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Abstract. There is an acknowledged need for wider availability of Ada
application program interfaces to commercial off-the-shelf software com-
ponents. One instance of work that is being done to address this need is
Florist, the most recent in a series of implementations of the standard
POSIX Ada bindings. Experiences with Florist and its predecessors il-
lustrate the strengths and weaknesses of some of the available techniques
for implementing an Ada binding based on an existing C-language API.

1 Introduction

Florist is a free implementation of the POSIX Ada bindings packages for use with
the GNAT compiler. It provides application program interfaces for both the basic
system services (POSIX.5, also known as ISO/TEC 14519-1:1995) and the real-
time and threads extensions (POSIX.5b, also known as IEEE Std 1003.5b-1996).

Florist is a second-generation implementation of the POSIX Ada bindings,
which draw on experiences with several earlier implementations. One immediate
predecessor is Forest, a free implementation done by Kenneth Almquist of AT&
T, which has been distributed with GNAT for several years. The other immediate
precursor of Florist 1s a prototype implementation done at the Florida State
University by Wan-Hua Lin[4] and Yi-Gang Li [3].

All these POSIX Ada bindings consist of “glue” code that accesses the func-
tionality of an underlying operating system using the OS vendor’s C-language
application program interface (APT). This is not the only way the POSIX.5
standards can be implemented. It is possible that an operating system could
be written in Ada, and support only the Ada interfaces. The U.S. Navy has
sponsored prototyping of some of the POSIX Ada interfaces in that form. It is
also possible to implement the POSIX Ada bindings by direct operating system
calls using the assembly language (trap) interface to the local operating system.
However, the quickest and cheapest way of obtaining a POSIX.5 implementation
is to construct it as a layer over the standard POSIX C-language API.

Timeliness and low cost are important considerations in the development of
Ada bindings. Most large software systems today make use of several commer-
cial off-the-shelf (COTS) components, including at least an operating system, a
database engine, and a graphical user interface. COTS software components typ-
ically include a C-language API. A recent report of the U.S. National Research



Council[2] points out that the additional cost and lag-time in development of
Ada APT’s are obstacles to wider use of the Ada language. The problem of pro-
ducing an implementation of POSIX.5 is therefore an instance of an important
general problem— how to efficiently produce a good Ada binding for an existing
C APL

In this paper, we report some of what we have learned from the Florist
implementation and its predecessors, about the design, implementation, and
maintenance of Ada bindings for COTS C-language APT’s.

2 Automatic Generation

One of the methods that has been used to accelerate the generation of Ada
bindings for C-language API’s is automatic translation. There are several tools
that will translate C-language header files into equivalent Ada packages. Silicon
Graphics, Inc. has used such a tool to provide Ada interfaces that correspond to
the C-language header files supported by their operating system. Intermetrics
has successfully used another toolset, called c2ada, to produce Ada 95 bindings
to X Windows, Microsoft Windows, and GCCS.

The essential character of such translations is that they mirror the C-language
header files. This is both a strength and a limitation. It is a strength because
no separate documentation is required; the documentation of the C-language
header files should generally be sufficient to use the corresponding Ada packages.
It is also a strength because the Ada packages can be easily updated to match
changes in the C header files. Tt is a limitation because there is no information
hiding. The Ada package interfaces must mutate over time to follow mutations
in the C headers. Even minor differences in the C headers that would not require
modification of a C application may result in visible changes to the Ada package
specifications. This is not good for a long-lived Ada application, where stability
of the Ada API is important.

Automatic translation techniques are also limited by the nature of the C
language. There is considerable “noise” in C header files. Even among operating
systems that support standards like POSIX, the standards permit gross varia-
tions between header files with the same names. This makes direct translation of
C header files impractical for standardized open interfaces, such as the X/Open
and POSIX OS API’s. These variations include such things as extra declara-
tions, conditional “includes” of other header files, selection between alternate
versions of declarations based on user-definable flags (such as _POSIX_C_SOURCE
and _XOpen_Source), variations in order and number of struct type compo-
nents, variations in representation of opaque types, and replacements by macros
of apparent names of functions, types, and structure component names. (See
Figure 3 for an example of some of these features.)

For example, consider changes in the header file signal.h between releases
2.4 and 2.5.1 of SunSoft’s Solaris(TM) operating system (not a very major re-
vision, by OS standards). The differences in the two versions of the file itself
amount to 230 lines of code (ignoring changes in comments and whitespace).



This includes 14 new constants, and both removal and addition of entire type
and subprogram declarations. The code includes conditional compilation com-
mands, which support different C views of the system API (e.g. traditional,
POSIX, X/Open). Thus, to produce an Ada package specfication one would need
to run it through the C preprocessor first. Unfortunately, this has the side-effect
of pulling in various other header files. The differences in header files pulled in
by signal.h are shown in Figure 1. Expansion of some such embedded headers
could be avoided by explicitly pre-expanding them, under the assumption that
they are shared by several C header files, and so should be mapped to separate
Ada packages. However, that leads to further difficulties, since the exact set of
these auxiliary packages will change from one version of the OS to another.

|Solaris 2.4 |Solaris 2.5.1 |

time.h

sys/time.h

sys/select.h

sys/procset.h

sys/stdtypes.h

sys/signal.h  |sys/signal.h

sys/types.h sys/types.h

sys/isadefs.h |sys/isadefs.h

sys/siginfo.h sys/siginfo.h|

Fig. 1. Differences in other header files included by signal.h.

Some constructs in C header files simply cannot be translated automatically,
and so must be worked around using techniques such as pre-editing of the C
sources, hand-written glue code, or specification of special-case translation rules
to the tool. This hand work needs to be redone each time there i1s a new release
of the COTS product to which the APT applies.

Automatic translation tools themselves require porting and maintenance.
The maintainer of a binding that is implemented with such a tool relies on the
tool’s continued availability. For example, the c2ada tool has been successfully
ported to several systems, but porting it to a new system is the user’s responsi-
bility. Moreover it depends on the programming language Python, so a long-term
user depends on the the continued availability, portability, and maintenance of
Python. For example, when we attempted to install c2ada on our system, we
found and corrected OS-dependent C header files conflicts, then linker conflicts,
then direct dependences on the code and directory tree structure of the Python
1.3 source distribution (we had Python 1.4); it is not clear how long it would
have taken to get it to work if we had persisted.

Finally, direct Ada translations of proprietary C header files are subject to
the copyright of the original files. In the case of commercial products, this can
limit the value of the Ada binding.



In summary, automatic translation is a valuable time-saver for constructing
Ada interfaces to COTS products, where copyright can be obtained, some hand-
tailoring 1s acceptable, and there is no requirement to preserve a stable Ada
package interface across different vendors’ products or across different releases
of a single vendors’ product. Thus, the technique makes very good sense for a
COTS vendor who wants to provide Ada bindings for the vendors’ own prod-
ucts. Automatic translation is not so well suited for direct implementation of
a portable Ada binding such as POSIX, that must provide a stable Ada pack-
age interface across different implementations. Automatically generated package
specifications may be useful indirectly, as a lower layer, with hand-written glue
code to project the desired Ada interface. However, such an implementation falls
short of the ideal of automatic translation, as it is likely to require hand re-work
to port i1t to each version of the product to which it interfaces.

Because Florist is an implementation of a standardized set of Ada package
specifications, to which we wanted to avoid adding unnecessary glue code, and
which we wanted to make automatically portable to any POSIX-compliant op-
erating system, we did not attempt to automatically translate the C headers to
Ada package specifications.

3 Translation of Fragments

An alternative to translation of the full C header files is to translate just small
fragments, which are embedded within hand-written Ada code. This technique
is used by Almquist’s Forest implementation of the POSIX.5 packages, which
includes a program called ctoada[l] and several scripts. The ctoada program
makes use of the front end of the Gnu C compiler (gec) to read in C header files,
parse them, and translate them into semantic trees. It also reads in a file de-
scribing the intended correspondences of names of type and function declarations
expected to be in the C header files with names and forms of Ada declarations.
It puts out a file containing a macro definition for each pair of C and Ada names,
which when processed and expanded by the m4 macro processor will produce the
text of an Ada declaration that is equivalent to the C declaration in the header
files. There 1s another program that produces similar m4 macro definitions that
produce Ada expressions corresponding to the values of C preprocessor con-
stants. The Forest package specifications and bodies contain m4 macro calls for
declarations of interface types, functions, and constants. They also use m4 macro
calls for conditional compilation of target-dependent bits of glue code.

For example, the POSIX Ada bindings define an implementation-dependent
subtype, Child_Processes_Maxima, which specifies what is known at compile
time about the maximum number of simultaneous processes that may have the
same user ID. Forest defines this via a call to a macro, CHILD_PROCESSES_RANGE,
and the macro definition is generated by the tools.

For another example, the C-language signal interfaces use a system-dependent
data type called struct sigaction. Forest needs a corresponding Ada type decla-
ration to implement the body of the package POSIX_Signals. This is done by a



call to the macro DECLARE_signal_action, whose definition is generated by the
program ctoada. Figure 2 shows the input scheme provided to ctoada, the m4
macro definition produced by ctoada from this scheme under the Solaris 2.5.1
operating system, and the expansion of the macro call into Ada code.

define DECLARE_signal_action indent 0
type signal_action is struct sigaction
end define

The macro definition scheme for DECLARE_signal_action.

define ([DECLARE_signal_action], [type array_type_9 is array (integer
range 0 .. 1) of Interfaces.C.int;
type signal_action is record

sa_flags: Interfaces.C.int;

X_funcptr: Bad tree;

sa_mask: POSIX_Private_1.signal_mask;
sa_resv: array_type_9;

end record;
pragma convention(C, signal_action);])

The macro definition generated by ctoada.

type array_type_9 is array (integer range 0 .. 1) of Interfaces.C.int;
type signal_action is record

sa_flags: Interfaces.C.int;

X_funcptr: Bad tree;

sa_mask: POSIX_Private_1.signal_mask;

sa_resv: array_type_9;

end record;
pragma convention(C, signal_action);

The expansion of the macro call.

Fig. 2. Forest treatment of struct sigaction.

Note that this is a case where the tools fail. The immediate reason is clear
if one examines the corresponding C delcarations, which are shown in Figure 3.
There is a C union type declaration, which the program could not handle. This
is minor problem, which could be solved by expanding the capabilities of the
ctoada program. However, there is a more difficult problem that is not so easily
solved. The C structure declaration does not comply with the POSIX specifia-
tions. The component names sa_handler and sa_sigaction are not present. Instead,
they are given as macros, that refer to subcomponents in a nested structure.

This technique does not eliminate the need for hand work, but it greatly
simplifies the job of porting an Ada binding to new versions of the underlying
C-language API. It has the benefit that one can ignore much of the content of
the C-language header files and just focus on bits that are of interest. The combi-



struct sigaction {
int sa_flags;
union {
#ifdef __cplusplus
void (*_handler) (int);

felse
void (*_handler) ();
#tendif
#if defined(__EXTENSIONS__) || ((__STDC__ - 0 == 0) && \
!defined (_POSIX_C_SOURCE) && 'defined(_XOPEN_SOURCE)) || \
(_POSIX_C_SOURCE > 2)
void (#_sigaction) (int, siginfo_t *, void *);
#tendif
} _funcptr;
sigset_t sa_mask;
) int sa_resv[2];
#define sa_handler _funcptr._handler
#define sa_sigaction _funcptr._sigaction

Fig. 3. Solaris 2.5.1 declaration of struct sigaction.

nation of automatically translated pieces, conditional compilation, hand-written
code permits the implementation to be thin. A disadvantage is that porting
the binding to a new environment means porting the tools and maintaining the
binding means maintaining the tools, through changes in the operating system,
gcc compiler, and m4 macro processor.

At an early stage, we intended to use m4 with ctoada and the other Forest
tools to implement Florist. As a warm-up for this project, we used the Forest
mechanisms to reimplement the package interfaces that the the GNAT Ada
runtime system (GNARL) uses to obtain services operating systems that have a
POSIX-like C-language API. This was successful in reducing the amount of glue
code as compared to the original implementation, and in allowing one to more
easily port the GNARL to new OS’s and new OS versions[5].

However, we ran into several problems. When we tried the ctoada program
on new operating systems, we found that it died on some of the more compli-
cated type definitions in the header files, such as the struct sigaction example
described above. By patching the tool, we enabled it to get through the header
files, but there was still a need for some hand editing. This was needed for some
type declarations that the tool could not translate, and for the cases where the
C header used macros to stand in for functions and record component selectors.
Then, when we went to a new version of the gcc compiler, we found that ctoada
would no longer compile, due to dependences on gcc installation configuration
information that had changed since the gcc version from which ctoada was de-
rived. We also found problems with some identifiers in the Ada sources being
incorrectly interpreted as calls to m4 macros. This was correctable by using dif-
ferent names for the m4 macros. We also needed to use features that varied across
implementations of m4, and so relied on a particular version of m4 being portable
to each system.

Our goal for Florist was that it should automatically configure itself to new



operating system versions, and that users could be easily port is to a new operat-
ing system without our help. We judged that maintaining and porting Almquist’s
Forest tools would require more effort than we wanted to ask of Florist users.

4 Binding-specific Generators

The current Florist implementation is mostly hand coded, with a few automati-
cally generated packages. It uses a combination of two mechanisms to configure
itself to a new system. The first phase is execution of a configuration script,
similar to that used by all the Gnu software products. We generate the script
using our own derivative of the Gnu autoconf m4 macro set, but the user does
not need m4 to run the script. The shell script that the Gnu tools produce is exe-
cutable on virtually all UNIX-like systems. The configuration script searches for
the POSIX C header files, specific object libraries, and for specific names within
the header files. For each POSIX function, it attempts to compile and link a
dummy program that calls the function. The result is a set of C preprocessor
#include directives and macro definitions that specify which POSIX features
are supported by the underlying C-language interface of the underlying OS. The
second phase is compilation and execution of a portable POSIX C program,
which we call c-posix. That program generates the complete Ada source code
of a few Ada package specifications, principally the one called POSIX.C.

The POSIX.C package provides a complete direct Ada binding for all of the
standard POSIX C-language interface. For features that are not supported by the
local operating system, it provides dummy declarations to permit compilation
of code that refers to the interface. This is to support a special requirement
of POSIX.5, that lack of OS support for any feature does not cause failure of
a compilation, but only causes an exception to be raised at run time. There
are also Ada constants that can be interrogated to determine whether a given
feature group is supported, and for C interface functions that are not supported
by the OS, a dummy body is provided that returns a failed status value with
the appropriate error code. The POSIX.C package is almost entirely interface
declarations. The only code in the body is for a few type conversion functions,
and that code is completely portable.

POSIX.C is self-contained. It does not use the standard Interfaces.C pack-
age, but instead provides its own Ada declarations for all the C types that are
needed. Very few of the C-language types that are used by the POSIX C inter-
faces are covered by Interfaces.C,so we were forced to define Ada version many
C types ourselves. We also found that the Interfaces.C.Strings package was
not suitable for our purposes. The POSIX.5 implementation packages need di-
rect visibility of the Ada equivalent of C’s char # and char [ ] types. The Ada
type chars_ptr_array is not equivalent to char [ ], since its representation
includes dope. We originally used the types from Interfaces.C.Strings, with
unchecked conversions and various constrained subtypes of chars_ptr_array.
The code was very hard to read. We also had trouble remembering which pack-
age contained which type declaration, among all the C interface types. We tried



adding our own declarations for the few interface types we had been using
from Interfaces.C and Interfaces.C.Strings, to POSIX.C. This simplified
our code and made it much more readable.

The c-posix program also generates the specifications of the packages POSIX,
POSIX.Limits, and POSIX.Options. The rest of the 40 package specifications,
and all of the 37 package bodies of Florist are pure portable Ada code.

For example, in Florist the declaration of the subtype Child_Processes_-
Maxima in Florist is directly generated by c-posix. There is no Forest-style
macro-call in the source code. The Florist treatment of the C-languagestruct
sigaction is shown in Figure 4. This and all other system-dependent declarations
are contained in the single implementation package POSIX.C, whose specification
is generated by c-posix.

type struct_sigaction is record
sa_handler : System.Address;
sa_mask : sigset_t;
sa_flags : int;

end record;

for struct_sigaction use record
sa_handler at 4 range 0 .. 31;
sa_mask at 8 range 0 .. 127;
sa_flags at 0 range 0 .. 31;

end record;

for struct_sigaction’Alignment use ALIGNMENT;

Fig. 4. Florist treatment of sigaction.

Note how the difficulties with ctoada have been solved. Nonstandard parts
of the C structure definition, that are not specified by the POSIX standard, are
simply left out of the Ada declaration. Nested structure definitions are not visi-
ble; the field-names that are implemented as macros in C appear as normal Ada
component names. The Ada representation clause does this, using information
extracted by c-posix using the standard C-language operations to discover the
sizes and addresses of component objects. The code of the program c-posix
that deals with such declarations is very repetitive. We have made it simple to
modify, by appropriate use of C macros. For example, the code that generates
the declaration above is shown in Figure 5. The macro GT2 provides all the in-
formation needed to generate a single struct component. The #ifdefs allow us
to provide a dummy delcaration for systems that do not support the POSIX
standard.

At the time of this writing, Florist has been compiled and tested on So-
laris2.4, Solaris2.5.1, and a Linux-based Gnu system with kernel version 2.12.
The configure script and the c-posix program have been tested on versions of
the TRIX, AIX, OSF/1, and HPUX operating systems. We have not yet been
able to get access installations of GNAT on the latter systems to compile and
test the Ada code. We are hoping that by the time of the conference we will
have more to report.



/* generate the declaration of subprogram g_sigaction
*/
#ifdef HAVE_struct_sigaction
GT1(sigaction,1)
felse
struct sigaction {
void (%) () sa_handler;
sigset_t sa_mask;
int sa_flags;
void (*) (int,siginfo_t *, void *) sa_sigaction;

GT1(sigaction,0)
#tendif
GT2(sa_handler, void (%) ())
GT2(sa_mask, sigset_t)
GT2(sa_flags, int)
#ifdef HAVE_sa_sigaction
GT2(sa_sigaction, void (%) (int,siginfo_t *, void *))
ftelse
#tendif
GT3

/* call the subprogram, to generate the Ada type declaration
*/
g_struct_sigaction();

Fig. 5. Source code from c-posiz for sigaction.

5 Conclusions

Our experience leads us to believe that one must approach the design and im-
plementation of Ada bindings in more than one way. There are at least two
distinguishable cases, that will benefit from different treatments.

For a vendor of a COTS product, automatic translation of C headers provides
a cost-effective method of providing Ada bindings for the vendor’s customers.
Copyright and maintenance considerations make it more cost-effective for this
work to be done by the vendor, rather than by a third party. Therefore, in this
case Ada users will be better served if they can persuade the COTS vendor to
take on the responsibility of providing an Ada binding.

The second case is that of a standard Ada binding, such as POSIX.5. The
overhead of developing and maintaining such standards does not make sense
unless they are for an interface that will be supported by multiple COTS prod-
ucts, and will be used by many applications. If there is an underlying portable
C-language interface, the implementation of the Ada binding should use this,
providing its own tools to perform any local configuration that may be needed.
For this case it might be practical for the implementation of the Ada binding to
be provided by a third party.

This leaves cases where a specific application needs an interface to a particular
COTS product, for which there is no standard interface and for which the vendor
does not provide an Ada binding. Automatic translation of C header files may
make sense if the system is not expected to be maintained across many upgrades



of the COTS component. However, if it is expected to be maintained over a
term that is long enough to encounter a series of COTS component versions or
require porting to a completely different COTS product, it may make more sense
to develop an application-specific package, that hides the specifics of the COTS
API. By isolating an limiting the visibility of COTS-dependent interfaces, such a
package is likely to pay for the cost of rewriting its internal glue code. Moreover,
since most applications do not use more than a small subset of the typical COTS
component interface, writing an application-specific binding may be less hand
work than is required to make up for the limitations of the automatic tools if
one attempts to translate a full set of C header files.

Florist Availability

The Florist 1.1 implementation is available in source-code form via anonymous
from the Florida State University Computer Science Department (via URL
ftp://ftp.cs.fsu.edu/pub/PART/FLORIST). There are plans to improve and
extend this implementation, at least to support the draft POSIX.5¢ socket in-
terfaces. We welcome electronic mail correspondence, including defect reports,
suggestions for improvements, and offers of help porting Florist to other systems.
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