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Abstract

A real-time system may have tasks with soft deadlines, as well as hard deadlines.
While earliest-deadline-first scheduling is effective for hard-deadline tasks, applying it to
soft-deadline tasks may waste schedulable processor capacity or sacrifice average response
time. Better average response time may be obtained, while still guaranteeing hard dead-
lines, with an aperiodic server. Three scheduling algorithms for aperiodic servers are
described, and schedulability tests are derived for them. A simulation provides perfor-
mance data for these three algorithms on random aperiodic tasks. The performances of
the deadline aperiodic servers are compared with those of several alternatives, including
background service, a deadline polling server, and rate-monotonic servers, and with es-
timates based on the M/M/1 queueing model. This adds to the evidence in support of
deadline scheduling, versus fixed priority scheduling.

1 Introduction

We consider a scheduling problem in which a single processor executes a set of periodic and
aperiodic tasks. The tasks are independent, except for mutual exclusion constraints over
certain critical sections. A task may have a hard deadline, a soft deadline, both forms of
deadline, or no deadline at all. A hard deadline is one that must always be satisfied, whereas
a soft deadline is one that only represents the desired average response time. If a task has
both hard and soft deadlines, the soft deadline is shorter than the hard deadline. Our primary
focus will be obtaining good average response time for tasks with soft deadlines, while still

being able to guarantee that all hard deadlines will be satisfied.

A hard-deadline task 7; is a sequence of requests for execution of a particular computation,

characterized by:

1. Dy, the (hard) deadline, relative to the request time, with 1 < C; < D;. If execution
of 7; is requested at time ¢, it must be completed by time ¢ + D;. We assume the
hard-deadline tasks 71,...,7, are indexed in order of increasing relative deadline, so

Dy <Dy << Dy



2. C;, an upper bound on the compute time, as a count of discrete time units.

3. T3, an upper bound on the interarrival time, such that 1 < C; < T;. We call this the
“period” of the task, whether the arrival of execution requests is strictly periodic, or

just sporadic.

Any task may have a soft deadline. This includes hard-deadline tasks, but also tasks
for which no upper bound is known on the compute time, or no lower bound is known on
the interarrival time. If a task has a soft deadline, we assume enough is known about the
probability distribution of the compute times and interarrival times to speak meaningfully
about average response times. For our simulations, we specifically consider tasks whose

compute times and interarrival times are exponentially distributed, with known mean values.

Given a task system and arrival times, a scheduling algorithm defines a schedule, which
is a conceptual time-line showing when each task executes. A schedule is said to be feasible
if the deadlines of all the requests of each task are met. A task system is said to be feasible

if there exists a feasible schedule for the task system.

The function of scheduling is to manage all resources to meet the timing requirements
of the system. In previous work, a scheduling method has been termed “optimal” if it can
find a feasible schedule for every feasible task system, but in practice this is not all that is

desired. Following Sprunt, Sha, and Lehoczky [11], we recognize the following objectives:

e Guarantee tasks with hard deadlines will always complete on time.
o Achieve fast average response times for aperiodic tasks with soft deadlines.

o Attain a high degree of schedulable processor utilization.

Liu and Layland[9] showed that preemptive earliest-deadline-first (EDF') scheduling is op-
timal for periodic (hard deadline) task sets, under certain simplifying assumptions. They also
showed that rate monotone (shortest-period-first) scheduling is optimal among static prior-
ity assignments, and they provided simple schedulability conditions for these two scheduling

methods.

Other researchers have extended the applicability of these results, relaxing some of the
simplifying assumptions about task arrivals, execution times, and interactions. Leung and
Merrill[8] observed that if relative deadlines are distinct from periods, “rate monotone” anal-
ysis requires scheduling shortest-relative-deadline-first. Sha, Rajkumar, and Lehoczky [10]
showed that the schedulability results for rate monotone priorities can be adapted to tol-
erate bounded blocking, such as may be due to scheduling exclusive access to shared data.

These results have been extended to EDF scheduling, by Chen and Lin [2] and by Baker [1].



Sprunt, Sha, and Lehoczky [11] and Lehoczky, Sha, and Strosnider[7, 12] further extended
the rate monotonic analysis model to include techniques for scheduling aperiodic tasks with

soft deadlines in a fixed priority framework.

Since the Liu and Layland results show that EDF scheduling can achieve a higher degree
of schedulable processor utilization than the rate monotone (fixed priority) model, for hard
deadline tasks, it is interesting to see how well soft-deadline aperiodic tasks can be scheduled

in an EDF framework.

In this paper, we show how to schedule soft-deadline tasks in a way that is easy to
compute, does not hurt the schedulability of hard-deadline tasks, and provides good average
response time for soft-deadline aperiodic tasks. We define three new algorithms, each with
a suflicient test for schedulability. The schedulability tests show that deadline scheduling

allows a larger server size than rate monotone scheduling.

We then report performance measurements for these algorithms, and for fixed-priority
aperiodic servers, obtained via simulation. The simulation results show that the deadline
servers perform much better than the fixed-priority servers, but the differences between the
deadline servers are relatively small. The simulations also relate the average response time

of a deadline aperiodic server to that of a simple queueing model.

The rest of the paper is organized as follows: Section 2 introduces the problem of schedul-
ing aperiodic tasks with soft deadlines in an EDF environment. Sections 3, 4, and 5 describe
new algorithms to handle this problem, and derive schedulability tests for these algorithms.
Section 6 compares these algorithms on an example. Section 7 explains how these algo-
rithms can be combined with background processing. Section 8 reports on a simulation
study of the performance of the three aperiodic server algorithms, comparing them against
some previously known algorithms and against queueing models. Section 9 reports results
of a comparsion study with rate monotone scheduling and fixed-priority aperiodic servers.

Section 10 concludes the paper.

2 Scheduling For Soft Deadlines

Tasks with soft deadlines pose a problem for EDF scheduling. The basic problem is that the
EDF scheduler cannot tell a soft deadline from a hard deadline. With pure EDF scheduling,
the only way to improve the response time of a task is to shorten its deadline. Since the
EDF scheduler will then treat this soft deadline as a hard deadline, it can cause truly hard

deadlines of other tasks to be missed.



The impact of soft deadline aperiodic requests on tasks with hard deadlines can be reduced
by using an aperiodic server task. Aperiodic requests are queued for the server when they

arrive, and executed as soon as the scheduling algorithm permits the server to execute them.

A simple form of aperiodic server is a background server. The server is scheduled at lower
priority than every hard deadline task. In this way, soft deadline requests never cause a hard
deadline to be missed. The main drawback of this model is that both average and worst-case

response times for the server may be unacceptably long.

Another simple form of aperiodic server is a polling server. With polling, the server is
treated as a hard deadline periodic task with a fixed execution time budget, whose deadline
is equal to its period. Once each period, the server executes and serves all the requests that
have been enqueued up to that time. If there are more requests than can be served in the
budgeted time they are carried over to the next period. If there is any left-over execution
time budget it is discarded. The period is chosen short enough to achieve the desired average
response time and to guarantee any associated hard deadline. The queueing of requests allows
the period of the server to be longer than the interarrival time of the requests, so that the

adverse effect on schedulability of other tasks is reduced.

An advantage of polling over background processing is that hard deadlines (of tasks that
have both hard and soft deadlines and have bounded execution and interarrival times) can
be guaranteed, since the server periodp is treated as a hard deadline. Also, by using multiple
servers, at different priority levels, one can accomodate a set of tasks with a range of hard

and soft deadline requirements.

The main disadvantage of polling service is that, under reasonable assumptions about
the distribution of aperiodic requests, the average response time is at least half the server
period plus the average execution time. Thus, the only way to improve response time for
soft-deadline tasks is to reduce the server period. For very short server periods, polling service
becomes time-sharing; that is, the response time approaches that of a dedicated processor
whose speed is slowed down by a factor of ¢ (0 < ¢ <= 1), where ¢ is the fraction of the
processor allocated to the server. This behavior is shown in Figure 5. The segmented lines
are average response times a simulated polling server, with 69% periodic load, for several
different server periods. (The simulation is described in Section 8.) The limiting case of a
time-sliced server, with infinitesimal time slicing interval and the same processor utilization as
the polling server, is shown by the upper smooth line. The lower smooth line is the expected

performance of a processor 100% dedicated to serving the aperiodic load, with no periodic

load.



Since these simulations do not take into account the overhead of frequent polling, the
performance is better than it would be in an application. This overhead of polling goes up as

the polling period gets shorter, and is the real limitation on the feasible frequency of polling.

10000 . | | | |
period 2700 ——
period 5400 —+—
period 10800 =—
| period 21600 —~— |
8000 period 43200 —-—
period 86400 —~*—
M/M/031
o | NUNUL e
E6000 | |
o)
c
i
§ 4000 | |
S
2000 |
olbew e | | |
0 0.05 0.1 0.15 0.2 0.25 03

mean aperiodic load

Figure 1: Polling Server response time versus period, IAT 3600, 69% periodic load.

We will show that better scheduling techniques are possible, that provide both shorter
response times for aperiodic tasks with soft deadlines than time-slicing, and lower overhead,
while still guaranteeing hard deadlines. In the following three subsections, we will describe

three such techniques.

3 Deadline Deferrable Server Algorithm

Lehoczky, Sha, and Strosnider in [7, 12] describe an approach which can be used to give
better response time for aperiodic tasks within the framework of rate monotone scheduling.
They call this the deferrable server (DS). The DS algorithm, like a polling server, creates

a periodic task (usually of high-priority) for servicing aperiodic requests. However, unlike



polling, the algorithm preserves the execution time allocated for aperiodic service if, upon the
invocation of the server task, no aperiodic requests are pending. The DS algorithm maintains
the aperiodic server’s execution time budget for the current period, as long as it has not been
exhausted. At the beginning of the next DS period, the server’s high-priority execution time

budget is replenished to its full size.

Though Lehoczky, Sha, and Strosnider proposed the DS for use with fixed priority schedul-
ing, we will show how this idea can be adapted to EDF scheduling. To do this, we need to
modify how the server preserves its high-priority execution time. We call the resulting new

server model the deadline deferrable server (DDS).

The deadline deferrable server is a periodic task whose relative deadline is the same as its
period, Ts. As with the DS, the difference between the DDS and a polling server is that the
DDS is able to serve requests that come in during the middle of a period. At the beginning
of each period, it receives an execution time budget allocation of a fixed size, C's. If, after
any queued requests are served, the execution time budget is not exhausted, the remaining
portion of the budget is retained up to the end of the period, and can be used for requests
that come in during that time. So long as a portion of this budget remains, the server is
allowed to execute at the priority determined by its deadline. When the budget is consumed,

the server is suspended until the next period.

The net effect of the DDS scheduling policy is that, independent of the actual arrival time,
an aperiodic request will be served at a priority consistent with the request having come in
at the beginning of the period, so long as the server’s execution time budget has not been

exhausted.

The analysis of the effect of the DDS on schedulability of other tasks is based on the
following lemma, which gives the worst case of the aperiodic server’s demand for CPU time

in a time interval [¢',].

Lemma 1 For every time interval [I',1] such that t is a missed deadline, ' < t — Cg, and
there is no task with deadline later than t executing in the interval, an upper bound of the
deadline deferrable server’s demand for CPU time in the interval is
[A - Cg
Ts
where A =1 — ' is the length of the interval.

JCs-I-CS

Proof:

Consider the situation in Figure 2. This is a worst case. It occurs if an aperiodic request

with execution time C'g arrives C'g time units before the end of a server period and there is a



Cs Cs] | |
t'+Cg t’-I—Csl-I—kTs

Figure 2: Worst case situation

similar aperiodic request at every later server period. Because the DDS priority is retained,
by preserving the server’s deadline, the first aperiodic request will have the shortest deadline;

we service this request of the aperiodic task immediately, which uses C'g time units.

Ift =t 4 Cs+ (k+ 1)Ts, the aperiodic server demand for CPU time in [t + Cs, 1] is
A-Cg A — CSJ
Cg = Cs.
( Ts ) 5 { Ts g
Otherwise, if t < '+ Cgs+(k+1)Ts, the aperiodic server demand for CPU time in [t'4 Cg, ]

is

A—-Cyg
l Ts JCS

because { is an earlier deadline that is missed, and so under the EDF scheduling algorithm,

the aperiodic server will not execute between ¢’ + C's + kT's and {.
It follows that the total demand for CPU time by the aperiodic server in [t',{] is at most

[A —Cs
Ts

| es+es

The following theorem establishes a sufficient condition for feasibility of a set of (periodic
and aperiodic) tasks under the DDS algorithm. This theorem is based on the schedulability
condition for EDF scheduling derived by Baker in [1], which is a generalization (to include
blocking times and aperiodic tasks, and to relax the requirement that relative deadline equals
period) of the schedulabilty test for deadline-driven scheduling originally derived by Liu and
Layland in [9]. Here, for simplicity of presentation, the effects of critical sections in both the

server and other tasks are ignored.

Theorem 2 A set of (periodic or aperiodic) hard-deadline tasks is schedulable by EDF
scheduling and DDS' algorithms if

k
C5 Ts — Cs)
vk ( min(Di,Ti)) (1 Dy s<l

k:l,...,n =1

where Us = Cg/Ts is the aperiodic server utilization.



Proof:

The proof is based on assuming that some task 7,, can miss its deadline, examining a
busy interval [t’,{] before the first point 7, misses its deadline, summing up the worst-case
execution times of all the tasks that may preempt 7, in such an interval, and dividing this

by the shortest possible length of the interval.

Let ¢ be the first time a task 7,,, misses its deadline, and ¢ be the last time before ¢ such
that there are no pending task execution requests with arrival times before ¢ and deadlines

before ¢. Call the interval [t', ] the busy interval.

Let k£ be the index of the task with the longest relative deadline, of all the tasks requested
in the busy interval. It follows that the set A = {7y, ..., 7} includes all the tasks requested in
the busy interval, other than the DDS. It also follows that every request for a task in A that

occurs in the busy interval has higher EDF priority than any request for a task 7, b > k.

By choice of ¢/, there are pending requests for tasks in A or the DDS at all times during
the busy interval, so the processor will always be busy. By the EDF priority assignment, the
only tasks that will be allowed to start execution in the busy interval will be the DDS and

those in A, and these can only be preempted by the DDS and other requests for tasks in A.
Let A =t —1t'. By choice of t', A > D; for every 7; in A, and in particular A > Dy.

From Lemma 1, the maximum time demand of the deadline deferrable server in the busy

interval is
[A - Cg

= JCs-I-CS

For every hard-deadline periodic or aperiodic task 7;, ¢ < k, the demand for CPU time in

(157

In the busy interval there is no idle time. The only tasks executing are the DDS, and

the busy interval is not more than

T1,...,Tk. Therefore, the total demand for CPU time is at most

= (272 ) (252 e

Since there is an overflow, the total demand for CPU time in the busy interval exceeds

A. Tt follows that if 7, misses its deadline, then D > A, and so D/A > 1.

Since |z| < z,

k

A - D; . ,

< Lo = ( Z+1)—+<—+1>—.
’ ; T; A Ts A
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It follows that if 7,,, misses its deadline then Lo > 1.
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It follows that
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Since D; < Afore=1,...,k

k
C; Ts—Cs)
< = - 1 7
brs by ;min(Di,Ti)+<+ D, ) Us

Thus, if 7,, misses its deadline then Lo > £1 > Lo > 1.0

The theorem and proof are stated above for only one server, but the reasoning of the proof
of Lemma 1 remains valid if there are other servers. Thus, Theorem 2 can be generalized to
multiple servers. Dividing the aperiodic load between several servers can be helpful if there
are aperiodic tasks with different hard timing constraints. As will be shown in Section &, a
longer server period may reduce the average response time, up to a certain point. However,
the effect of back-to-back server executions, reflected in the term (7s—C's)/Dy) of Theorem 2,
requires a reduction of the server utilization for large server periods to prevent missed periodic
deadlines. This relationship is illustrated in Figure 3, for three sample periodic task sets.

(These task sets are described completely in Section 8.)

It is left as an exercise for the reader to verify that the theorem can also be generalized to
take into account critical sections. Suppose nonpreemptable resources are allocated in a way
that bounds priority inversion, such as the SRP (Stack Resource Protocol[1]). If the server
time budget is exhausted during a critical section, the server may overrun its budget by the
duration of that critical section. To ensure that this effect cannot carry over to the next

execution of the server, the amount of execution time allocated to the server at the beginning



of each period needs to be reduced by the amount of overrun in the previous period. With

terms added for blocking effects, the schedulability condition of the theorem then becomes:

k
& By + €5 < Ts — Cs)
k 1+ ——Us <1
k:\?...n (E miH(Dszz')) * Dy, AT Dy Us <

where Ug = Cg/Tys is the aperiodic server utilization, €g is the execution time of the server’s
longest critical section, By = max{¢; | ¢ < k}, and ¢; is the execution time of the longest

critical section of the task ;.

With the SRP, because an arriving request may cause the deferrable server to preempt
with arbitrarily short deadline, the ceilings of resources used by the server must be set to the

maximum. That is, server critical sections cannot be preempted by any other task.

4 Deadline Sporadic Server Algorithm

Sprunt, Sha, and Lehoczky in [11] describe another approach to scheduling an aperiodic server
within the framework of rate monotone scheduling. They call this the sporadic server (SS).
Like the DS, the SS is a high-priority task that services aperiodic tasks. The first difference
is that the sporadic server can preserve its unused high-priority execution time indefinitely.
The other difference is that the replenishment of execution time used by the SS is scheduled
in a way that forces the execution to be spread out more evenly; in particular, the worst-case
situation of the DS, where two server allotments are used back-to-back, cannot occur. A key
property of the SS is that its effect on the schedulability of tasks with lower priorities cannot
be worse than that of a periodic task with the same period and execution time equal to the

server size. In this respect the SS is an improvement over the DS.

As with the DS, we will adapt the SS from fixed priority to EDF scheduling. The basic
idea of the SS will be retained: the delay until replenishment of the server’s execution time
budget will be measured from when the server priority becomes active. The modification
will be in the assignment of priority, through an appropriate choice of deadline. We call the

resulting new server model the deadline sporadic server (DSS).

A deadline sporadic server has a period T’s, and an execution time C's. The DSS scheduling
algorithm attempts to budget the server’s execution time in such a way that the effect of the
server on the schedulability of hard-deadline tasks is no worse than that of a hard-deadline

periodic task with period and deadline Ts, and execution time Cg.

When requests for the DSS come in, they are put onto the server queue. The arrival time

of each request is also recorded on the server queue, with the request. The server executes

10



requests from the server queue in order of arrival, as soon as it is permitted to do so by the

server scheduling algorithm.

The DSS scheduling algorithm keeps track of the server execution time budget in chunks.
At any instant, the server’s budget is partitioned into one or more chunks {x1, ..., x»}. The
scheduling algorithm splits and merges chunks, so the actual set and number of chunks varies
over time. Each chunk has an associated size, 0; > 1. The sum of the sizes of all the chunks
is constant, C's = o1 + - 4+ 0,. Each chunk has an associated replenishment time, p;. If
the replenishment time is in the future, the chunk is awaiting replenishment; otherwise it is
available. Initially, there is one chunk, and it is available. The chunk’s size is C's and its
replenishment time is the system start time.

The server is only eligible to execute when there are one or more uncompleted requests on
the server queue, and at least one available chunk of execution time. Let x,, always denote
the available chunk with the earliest replenishment time. The execution time used by the
server is charged to .

When the server consumes all of the chunk y,, or completes all the queued requests,
the portion of y,, that the server has consumed is split off and scheduled for replenishment.
Suppose the server has used é execution time. A new chunk, y,,, is created, with size o,,» = 6
and replenishment time p,,» = dg, where dg is the current deadline of the server (which is
defined further below). The size of x,, is reduced by 4. If the new size is zero, the chunk
Xm 18 deleted, and its role is then played by the remaining chunk with earliest replenishment
time.

For scheduling purposes, the server has a deadline. This deadline is ¢, + Ts , where ¢, is

defined as follows:

1. Initially, ¢, is undefined.
2. If ¢, is undefined, and the server becomes eligible to execute, t, is set to Clock.

3. If t, is undefined, and a task with deadline d < C'lock + Ts starts to execute, ¢, is set
to Clock.

4. If t, is defined, and a task with deadline d such that ¢, < d — Ts < Clock starts to

execute, t, is updated to d — Tg.

5. If t, is defined, and a task with deadline d such that Clock < d — Ts starts to execute,

t, becomes undefined.

6. If ¢, is defined, and the server begins a chunk x,, with p,, > {,, {, is updated to p,.

11



In each case, C'lock denotes the time at which the condition becomes true. Assume there is
an idle-task, with deadline oo, that executes when no other task is eligible to execute; by the

fifth case above, ¢, is undefined when the idle task is running.

Stated informally, ¢, is the most recent time at which the (current) server priority became
active. However, we are forced define it without reference to the server priority, to avoid

circularity in the definition, since the priority depends on the deadline, which depends on ¢..

Note that ¢, is always defined when the server is eligible to execute, and is never later
than the time the server last became eligible to to execute. Sometimes it may be earlier,
if the processor was continuously occupied with higher priority tasks just before the server

became eligible to execute.

For any time ¢ when ¢, is defined, it is true that in the interval [t,,?] the processor is
continuously busy executing tasks with deadlines < ¢, + Ts. It follows that the effect on the
schedulability of other tasks is the same as if the server had become eligible to execute at ¢,

and remained eligible to execute during the entire interval [t,,?].

Note that the replenishment method of the DSS algorithm forces the server not to re-use
a chunk of execution time until at least T time units later than the server last could have
become eligible to use that chunk. Thus, the execution time of the server within any time
interval cannot exceed the amount that would be used by a periodic task with the same

period and execution time.

With the DSS scheduling algorithm as we have just described it, the execution time
budget will become fragmented into smaller and smaller chunks. This fragmentation can
be limited by a simple modification. Available chunks are coalesced when this can be done
without affecting the scheduling outcome. If ¢ is any time the server priority is inactive (or the
instant where the server priority becomes active), at time ¢ we can coalesce all the available
chunks into a single chunk with replenishment time ¢{. This cannot affect the scheduling
outcome, since p; is only used in updating ¢, (and computing the server deadline) when

pi > L., and we know ¢, > .

Based on the arguments above, we have the following lemma, which characterizes the

deadline sporadic server load.

Lemma 3 For every time interval [l',1] such that t is a missed hard deadline, ' <1 — Cg
and there is no task with deadline later than t executing in the interval, an upper bound of

the deadline sporadic server’s demand for CPU time in the inlerval is

=)o

where A =t — 1.

12



The following theorem provides a sufficient condition for feasibility of a set of (periodic

and aperiodic) tasks under the DSS algorithm.

Theorem 4 A setl of hard-deadline tasks is schedulable by EDF scheduling and the DSS
algorithm if

k
s
_— <
vk (Z min(Di,Ti)) tUs <1,

k:l,...,n =1

where Us = Cg/Ts is the aperiodic server utilization.

Proof:
The proof is similar to the proof of Theorem 2. The total demand for CPU time in the busy

(1272 e 3o

=1

interval is at most

Since there is an overflow, the total demand for CPU time in [t',{] exceeds A, so

S(STIIHEMEIEEN

=1
By similar reasoning to the proof of Theorem 2, we obtain
C; Cs

k
I )
; min(D;,Ty) | Ts

The theorem and proof above are stated for a single server but can be generalized to
multiple servers, with different sizes and replenishment periods. For example, it can be seen

that the schedulability test is satisfied for two servers with sizes C's and C'sr and periods Ts
o

Tor-
As shown in Section 8, in the context of a given periodic task load, the average response time

and T, respectively, if-and-only-if it is satisfied for a single server with utilization % +

of aperiodic tasks may be improved significantly by assigning a longer server period. This
pays off better with the sporadic server than the deferrable server, since the server’s impact
on periodic tasks depends only on the server utilization; that is, one can adjust the server
period and server size freely, without causing missed periodic deadlines, so long as the server

utilization remains constant.

It is left as an exercise for the reader to verify that the schedulability condition of the
Theorem 4 can be generalized to account for the blocking effects of critical sections. The
replenishment must be adapted to prevent server overruns from accumulating. If the server
uses up a chunk while it is in a critical section, it is allowed to continue executing at the

same priority until it leaves the critical section. This is an execution time overrun. When

13



the server exits an outermost critical section, the scheduler must check whether the current
chunk has been exhausted. If the chunk has been exhausted, the scheduler does the normal
processing for the replenishment of that chunk, but keeps out the amount of the execution
time overrun. This will be charged against future replenishments in a way that mimics what

would have happened if the task had not been allowed to run over.

Suppose the amount of the server overrun is . Suppose the next replenishment is y,,,

which arrives at time ¢. There are two possible cases:

1. # > 0,,. The overrun amount is reduced to z — o,,,, and the replenishment time of x,,

is updated to t + =z + T5s.

2. & < 0. The overrun amount is reduced to zero, and the size of x,, is reduced by z.

The schedulability condition with blocking terms is then

k
Ci By + €5
k J¢ <1
k:Yn (; min(Di’Ti)) i Dy, tUs <

With the DSS, unlike the DDS, an arriving aperiodic request cannot cause the server to
preempt a periodic task that has a shorter relative deadline than the server period. Thus,
the server contribution to SRP ceilings is determined by the server period. If there are other
tasks with shorter deadlines than the server period, that do not lock any resources used by
the server, they are not blocked by server critical sections. This reduced blocking can be an

advantage for the DSS.

5 Deadline Exchange Server Algorithm

The third algorithm is a modification and simplification of the DSS algorithm. The DSS
algorithm requires keeping track of an arbitrary number of replenishment chunks, with various
sizes and replenishment times. This makes the implementation complicated, especially if one
wants to support several servers with different capacities and priority levels. Looking for a
simpler algorithm with similar performance to the DSS, we came up what we call the Deadline
Exchange Server (DXS). The idea of the DXS is to discard the remaining server execution
time as soon as the request queue is empty in exchange for earlier replenishment of the full

server budget.

The operation of the DXS algorithm is similar to the DSS algorithm, except that any
remaining server execution time is discarded as soon as the request queue is empty, and the
wait for replenishment time is proportional to the size of the last chunk of execution time

used. That is, if we only used z time units of server execution time out of the server size Cg,

14



then instead of replenishing this z time units at ¢, + Ts, we discard the remaining execution
time and schedule a full replenishment of C's units to occur at time ¢, + CLSTS' The server

deadline is computed the same as for the DSS, i.e. it is still ¢, + T’s.

The analysis of the DXS algorithm is simplified by the fact that (unlike the DSS) the
DXS budget is always zero when it is waiting for a replenishment. Thus, at all times, the

DXS must be in exactly one of the following states.

1. The server is not executing, there are no pending requests, and the server budget is

full.

2. The server is not executing and the server budget is empty. (There may or may not be

pending requests.)

3. The server is executing, there is at least one pending request (which is being served),

and the server budget is non-empty.

This case breakdown is used to proove the following lemma.

Lemma 5 For every time interval [t',t] such that t is a missed hard deadline, t' < t — Cyg,
and there is no task with deadline later than t executing in the interval, an upper bound on

the deadline exchange server’s demand for CPU time in the interval is
i. A, for A< CCg
1. Cg, for Cs <A< Ts
. g—;A, for Ts < A
where A =1 — t' is the length of the interval.

Proof:

The proof is by induction on A. For A < (g, it is clear that (i) holds, since the server

cannot execute longer than the length of the entire interval. This is the basis of the induction.

Consider an interval [t/,¢] as in the statement of the lemma. At time ¢', the server must

be in one of the three states described above. Consider what happens in each case.

1. The server budget is full. There are no pending requests at time t'. If there is no
request in the interval [t',¢], the server does not execute, and the upper bounds are
satisfied. Otherwise, suppose the next server request arrives at time t' +¢, 1 < e < A.
The server time used in the interval [t',{] is the same as the server time for the interval

[t' 4+ €,t]. There are two cases.

15



(a) A —e€<Ts. The server cannot execute in the interval [t + ¢, 1], since its deadline
is ' + € + Ts, which is later than ¢, and there is a periodic task with deadline ¢
that has not completed.

(b) Ts < A — €. By induction, the lemma holds for the interval [t' + €], since it is
shorter than [, {]. Therefore, the server uses at most g’:—;(A —¢€) time in [t + €, 1],

which is less than %A.
S
In both cases it follows that the upper bounds of the lemma are satisfied for [¢’, {].

. The server is not executing and the server budget is empty. In this case, the server
cannot execute until the next replenishment time. If the replenishment does not occur
within the interval [¢/, ], the server will not be able to preempt the task whose deadline
is missed at { and the upper bounds are satisfied. Otherwise, suppose the next replen-
ishment is at time ' + ¢, 1 < € < A. Applying induction the same reasoning as in the

previous case, we see that the upper bound holds.

. The server is executing a request. This means the server budget is non-empty. The
server will execute (subject to preemption by tasks with shorter relative deadlines) until
it has served all pending requests or its budget has become empty. Let ¢” be the time
the server stops. The replenishment will be scheduled no earlier than time ¢ + g—ie,

where ¢ is the amount of time used by the server in the active period ending at ¢”.

We have two cases:

(a) ¢ + 056 + Ts > t. The server cannot execute in [t' + g—ég,t], since the deadline

associated with the replenishment is after .

(b) ¢ + Cse + Ts < t. By induction, the lemma holds for the interval [t + g—ie,t],
since it is shorter than [t',¢]. Since Ts < A — —e case (iii) applies. Therefore,
the server uses at most T—S(A - g—s ) time in [t 4 g—ge,t], which means the time
used in [/, ] is at most

Cs Ts

+ (A - ¢
‘ s( Cs)

Cs
Ts

In all cases, the upper bound is satisfied.

Lemma 6 The upper bounds of Lemma 5 are achievable.

Proof:

Given a length, A, there two possible cases:
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1. A < Ts. Suppose the server budget is full at time ¢ and an unbounded stream of
requests arrives at that time. The server will execute for C's time and then wait until
t' + T’s for replenishment. Thus, it uses A time within the interval if A < Cs, and uses
Cg time if Cg < A.

2. Ts < A. The maximum server load over the interval is achieved under the following

scenario.

(1) The server executes for the first C's time units of every interval [t—iT's, t—(i—1)Ts],

fori=1,...,k, where k = LTASJ,and

(2) it executes for the first g’:—ge time units of the interval [/, '+ €], where ¢ = A — kT,

and k is as above.

This execution pattern is achieved if the server budget at time ¢’ is %6 and the rate
of requests is sufficient to keep the server busy continually thereafter. The total server

execution time in the interval is

The proof of Theorem 4 also applies to the DXS, except that (by Lemma 5) the floors are
replaced by exact fractions. Thus, the sufficient condition for DSS schedulability also applies
to the DXS.

Since the proof does not depend on whether there is more than one server, or on the
relationship of the period of the server to the deadlines of other tasks, the extension to
account for blocking times also applies. As with the DSS, the relative deadline of the server

can be used in computing the SRP ceilings for resources used by the server.

Comparing the behavior of the DXS and the DSS, we see that neither is better than the
other in all cases. For example, suppose the DSS has size C' and period T'. The server budget
is C' at time 0. Suppose a request arrives at time 7'/2 that takes C'/2 time to execute. This
leaves a server budget of C'/2. Suppose the next request arrives at time 7" and needs C' time
to execute. The server runs for C'/2 time, and then must wait for the replenishment that
will occur at time T + T'/2. The request finally completes at time 7'+ T/2 + C'/2. With
DXS, the second request would have to wait, at first, since the excess server budget C'/2
would be discarded at the end of the first request, but replenishment would occur earlier,
at time 7. This would enable the DXS to complete the second request by time 7'+ C'/2 —
almost 50% earlier than the DSS. There are also situations where the DXS does worse. In

particular, this would be the case if a request with large execution time were immediately
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followed by one with a very short execution time. With the DXS it would be necessary to
wait for replenishment before serving the short request, but with DSS there would be enough
remaining execution time in the budget for the short request to be served without waiting

for replenishment.

The DXS is likely to do worse than the DSS and DDS for bursty arrivals, that are close
together but not close enough that one arrives while the preceding one is still being served,
assuming the server size is chosen large enough to handle most bursts. When an aperiodic
request arrives after the preceding request has been served to completion, the DXS will always

force it to wait a while, for replenishment of the time used by the preceding request.

The chief advantage of the DXS is that it is much simpler to implement than the DSS. An
implementation of the DSS must do a lot of housekeeping to keep track of the set of pending
replenishments, which have different sizes and different times. In contrast, the DXS never
more has than one replenishment pending at any time, and the amount of the replenishment
is always the same, i.e. the full server quota. This advantage in simplicity is likely to
be especially noticeable if one needs to support multiple servers, with different sizes and

replenishment periods.

6 Example

The DDS, DSS, and DXS algorithms will be illustrated by comparing their operation to that
of background and polling aperiodic service using a simple periodic task set. The task set is
composed of two periodic tasks: 7 and 7. For these examples, both 7y and 7 begin their

periods at time = 0. The periodic task set parameters are as follows:

Task | Exec. time | Period | Utilization (%)
7'1 2 10 20.0
T2 6 15 40.0

For this periodic task set, the maximum server sizes were determined for the polling
server, the DDS, DSS, and DXS algorithms. For the DDS, DSS, and DXS algorithms, the
server sizes were determined based on the suflicient conditions derived in Theorem 2 and
Theorem 4. For each algorithm, the server’s period was chosen to be 5 units of time. The
servers were started at time zero. The server size characteristics for the polling server, DDS,

DSS, and DXS algorithms are as follows:

Algorithm | Exec. time | Period | Server utilization (%)
Polling 2 5 40.0
DDS 1.63 5 32.6
DSS 2 5 40.0
DXS 2 5 40.0
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Figures 4, 5, 6, 7, and 8 show the behavior of the background service, polling service, the
DDS, DSS, and DXS Algorithms for this task set. Figure 4 and the upper part of Figures 5,
6, 7, and 8 show the task execution order, and the lower part of Figures 5, 6, 7, and 8 shows
the server budget as a function of time. In each of these examples, two aperiodic requests
occur. The first aperiodic request for 1.8 time units and occurs at time = 2, and the second

is for 2 time units and occurs at time = 6.

The response time performance of background service for aperiodic requests shown in
Figure 4 is poor. Since background service only occurs when the resource is idle, the first
aperiodic service begins at time = 8 and part of the second aperiodic service begins at time
= 9.8 before pereempted by periodic task 71 and resumed at time = 12. The response times

of both aperiodic requests are 7.8 time units.

The response time performance of polling service for the aperiodic requests shown in
Figure 5 is better than background service for both requests—the response time of the two
aperiodic requests are 4.8 and 5.8 time units respectively. The polling server’s first period
begins at time = 0. As can be seen on the budget graph, the execution time budget of the
polling server is discarded during its first period because no aperiodic requests are pending.
The first request misses the first polling period and must wait until the second polling period
(time = 5) before being serviced. At time = 5, the first aperiodic request receives immediate
service, because it has the nearest deadline. Part of the second request can be serviced using
the remaining execution time, and it is completed in the third polling period. At time 11.8,
the service of the second request is completed, and since there is no further request, the

remaining execution time is discarded.

Figure 6 shows the behavior of the DDS algorithm. At time = 0, the server’s execution
time budget is brought to its full size of 1.63 unit and 71 begins execution. The server budget
and deadline are preserved until the first aperiodic request occurs and is serviced at time =
2. At time = 3.63, the server’s execution time is exhausted and 7, begins. At time = 5,
the server’s execution time is brought to its full size of 1.63 unit and the service for the first
aperiodic request resumes, consuming 0.17 units of server execution time. At time = 5.17,
the service for the first request is completed and 75 resumes execution. The response time
for the first aperiodic request is 3.17 units of time. At time = 6, the second aperiodic request
occurs and is serviced using the remaining 1.46 units of server execution time. At time =
7.46, aperiodic service is suspended and 7, resumes execution. At time = 10, the server’s
execution time is brought to its full size, 1.63. Assuming the aperiodic server wins priority
ties, such as with 75, service for the second aperiodic request is resumed. At time =10.54,
service for the second aperiodic request is completed (leaving 1.09 units of server execution

time) and 7, resumes execution. The response time for the second aperiodic request is 4.54
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units of time. At time = 12, 75 completes execution and 7; begins execution. At time = 14,
71 completes execution. At time = 15, the server’s execution time is brought to its full size

of 1.63 unit and 75 begins execution.

Figure 7 shows the behavior of the DSS algorithm. The server begins with its full execution
size of 2.0 unit. At time = 0, 7y begins execution and {, is undefined. At time = 2, 7y
completes execution and the first aperiodic request occurs and is serviced immediately since
ds =t, +Ts = 7. At time = 3.8, the servicing of the first aperiodic request is completed,
leaving 0.2 of the server’s execution time, and 75 begins execution. At this time ¢, is undefined
since 73’s deadline is at time = 15. A replenishment of 1.8 units of time is set for time =
7 (denoted by arrow pointing from time = 2 on the task execution line to time = 7 on the
server budget time line in Figure 7). The response time of the first aperiodic request is 1.8
units of time. At time = 6, the second aperiodic request occurs. At this time the server
becomes eligible to execute, so 1, is set to 6. ince dg is equal to 11, the request can be
serviced immediately using the remaining 0.2 units of server time. At time = 6.2, the server
is exhausted and the replenishment of 0.2 units of time is set for time = 11. Task 73 resumes
its execution. At time = 7, the first replenishment of server execution time occurs, bringing
the server’s budget up to 1.8 units of time. {, becomes defined, and we can resumes the
execution of the second aperiodic request since dg is equal to 12. At time = 8.8, the servicing
of the second aperiodic request is completed, and 75 is resumed. A replenishment of 1.8 units
of time is set for time = 12. The response time of the second aperiodic request is 2.8 units of
time. At time = 11, the second replenishment of server execution time occurs, bringing the
server’s budget up to 0.2 units of time. At time = 11.8, 75 completes execution, 7y begins
execution. At time = 12, the third replenishment of 1.8 units of time occurs, bringing the

server’s budget back to 2 units of time.

Figure 8 shows the behavior of the DXS algorithm. The server begins with its full execu-
tion budget of 2.0 unit. At time = 0, 7, begins execution and ¢, is undefined. At time = 2, 7y
completes execution and the first aperiodic request occurs and is serviced immediately since
ds =t,+Ts = 7. At time = 3.8, the servicing of the first aperiodic request is completed, and
Ty begins execution. Since there is no more request, the remaining 0.2 server execution time
is discarded. A replenishment of 2 units of time is set for time = 2 + %5 = 6.5 (denoted
by arrow pointing from time = 0 on the task execution line to time = 6.5 on the server
budget time line in Figure 8). The response time of the first aperiodic request is 1.8 units
of time. At time = 6, the second aperiodic request occurs. It has to wait since there is no
execution time budget left. At time = 6.5, the first replenishment of server execution time
occurs, bringing the server’s budget up to 2 units of time. ¢, becomes defined and the second

aperiodic request can now be executed since dg is equal to 11.5. At time = 8.5, the servicing
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of the second aperiodic request is completed, and 79 is resumed. A replenishment of 2 units
of time is set for time = 11.5. The response time of the second aperiodic request is 2 units
of time. At time = 11.5, the second replenishment of server execution time occurs, bringing
the server’s budget back up to 2 units of time. At time = 11.8, 75 completes execution, 7

begins execution.

7 Background Processing

The DDS, DSS, and DXS scheduling models can be combined with background processing.
In such a hybrid model, the deferrable, sporadic, or exchange server can use either foreground
or background processor time. The use of foreground time is scheduled according to the EDF
algorithm; it is strictly budgeted, since while the server is executing in foreground it competes
for time with hard-deadline tasks. The use of background time is unlimited, since then there
are no competing hard-deadline requests. This can be expected to allow better response time
for sporadic requests when the hard-deadline portion of the processing load is relatively light,

so that a significant amount of background time is available.

Adding background service does not affect the worst-case schedulability of hard-deadline
tasks. The resulting system can be modeled as if there were two servers. One of these is a
pure background server. The other is a pure foreground (deferrable, sporadic or exchange)
server. Any hard-deadline task can preempt the background server, except when it is in a
critical section. Thus, the only contribution of the background server to the schedulability
analysis is this blocking effect. Since this is no more blocking than could be caused by a pure

foreground server, the analysis is unchanged.

8 Performance Studies

Simulations were conducted to compare the performance of the polling, DDS, DSS, and
DXS algorithms for soft deadline aperiodic tasks. For comparability, these simulations were

modeled after those reported for the DS and SS algorithms in [11].

8.1 Work Load

Three sets of ten periodic tasks were chosen, each with periods ranging from 5,400 to 120,000,

having total processor utilizations of 40%, 69%, and 88%*. The specific periods and execution

!We chose specific task sets, rather than random sets of task periods and workloads, chiefly because we were
not comfortable hypothesizing a suitable probability model; we are not aware of any work that characterizes
the distribution of periods and execution times in the task sets of real-time applications. However, from our
observation of the examples we have run, we believe these examples are “fair” in the sense of not provoking
either extreme of performance.
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40% load 69% load 88% load
i T; C; T; C; T; C;
1 5400 200 5400 600 5400 300
2 10800 600 14400 600 10800 1000
3 21600 1600 24000 500 21600 2800
4 27000 3000 43200 6400 30000 1400
5 36000 400 54000 3000 43200 7200
6 43200 1200 67500 4500 54000 11000
7 54000 1000 72000 7200 60000 3600
8 67500 1500 90000 3600 90000 6600
9 | 108000 1000 | 108000 2000 | 108000 2000
10 | 120000 4000 | 120000 10500 | 120000 4000
Table 1: Periodic task parameters
Server 40% load | 69% load | 88% load
Polling, DSS, DXS 3240 1674 648
DDS 3181 1622 623

Table 2: Deadline server sizes

times are shown in Table 1. The relative deadline of each task is equal to its period.

8.2 Short Server Period

In the first set of tests, the server period for each of the algorithms was chosen to be 5,400,
i.e., the same as the shortest periodic task. The server size was chosen to be the largest
for which schedulability of the periodic load could be guaranteed under the particular server
algorithm. The actual server sizes for the experiments are shown in Table 2. Note that the
server sizes given by the schedulability test for the DDS are smaller than for the DSS and
DXS, though for these task sets the differences are not very large.

The aperiodic load was varied across the range of resource utilization unused by the peri-
odic tasks. The interarrival times for the aperiodic tasks were generated with an exponential
distribution. Three mean interarrival times were tested: 1,800, 3,600, and 5,400. The aperi-
odic service times were also modeled using an exponential distribution. Several mean service

times were tested, for each mean interarrival time.

In the simulations, since the objective of an aperiodic server is to achieve low average
response time for soft deadline aperiodic requests, we assumed an aperiodic request wins any

priority ties with periodic tasks. We did notl simulate any blocking.

In the resulls reported here, we did notl allow the server to use any background time. We

chose to present the results without background processing, primarily because we felt they
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would be more representative of what would be achieved in a multi-server situation (with

several servers running with different capacities and periods)?.

The average response times of all the server scheduling models, for each of the combi-
nations of mean periodic interarrival times and periodic loads that we tested are given in
Tables 3-5. The first two columns are the periodic and aperiodic load. The number following
“1+” is the spread of the 99% confidence interval, expressed as a percentage of the average,
rounded to the nearest whole percent. This was computed as zgg955/y/n, where n is the
number of aperiodic requests, s is the sample standard deviation of the response time, and

Z0.995 is the 0.995th quantile of the standard normal distribution.

?We also found that the backgound processing tends to pay off most when the aperiodic load approaches
or exceeds the server capacity, in which case the particular choice of foreground server scheduling algorithm
no longer makes a significant difference in performance.
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Figure 8: Deadline Exchange Server example
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periodic  aperiodic BGS PLS DDS DSS DXS
0.40 0.05 1161+ 2.6% 2635+ 0.8% 94 1+ 3.3% 94 £ 3.3% 96+ 3.3%
0.40 0.10 1410+ 2.4% 2632+ 0.9% 198 + 3.6% 198 + 3.6% 209+ 3.5%
0.40 0.15 1700+ 2.2% 2675+ 1.0% 317 + 4.4% 321 + 4.3% 343+ 3.9%
0.40 0.20 2055+ 2.1% 2821+ 1.2% 478 + 5.0% 494 + 4.7% 521+ 4.3%
0.40 0.25 2498+ 2.1% 3082+ 1.4% 728 £ 5.2% 761 + 4.7% 778+ 4.5%
0.40 0.30 3069+ 2.2% 3498z 1.7% 1115 + 5.1% 1167 + 4.6% 1160+ 4.5%
0.40 0.35 3812+ 2.2% 4084+ 2.0% 1726 + 4.8% 1769 + 4.3% 1737+ 4.4%
0.40 0.40 4847+ 2.4% 5022+ 2.2% 2677 +4.4% 2670 + 4.1% 2617+ 4.2%
0.40 0.45 6465+ 2.5% 6510+ 2.6% 4356 + 4.1% 4199 + 3.9% 4121+ 4.0%
0.40 0.50 9600+ 2.8% 9556+ 2.9% 7843 +3.9% 7162 +3.8%  T7059: 3.8%
0.40 0.55 17083+ 3.0% 17063+ 3.1% 16889 + 3.8% 14496 = 3.7% 14357+ 3.7%
0.69 0.02 7639+ 2.0% 2620+ 0.9% 45 2+ 3.3% 45 2+ 3.3% 54+ 3.4%
0.69 0.05 8310+ 1.9% 2635+ 0.8% 94 +3.7% 94 +4.1% 121+ 3.6%
0.69 0.07 8936+ 1.8% 2644+ 0.9% 148 + 5.3% 152 2+ 6.0% 208+ 4.3%
0.69 0.10 9554+ 1.7% 2724+ 1.1% 220 £ 6.9% 254 £ 7.0% 330+ 5.1%
0.69 0.12 10327+ 1.7% 2907+ 1.3% 351 £ 7.6% 443 + 6.8% 507+ 5.5%
0.69 0.15 11329+ 1.6% 3217+ 1.6% 579 + 7.4% 759 £ 6.0% 782+ 5.6%
0.69 0.17 12651+ 1.5% 3733+ 1.9% 974 £ 6.7% 1252 + 5.4% 1229+ 5.3%
0.69 0.20 14486+ 1.4% 4488+ 2.2% 1644 + 6.0% 1993 + 4.8% 1912+ 5.0%
0.69 0.22 16933+ 1.3% 5746+ 2.5% 2914 £ 53% 3226 +4.4% 3074z 4.6%
0.69 0.25 20802+ 1.3% 8034+ 2.8% 5589 +4.7% 5475 + 4.1% 5245+ 4.3%
0.69 0.27 27949+ 1.5% 13099+ 3.1% 12612 + 4.1% 10518 + 3.8% 10197+ 4.0%
0.88 0.01 18269+ 1.4% 2539+ 0.9% 18 + 3.3% 18 + 3.3% 27+ 4.1%
0.88 0.02 19317+ 1.3% 2608+ 0.9% 36 +4.5% 36 +6.0% 75+ 4.4%
0.88 0.03 21047+ 1.3% 2646+ 0.9% 58 + 8.6% 66+ 11.6% 148+ 5.1%
0.88 0.04 22885+ 1.3% 2727+ 1.0% 99+ 11.9% 149+ 11.3% 258+ 5.9%
0.88 0.05 24613+ 1.3% 2911+ 1.3% 1922 12.2% 333 £ 9.0% 424+ 6.4%
0.88 0.06 26840+ 1.3% 3249+ 1.6% 389+ 10.4% 670 £ 7.0% 693+ 6.3%
0.88 0.07 20569+ 1.2% 3770+ 2.0% 761 £ 8.8% 1206 + 5.9% 1147+ 5.9%
0.88 0.08 33091+ 1.1% 4627+ 2.3% 1494 £+ 7.2% 2047 £ 5.0% 1881+ 5.4%
0.88 0.09 38898+ 1.1% 6114+ 2.6% 3081 +5.8% 3510 +45% 3214+ 4.9%
0.88 0.10 47190+ 1.0% 9014+ 2.9% 6836 +4.8% 6376 +4.1% 5950+ 4.5%
0.88 0.11 63183+ 0.9% 16114+ 3.3% 19510 + 3.9% 13518 + 3.9% 12914+ 4.1%

Table 3: EDF response times, mean aperiodic IAT 1805, after 54000000 time units.
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periodic  aperiodic BGS PLS DDS DSS DXS
0.40 0.05 1297+ 3.3% 2751+ 1.2% 189+ 2.3% 189+ 2.3% 194+ 2.3%
0.40 0.10 1722+ 2.8% 2892+ 1.1% 408 + 2.5% 409+ 2.5% 424+ 2.4%
0.40 0.15 2221+ 2.5% 3175+ 1.2% 708+ 2.9% 717+ 2.8% 728+ 2.7%
0.40 0.20 2828+ 2.3% 3615+ 1.3% 1178+ 3.0% 1179+ 2.9% 1182+ 2.8%
0.40 0.25 3592+ 2.2% 4293+ 1.5% 1868+ 3.0% 1840+ 2.9% 1826+ 2.8%
0.40 0.30 4577+ 2.1% 5230+ 1.6% 2836+ 2.8% 2757+ 2.8% 2725+ 2.8%
0.40 0.35 5926+ 2.1% 6535+ 1.7% 4224+ 2.7% 4067+ 2.6% 4026+ 2.6%
0.40 0.40 7853+ 2.0% 8418+ 1.8% 6294+ 2.5% 5967+ 2.5% 5922+ 2.5%
0.40 0.45 10950+ 2.0% 11664+ 1.9% 9863+ 2.4% 9147+ 2.4% 9089+ 2.4%
0.40 0.50 17187+ 2.1% 17923+ 2.0% 17281+ 2.3% 15434+ 2.3% 15380+ 2.3%
0.40 0.55 33152+ 2.0% 34047+ 2.0% 37971+ 2.1% 31590+ 2.2% 31543+ 2.2%
0.69 0.02 7755+ 2.8% 2704+ 1.2% 92+ 2.3% 92+ 2.3% 105+ 2.6%
0.69 0.05 8458+ 2.6% 2766+ 1.2% 192+ 2.6% 200+ 3.0% 242+ 2.8%
0.69 0.07 9175+ 2.5% 2950+ 1.2% 348+ 3.4% 394+ 3.9% 441+ 3.3%
0.69 0.10 9957+ 2.4% 3303+ 1.3% 628+ 3.9% 754+ 3.9% 770+ 3.5%
0.69 0.12 10919+ 2.2% 3850+ 1.5% 1086+ 3.8% 1300+ 3.6% 1290+ 3.4%
0.69 0.15 12171+ 2.1% 4654+ 1.7% 1800+ 3.5% 2081+ 3.3% 2027+ 3.2%
0.69 0.17 13873+ 1.9% 5808+ 1.8% 2902+ 3.3% 3210+ 3.0% 3136+ 3.0%
0.69 0.20 16137+ 1.8% 7433+ 1.9% 4626+ 3.0% 4842+ 2.8% 4735+ 2.8%
0.69 0.22 19447+ 1.7% 10043+ 2.0% 7581+ 2.8% 7455+ 2.6% 7316+ 2.6%
0.69 0.25 24976+ 1.6% 14865+ 2.0% 13664+ 2.6% 12223+ 2.5% 12075+ 2.5%
0.69 0.27 36817+ 1.6% 25691+ 2.1% 29508+ 2.3% 23092+ 2.3% 22895+ 2.3%
0.88 0.01 18621+ 1.9% 2643+ 1.2% 36+ 2.4% 36+ 2.4% 55+ 4.1%
0.88 0.02 19531+ 1.8% 2707+ 1.2% 78+ 3.7% 89+ 5.5% 153+ 4.3%
0.88 0.03 21091+ 1.8% 2863+ 1.2% 168+ 5.6% 246+ 6.1% 318+ 4.5%
0.88 0.04 22793+ 1.8% 3209+ 1.4% 380+ 5.6% 595+ 5.1% 628+ 4.4%
0.88 0.05 24708+ 1.8% 3795+ 1.6% 787+ 4.9% 1168+ 4.2% 1132+ 4.0%
0.88 0.06 27154+ 1.8% 4639+ 1.7% 1492+ 4.2% 2006+ 3.6% 1897+ 3.6%
0.88 0.07 30116+ 1.7% 5880+ 1.9% 2668+ 3.7% 3253+ 3.2% 3079+ 3.2%
0.88 0.08 34447+ 1.6% 7705+ 2.0% 4632+ 3.3% 5098+ 2.9% 4876+ 3.0%
0.88 0.09 40892+ 1.5% 10858+ 2.0% 8397+ 2.9% 8213+ 2.6% 7923+ 2.7%
0.88 0.10 51410+ 1.4% 17075+ 2.1% 17078+ 2.6% 14411+ 2.5% 14094+ 2.5%
0.88 0.11 71360+ 1.3% 32742+ 2.1% 46113+ 2.1% 30341+ 2.3% 29966+ 2.3%

Table 4: EDF response times, mean aperiodic TAT 3605, after 54000000 time units.
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periodic  aperiodic BGS PLS DDS DSS DXS
0.40 0.05 1467+ 3.7% 2854+ 1.4% 283+ 2.7% 283+ 2.7% 291+ 2.7%
0.40 0.10 2053+ 3.1% 3152+ 1.4% 639+ 3.2% 640+ 3.1% 651+ 3.0%
0.40 0.15 2771+ 2.8% 3688+ 1.5% 1189+ 3.5% 1184+ 3.4% 1186+ 3.3%
0.40 0.20 3637+ 2.6% 4453+ 1.7% 1980+ 3.4% 1943+ 3.3% 1934+ 3.3%
0.40 0.25 4782+ 2.5% 5531+ 1.9% 3113+ 3.3% 2994+ 3.2% 2973+ 3.2%
0.40 0.30 6264+ 2.5% 6960+ 2.0% 4657+ 3.1% 4428+ 3.1% 4396+ 3.1%
0.40 0.35 8277+ 2.4% 8972+ 2.1% 6829+ 2.9% 6443+ 2.9% 6410+ 2.9%
0.40 0.40 11164+ 2.4% 11837+ 2.2% 9947+ 2.8% 9323+ 2.8% 9286+ 2.8%
0.40 0.45 15958+ 2.5% 16762+ 2.3% 15426+ 2.7% 14243+ 2.7% 14206+ 2.8%
0.40 0.50 25666+ 2.5% 26341+ 2.4% 26838+ 2.7% 23838+ 2.7% 23810+ 2.7%
0.40 0.55 48797+ 2.4% 50138+ 2.4% 57364+ 2.4% 47673+ 2.5% 47675+ 2.5%
0.69 0.02 7984+ 3.4% 2758+ 1.4% 138+ 2.7% 138+ 2.7% 156+ 2.9%
0.69 0.05 8844+ 3.2% 2925+ 1.4% 311+ 3.7% 336+ 4.2% 380+ 3.8%
0.69 0.07 9670+ 3.0% 3325+ 1.6% 644+ 4.5% 738+ 4.6% 757+ 4.3%
0.69 0.10 10665+ 2.8% 3970+ 1.8% 1191+ 4.4% 1371+ 4.2% 1365+ 4.1%
0.69 0.12 12001+ 2.6% 4904+ 2.0% 2032+ 4.1% 2294+ 3.8% 2259+ 3.8%
0.69 0.15 13757+ 2.4% 6208+ 2.1% 3257+ 3.8% 3558+ 3.5% 3496 + 3.5%
0.69 0.17 16010+ 2.3% 7996+ 2.2% 5082+ 3.5% 5351+ 3.2% 5277+ 3.3%
0.69 0.20 18873+ 2.2% 10511+ 2.3% 7783+ 3.2% 7840+ 3.0% 7749+ 3.1%
0.69 0.22 23034+ 2.1% 14566+ 2.4% 125224+ 3.0% 11881+ 2.9% 11812+ 2.9%
0.69 0.25 31159+ 2.0% 21778+ 2.4% 21909+ 2.8% 19198+ 2.8% 19108+ 2.8%
0.69 0.27 49076+ 2.1% 37982+ 2.5% 44986+ 2.6% 35438+ 2.7% 353291+ 2.7%
0.88 0.01 19131+ 2.3% 2682+ 1.5% 541 2.8% 54+ 2.7% 82+ 4.7%
0.88 0.02 20083+ 2.2% 2812+ 1.5% 142+ 6.3% 1792 7.4% 246+ 5.7%
0.88 0.03 21730+ 2.2% 3195+ 1.7% 381+ 6.6% 557+ 6.3% 581+ 5.6%
0.88 0.04 23724+ 2.2% 3853+ 1.9% 850+ 5.8% 1201+ 5.0% 1175+ 4.9%
0.88 0.05 26097+ 2.2% 4842+ 2.1% 1684+ 4.9% 2170+ 4.3% 2090+ 4.3%
0.88 0.06 28939+ 2.1% 6232+ 2.2% 2944+ 4.3% 3544+ 3.7% 3403+ 3.8%
0.88 0.07 32220+ 2.0% 8195+ 2.3% 4986+ 3.8% 5511+ 3.4% 5342+ 3.4%
0.88 0.08 37152+ 1.9% 11010+ 2.4% 8182+ 3.4% 8330+ 3.1% 8137+ 3.2%
0.88 0.09 44229+ 1.8% 15828+ 2.5% 14176+ 3.1% 13165+ 2.9% 12963+ 3.0%
0.88 0.10 56085+ 1.7% 25301+ 2.5% 27490+ 2.9% 22677+ 2.8% 224541 2.8%
0.88 0.11 83081+ 1.6% 48987+ 24% 67649+ 2.3% 46317+ 2.6% 46052+ 2.6%

Table 5: EDF response times, mean aperiodic TAT 5395, after 54000000 time units.
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It can be seen that the average response times grow very quickly as the mean processor
load approaches 100%. For these load conditions, the variation in response time is also
rather wide, as indicated by the large confidence intervals. In this range, due to the random
aperiodic arrivals, the local average processor load often exceeds 100% for significant blocks

of time. For all practical purposes, the processor is overloaded.

The same data are presented graphically in Figures 9-14. In all these figures, the average
response time of each algorithm is plotted as a function of the aperiodic load. Lower values
indicate better performance. The smooth lines indicate the predicted performance based on

queueing models.

The lower smooth line, labeled “M/M/1” corresponds to the function

p
L(p) = 1=p)

where p is the mean aperiodic load (the horizontal axis of the graph), and % is the mean
aperiodic interarrival time. This is the expected response time for a pure M/M/1 model[3],
in which there is no periodic load, i.e. 100% of the processor capacity is available for the

aperiodic tasks.

The upper smooth line, labeled “M/M/c”, for ¢ = 0.6, 0.31, and 0.12, corresponds to the

function

U(P):ﬁ

where ¢ = g—; This is the expected response time for a scaled M/M/1 model, in which
the aperiodic tasks are served by a virtual processor whose speed has been scaled to ¢, the
fraction of the processor that is not used by hard-deadline periodic tasks. For example, if the
hard-deadline periodic tasks utilize 40% of the processor, the capacity of the virtual processor
serving aperiodic tasks is 60%. This is the limit of the polling server performance, as the

server period approaches zero.

As can be seen in all the graphs, the DDS, DSS, and DXS algorithms all provide much
better performance than polling. They provide the greatest improvement for lower aperiodic
loads, where the performances of all three algorithms are essentially indistiguishable. As
the aperiodic load goes up, some differences between the algorithms appear. The DXS does
slightly better than the DSS for moderate and high aperiodic loads. The DDS does better
than the other two, for low and moderate aperiodic loads. The latter is somewhat surprising,
since the maximum server size that can be supported for the DDS is smaller. However, the
simulations indicate that this disadvantage is not noticed until the aperiodic load gets large.
For very high aperiodic loads, the DDS does worse than the others, but this disadvantage may

not have much practical importance, since under these circumstances no scheduling method
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can give short average response times. This effect can be seen clearly in the graphs, where
the behaviors of all servers converge to the scaled (M/M/c) queueing model for large values
of p.

Apparently, the M/M/c and M/M/1 models provide an envelope that can be useful for
predicting the performance of all the deadline aperiodic servers. Looking more closely, we
see some asymptotic relationships. For the polling server, the average queuing time runs
asymptotic to U(p) (upper broken line) as the aperiodic load approaches the server capacity,
but for light aperiodic loads it is dominated by the effect of waiting for the next polling point,
which is approximately one half the server period. For the DDS, DSS, and DXS, the average
response times fall between £(p) and U(p). They are asymptotic to L£(p) as the aperiodic
load approaches zero, and asymptotic to U(p) as the aperiodic load approaches the server
capacity, ¢. Intuitively, this makes sense. When the aperiodic load is light, it is very likely
that an arriving aperiodic request will find the server has enough budget for the request to
be served immediately — as it would if there were no competing periodic load. Thus, the
behavior is like the unscaled M/M/1 model. In contrast, when the load is heavy, it is likely
that an arriving request will not be able to be served to completion within the available server
time budget, but will need to yield to the periodic tasks while it waits for replenishment.

Thus, performance is close to the scaled (M/M/c) model.

The performance of the three algorithms in these tests is very close, especially if one takes
into account the confidence intervals of the simulation. Given the similar peformances, the

DDS could be considered the winner, since it is the simplest to implement.

8.3 Longer Server Periods

The first set of tests were based on the presumption that the server period is always the same
as the shortest period of the the hard-deadline periodic tasks. However, for a fixed server
utilization, increasing the server budget (and lengthening the server period proportionally,
to keep the utilization constant) should increase the probability that an arriving aperiodic
request can be served to completion. That is, the range of aperiodic loads over which the
behavior is close to the M/M/1 model should be larger. To test this hypothesis, the exper-
iments described above were repeated, for a range of different server periods. A sample of
the results of these simulations for the DDS, DSS, and DXS is shown in Figures 15-17, for a

mean interarrival time of 3600 with 69% periodic load.

The data for the DDS stops at period 10800. Above that, it overloads, since server size
must be made very small to guarantee schedulability of the hard deadline tasks. Up to that

point, the larger the server period, the shorter the average response time.
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In contrast to the DDS, the DSS and DXS do not overload as the server period increases.
However, there is a sudden reversal of behavior as the period gets sufficiently large. For the
DSS, the reversal occurs between server periods 43200 and 86400. For the DXS, it starts
a little earlier, between periods 21600 and 43200. With other combinations of periodic and

aperiodic load, these jumps occur for different server periods.

It seems there are several conflicting effects at work:

(1) A longer server period means a higher probability that an arriving request can be served

to completion without waiting for a server replenishment.

(2) A longer server period means the server generally has lower priority. For example,
if the processor is idle when an aperiodic request arrives, the server’s deadline is the
arrival time of the aperiodic request plus the server period. A longer server period
means a later deadline, which means a lower priority. Of course, this does not matter
immediately if the processor was idle, but it means the server may be preempted by

any period task with a shorter period.

(3) The server’s priority is effectively raised if there has been a recent history of near-
deadline activity. (See cases 3 and 4 of the definition of ¢, the time at which the server
deadline becomes active.) If a request arrives while the processor is busy executing
a (periodic) task with shorter deadline, the deadline of the aperiodic request will be
measured (ignoring details related to the times of replenishments) from before the arrival
time of the request — namely, from the earliest that would not have caused the server to
preempt the processing that has gone on up to the time of the request. In the extreme,
if the processor has recently been busy executing a task that is near its deadline, the

server may be able to preempt that task.

The interactions of these (and other) effects, which depend on random events as well
as the periods and sizes of the server and periodic tasks, seem difficult to analyze in gen-
eral. However, it seems the reversal of the trend toward shorter average queuing times for

sufficiently large server periods may be at least partially explained by effect (3).

Consider the case shown in Figure 16. In the 69% periodic task set, for a server period of
43200, only tasks 1-3 can preempt the server. That is, these are the only tasks that can arrive
after the server has started a request and preempt the server before it uses up its budget. Of
these, the longest execution time is 600, so this is the worst-case delay that the server can
experience due to a single such preemption. However, for a server with period 86400, tasks
4-7 can also preempt, and these have execution times in the range 3000-7200. Clearly, both

the number of tasks that can preempt the server, and the duration of the preemption, are
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Server 40% load | 69% load | 88% load
Polling, SS 3160 1109 125
DS 2600 1085 117

Table 6: Fixed-priority server sizes

much larger. This large increase in effect (3) may be a cause of the large jump in average

response time between periods 43200 and 86400 for the DSS and DXS in this example.

This does not yet explain the difference between the DSS and the DXS, which shows
some degradation already for server period 43200. Periodic task 4 has execution time 6400.
This is the first task whose execution time is long enough that there is a high probability
of more than one aperiodic request occurring during its execution. The expected number of
aperiodic arrivals during each execution of task 4 is 6400/3600. With the DSS, the residual
server budget is likely to be high enough that all such requests can be served at the server
priority, and so the server will be able to preempt task 4. In contrast, with the DXS, the
server will be able to preempt the first time, but the next request will need to wait until the
server is replenished, since between requests the server will have given up its budget. This is
a price the DXS pays, compared to the DSS, for not allowing more than one replenishment

to be pending at the same time.

9 Comparison with Rate Monotone Scheduling

For comparison, we repeated the simulations using fixed-priority versions of the aperiodic
server algorithms under the same load conditions, and with a rate monotone priority assign-
ment for the periodic tasks. The server sizes, shown in Table 6, were necessarily smaller. In

this table, “SS” denotes the sporadic server, and “DS” denotes the deferrable server.

The same periodic task sets were used as in the previous simulations. While these task
sets are not completely harmonic, they were considered fair tests for rate rate-monotonic
scheduling, since a processor utilization of 88% could be achieved, as compared to the worst-

case Liu and Layland bound of 72% and the best case harmonic bound of 100%.

In each case, the largest safe server size was determined by bisection, using a schedu-
labilty test similar to that described in [6]. The test computes the completion time Wy of
periodic task 7y, for the critical instant when all tasks are requested simultaneously. Task &
is schedulable iff its completion time is before its deadline, i.e. W; < Tp. Wy is computed

iteratively, as the least fixed-point of the recurrence
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Wo = 0

k—1
Wi(n .
Wi(n+1) = Cip+ Z [ ;E )-‘ C; + Server_Time(Wy(n))
i=1 '
The term Server_Time(A) denotes the maximum server execution time during a time-window
of size A, which varies from one server scheduling method to another. The worst-case server
execution time for the sporadic server is the same as a similar periodic task, i.e.

Server_Timegg(A) = <[TA-D Cs.
S

The worst-case server execution time for the deferrable server, which is derived in [7], is

Server_Timepg(A) = <1 + [#l) Cs.
S

A sample of the results of the fixed-priority experiments for the deferrable server is shown
in Figures 18-20. Each graph shows the results for 69% periodic load. The average response
times of the DDS and DS are shown as a function of the aperiodic load, for three average

interarrival times.

As expected, deadline scheduling allows higher utilization than rate monotone scheduling,
and consequently allows larger server sizes. This results in much better average response time.
It is especially noticeable for the simulations with higher processor utilization, where the rate

monotone servers simply cannot handle the load.

The results of our deadline versus rate monotone comparision experiments for the other
forms of servers and for other mean interarrival times are not given here, for brevity and
because they were not surprising. The gross advantage of deadline scheduling, due to larger
server sizes, was comparable across all the experiments. The other thing that was apparent
is that the differences in performance between the deferrable and sporadic servers for fixed-
priority scheduling were greater than with deadline scheduling, as would be expected from

the larger gaps between the server sizes shown in Table 2 versus Table 6.

10 Conclusion

We have shown how the deferrable server and sporadic server algorithms can be adapted to
be used with EDF scheduling. The resulting algorithms—the deadline deferrable server algo-
rithm, the deadline sporadic server algorithm, and the deadline exchange server algorithm—
can improve average response times for soft deadline aperiodic tasks, while still guaranteeing

the deadlines of hard deadline periodic and aperiodic tasks.
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The reasons for the improvement of average response times for soft deadline aperiodic
tasks under these algorithms, compared with background processing and polling, can be
explained intuitively. Compared with background processing, where aperiodic requests are
only executed whenever the processor would otherwise be idle, the improvement comes from
the high-priority processing time that is allocated to service aperiodic requests. If the load of
the periodic task set is high, then utilization left for background service is low, and background
service opportunities are relatively infrequent. Compared with polling, the improvement
comes from preserving the high-priority time allocated for servicing aperiodic requests if,
upon the invocation of the server task, no aperiodic requests are pending. In contrast, with
polling, if an aperiodic request occurs shortly after the polling task has suspended, then the
aperiodic request must wait until the beginning of the next polling task period (or until the

processor is idle) before being serviced.

The deadline deferrable server, deadline sporadic server, and deadline exchange server
algorithms differ in their effect upon the schedulability bound for periodic tasks. The DSS
pays a significant schedulability penalty (in terms of a lower schedulable utilization bound).
In contrast, under both the DSS and DXS algorithms, because of the execution time replen-
ishment method, aperiodic requests will be forced to limit their use of high-priority time to
what would be used by periodic requests. This allows the capacity of the aperiodic server to
be larger before it starts causing other tasks to miss hard deadlines, but the average response

times will be slightly worse for servers of identical size.

The results of the simulation studies show that the relationship of the performance of the
DDS compared to the DXS and DSS depends on the server period and the work load. All
three algorithms yield similar peformance, if the server period is the same as the shortest
period of the periodic tasks. For moderate workloads, the DDS performs slightly better than
the other two algorithms, despite the slightly smaller server size. However, the situation
changes for longer server periods, since the DDS requires a reduction in server capacity,
while the DXS and DSS do not. By lengthening the server period, the DXS and DSS can
achieve significantly better performance than the DDS. The DXS and DSS have very similar
performance under all circumstances. Since the DXS is simpler to implement, the DXS may

be the algorithm of choice, over all.

The principles governing the choice of server size and period are similar for all three
forms of deadline aperiodic server. Given a class of aperiodic tasks for which the arrival and
execution time distributions are known, the best server size depends on the nature of the
deadline(s). The server capacity, g’:—? must be greater than the expected aperiodic load. If the
tasks have a hard deadline, an upper bound on the aperiodic tasks’ execution times, Cmax,

and a lower bound on the inter-arrival time, T

min> must be known. The server period, T,
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must be less than or equal to the hard deadline, and the server size must be large enough
that g—? > % If the tasks have a soft deadline, the server size and period must be chosen

so that the average response time satisfies this soft deadline.

Generally, good average response time can be obtained by letting the server period be
the same as the shortest period of the periodic tasks. Under this rule, the simulation studies
show that the M/M/c queueing model can be used to obtain an upper bound for the average

response time for all three of the aperiodic servers.

However, with the DDS, DSS, and DXS, better average response time can be achieved
by using a longer longer server period, up to some limit determined by the particular set of
competing period tasks. Where there are different kinds of aperiodic tasks, with different

requirements, several servers may be used, with different periods and sizes.

In summary, we have addressed the problem of improving average response times for soft
deadline aperiodic tasks, by demonstrating that techniques developed for handling aperiodic
tasks with fixed priority rate monotone scheduling can be extended to EDF scheduling. We
have shown that schedulability analysis can be done for systems involving an aperiodic server,
in combination with hard deadline periodic and aperiodic tasks and blocking due to resource
locking. This adds to the evidence in support of EDF scheduling as an alternative to fixed
priority scheduling.
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