1)

However, if this condition occurs, there should be at least one other processor P; so
that u; < 2172 _ 1 and i # j, because otherwise U > n(21/2 —1). Furthermore, j < ¢
because we picked 7 to be the largest index among all processors whose utilization is less
than or equal to 2/2—1. Then, since m; > 2, we should have a task 7, on the processor
P; such that Cs/T; < (21/2 — 1)/2. However, this means we could schedule 75 on P;
instead P; because u; + C,/T, < m¢+1(21/m"+1 — 1). This contradicts the assignment
policy of the FFS algorithm, so it must be that FF'S is able to schedule 7441 on F;.

4 Utility of the Lower Bound

The lower bound given in Theorem 1 is a sufficient condition for guaranteed schedulability

in multiprocessor fixed priority preemptive scheduling systems. One can easily compute the
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total utilization of a set of tasks, and if it is below this bound one can rely that it is schedulable

by the FFS algorithm.

An important feature of this schedulability test is that it can be applied in systems where the
task-to-processor assignments are not entirely static. That is, if a new task arrives one can
assign it to a processor without fear of causing any other tasks to miss their deadlines, as long
as the sufficient condition is met. This feature is especially important in online scheduling
where one cannot tolerate the large overhead of finding a new optimal task-to-processor
assignment (and the overhead of reassigning the existing tasks) each time a new task enters
the system. This extra feature comes from the use of the FI'S algorithm in the proof of the
lower bound. With other kinds of bin-packing algorithms such as First Fit Decreasing and
First Fit Increasing [3] this kind of online scheduling is not possible because all the existing

task-to-processor assignments have to be reexamined.

Our upper and lower bounds on the achievable utilization, 7(2'/2—1) and (n41) /(142" (1)),
are plotted in Figures 0.3 and 0.4. From these figures, it may seem that in the case of a small
number of processors the sufficient condition (U < n(2'/? — 1)) for guaranteed schedulability
is weak. However, comparing this to the corresponding schedulability condition for single
processor systems (U < In 2) we see that for n = 2 we already have better total utilization

than with a single processor — i.e. the second processor is not wasted.

5 Conclusion

In this study we have shown that the worst case achievable utilization for n processor systems
with static task-to-processor assignment and fixed priority preemptive scheduling lies between
n(2'/% = 1) and (n+1)/(14 2"+, The lower bound is a practical schedulability test, as
it is a constructive result based on analysis of the First it scheduling algorithm. An extra
feature of this schedulability test is that it can be applied in systems where new tasks may

arrive dynamically.

So far as we know, this is the first result relating the schedulability of multiprocessor fixed
priority preemptive scheduling systems to total task utilization. For further studies, it would
be interesting to try to narrow the interval between the lower and upper bounds, with or

without imposing some other restrictions.
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