The GNARL Implementation of POSIX/Ada Signal Services
(extended abstract)

Dong-Tk Oh

T.P. Baker

Seung-Jin Moon

Department of Computer Science
Florida State University
Tallahassee, FI. 32306-4019
Phone: (904)644-3441

Internet: doh@cs.fsu.edu

Abstract

This paper describes the POSIX signal model, the stan-
dard C and Ada language signal interfaces, and im-
plementation of application-level signal handling in the
GNu Ada Runtime Library (GNARL). GNARL maps
some signals to exceptions, and allows others to be
handled via protected procedures, task entries, or the
POSIX.5b synchronous signal-awaiting operations. In
the final paper, performance data will also be provided,
to guide users in choosing between these various inter-
faces.

1 Introduction

The GNu Ada Runtime Library (GNARL) is the task-
ing runtime library of the Gnu NYU Ada’95 ! Transla-
tor (GNAT)[8]. For portability, GNARL is divided into
two layers, the lower of which isolates dependences on
a particular host operating system or real-time kernel.
The primary implementation of the GNARL lower level
accesses OS services via the POSIX.1[1, 5, 6] interfaces.

POSIX.1 is a family of standard C-language applica-
tion program interfaces to operating system services,
developed by the IEEE in cooperation with ISO/TEC
JTC1/SC22/WG15. POSIX.5 is the Ada language
binding for POSIX.1. The POSIX API is derived from
that of UNIX, and is at least partially supported by the
many operating systems derived from UNIX. New OS
releases continue to converge toward the POSIX inter-
face, as most major vendors have committed to eventu-
ally conform to it.

Ada applications that execute in the environment of a
POSIX or other UNIX-like operating system must deal
with signals, the software interrupts that the OS may

1'We use the term Ada’95 for the Ada language standard which
was adopted by ISO/IEC in 1995[3] and Ada’83 for the 1983 ANSI
standard, which was endorsed by ISO/TEC in 1987[7].

deliver to an application at virtually any time. Thus, it
is essential that the Ada runtime system provide some
form of application-level signal handling mechanism.

This paper describes the four signal handling mecha-
nisms supported by GNARL, and how they are imple-
mented. It also provides performance figures that may
guide application developers when they choose which of
these mechanisms to use.

The remainder of this paper is organized as follows. Sec-
tion 2 explains the POSIX signal model and its variants,
from both the C and the Ada viewpoints, and the rela-
tionship of signals to Ada interrupts. Section 3 explains
the signal handling mechanisms supported by GNARL,
and how they are implemented. Section 4 points out the
inherent limitations of this design, and presents some
performance results. Section 5 concludes, with a sum-
mary of the GNARL implementation status and plans
for future development.

2 Background

This section provides some background on the semantic
model of POSIX signals, and the differences in the ways
signals are seen by programs written in Ada versus C.

2.1 POSIX Signals

A POSIX signal is a form of software interrupt. Much of
the semantics of signals is independent of the program-
ming language, but the primary standards describe the
semantics from the viewpoint of a C program.

There is a finite number of signals, which are identified
to C programs by integers. The exact set of signals is
dependent on the OS implementation. POSIX defines
names for certain signals and specifies certain conditions
under which they are generated. It also specifies certain



subprograms which a C-language application can call to
control the generation and delivery of signals.

Signals may be used for notification of a variety of
events:

1. Run-time error. committed by a program. For
example, a signal may be generated by a division
by zero, a floating-point overflow, a memory protec-
tion violation, a reference to a non-existent mem-
ory location, or an attempt to execute an illegal
instruction. (These signals need to be mapped to
exceptions by the Ada runtime system. See section

2.2.)

2. Time-out. Operations are provided to request
that a signal be generated when a clock reaches
a specified time, or when a specified span of time
has elapsed.

3. I/0 completion or failure. Asynchronous input
and output operations generate a signal when an
operation completes, or if an operation fails.

4. Job control. A user or process may suspend, re-
sume, and terminate the execution of a process by
sending it certain signals. A user may do this by
hitting certain keys on the terminal that is control-
ling the process.

5. Interprocess communication. A process may
send a signal to another process to notify it of an
event.

6. Interthread communication. In a system that
supports the POSIX Threads option, a thread may
send a signal to another thread within the same
process to notify it of an event.

Much of the specific semantics of signals can vary
from one POSIX-compliant operating system to an-
other. Part of this variation is due to explicit imple-
mentation options which were introduced by successive
revisions of the POSIX.1 standard. POSIX.1[1] defines
a basic signal model. This is extended by POSIX.1b[5]
to include new operations and a new kind of “real time”
signal, and then modified to account for multi-threaded
processes by POSIX.1¢[6]. Thus, the exact signal model
supported by a given POSIX-compliant operating sys-
tem may vary, depending on whether it supports the
Realtime Signals and /or Threads options.

In the POSIX.1 and POSIX.1b models, the kind of en-
tity to which a signal may be delivered is a process. In
the POSIX.1c model the kind of entity to which a sig-
nal may be delivered is a thread of control (within a

process); a distinction is made between operations that
generate a signal for a process (so that it can be deliv-
ered to any thread within the process) and other opera-
tions that generate a signal for a specific thread (so that
it can only be delivered to that one thread).

Certain signals can be masked. In POSIX.1 and
POSIX.1b, when a signal is generated for a process and
the process has the signal masked, the signal remains
pending until the process unmasks it. A process manip-
ulates its signal mask by calls to the C-language func-
tion sigprocmask(). POSIX.1c changes this for systems
that support the Threads option, by making the signal
mask part of the state of each individual thread, rather
than the entire process; the effect of sigprocmask() be-
comes implementation-dependent, and the new function
pthread_sigmask() is introduced to manipulate the call-
ing threads signal mask.

Ordinarily only one pending instance of a masked signal
is required to be retained; that is, if a signal is gener-
ated N times while it is masked the number of signal
instances that are delivered to the process when it fi-
nally unmasks the signal may be any number between
1 and N. POSIX.1b introduces a special kind of “real-
time signal’, if the Realtime Signals option 1s supported,
that guarantees instances generated by certain opera-
tions will always be retained.

Each signal is associated with some signal action. The
binding of signal action to signal is part of the state of
each process. POSIX defines the default action for each
signal, which may be to ignore the signal, terminate
the process, stop the process, or continue the process.
(POSIX does not specify whether a signal that is gener-
ated is ignored or pended, if the signal action is ignored
and the signal is also masked.) For some signals the
default action cannot be overridden. For other signals,
the application may specify a handler procedure that is
called, asynchronously, when the signal is delivered to
the process. Such a handler interrupts the execution of
the process or thread at the instant the signal is deliv-
ered. The process can specify the desired action for a
signal via the C-language sigaction() call; it can spec-
ify a handler procedure, restore the default action, or
specify that the signal should be ignored.

POSIX.1b introduces the sigwaitinfo() call, for sys-
tems where the Realtime Signals option is supported,
and POSIX.lc introduces the sigwait() call, for sys-
tems where the Threads option is supported. These C-
language function calls both allow a process or thread to
accept any one of a specified set of masked signals. They
come in both blocking and non-blocking forms. The use
of this new synchronous delivery interface is especially



recommended for multithreaded processes, because the
thread synchronization operations defined by POSIX.1c
are not safe for use within an asynchronous signal han-

dler.

POSIX.1 defines the kill() function that generates an
instance of a signal for a specified process or group of
processes. POSIX.1b adds the sigqueue() function, that
generates a lossless instance of a signal for a proces-
sor group of processes, if the Realtime Signals option is
supported. POSIX.1c adds pthread_kill(), which gener-
ates an instance of a signal to a specified thread, if the
Threads option is supported.

2.2 Signals and Ada

POSIX.5[2] is the standard Ada’83 language binding
for POSIX.1. Because POSIX.1 processes execute in
disjoint virtual address spaces, POSIX.5 specifies that
all the tasks of a program are part of a single POSIX
process. Because POSIX.1 does not recognize multiple
threads of control within a process, POSIX.5 defines the
effect of POSIX calls by a process on Ada tasks within
the process, including the effects on signal delivery.

POSIX.5 defines the basics of an Ada’83 application’s
view of POSIX signals. Certain signals are reserved for
use by the Ada runtime system; some of these are to
be mapped to Ada exceptions, and some are reserved
for use in implementing delay statements. Block_Sig-
nals and Unblock Signals operations are provided for
masking and unmasking signals, and Ignore_Signal
and Unignore_Signal operations are provided for set-
ting the signal action to ignore a signal. Because of Ada
scoping and concurrency complications, an Ada applica-
tion cannot directly bind a subprogram as asynchronous
handler for a signal, but it may use address clauses to
bind signals to task entries. The Ada runtime system
is expected to implement this using its own low-level
asynchronous handler subprograms.

The Ada’83 interrupt entry mechanism associates an
interrupt with a task entry via an address clause. The
binding is established during the elaboration of the task
and detached during the finalization of the task. For
example, a POSIX signal SIGQUIT can be associated
with a task entry as follows:

Addr : constant System.Address
:= Ada.Interrupts.Reference

(Ada.Interrupts.Names.SIGQUIT) ;

task Handler is

entry Done;
for Done use at Addr;
end Handler;

A signal that is bound to a task entry is effectively
masked except at times when the handler task is at
an accept statement for the signal entry. If the task
executes an accept while the signal is pending, or the
signal arrives while the task is waiting at the accept, the
effect 1s that of a call to the entry; that is, the accept
body is executed and the handler task continues with
its execution.

POSIX.5b is the draft revision of POSIX.5 to reflect
POSIX.1b and POSIX.lc. POSIX.lc defines the be-
havior of multiple threads of control within a process,
if the Threads option is supported. If the OS sup-
ports the Threads option it is generally a good thing
for Ada applications, since if Ada tasks are implemented
as POSIX threads blocking system calls will not block
other tasks in the program. However, the behavior that
POSIX.1c specifies for C threads conflicts in some re-
spects with the behavior that POSIX.5 and the Ada
Reference Manual[3] specify for Ada tasks. POSIX.5b
deals with these differences by hiding most of them, and
making a few changes to the POSIX.5 signal model.

In the case of signals, POSIX.5b is forced to modify the
semantic model of POSIX.5, to allow for per-task sig-
nal masking. However, it cannot require per-task signal
masking, since support for Threads is an OS-dependent
option. Therefore, the effect of Block Signals and Un-
block_Signals is allowed to be either per-task or per-
process. Likewise, it cannot require per-thread signal
delivery, so there is no Ada operation corresponding di-
rectly to pthread_kill(). The closest thing is the Inter-
rupt_Task operation, which may be implemented using
pthread_kill() but may also be implemented in the Ada
runtime system if the Threads options is not supported

by the OS.

In Ada’95, interrupt entries are classified as obsoles-
cent, and their use is “not recommended”. The rec-
ommended way of handling interrupts is via protected
procedures. An interrupt can be associated with a pa-
rameterless protected procedure in two ways. It can be
associated statically via the pragma Interrupt Handler
or can be associated dynamically through a procedure
call Attach Handler provided in the language defined
Ada.Interrupts package. The static binding is similar
to that of interrupt entries; the binding takes effect
during the elaboration of the protected object which
contains the procedure and its finalization. Dynamic
binding is effective from the point where a protected
procedure is being bounded to an interrupt up until a



corresponding unbinding operation is made for the same
interrupt ID through services provided in the package
Ada.Interrupts.

If signals are viewed as interrupts, it would seem logical
for an Ada’95 POSIX binding to provide a mechanism
for attaching protected procedures to signals, so that
upon delivery of a signal that is attached to a protected
procedure the protected procedure will be called. An
example of the static and dynamic binding mechanisms
applied to POSIX signals is given below.

with Ada.Interrupts.Names;
package Protected_Unit is
protected Handlers is
procedure Handleril;
procedure Handler?2;
pragma Attach_Handler
(Handlerl, Ada.Interrupts.Names.SIGQUIT);
-= static binding during the elaboration
pragma Interrupt_Handler (Handler?2);
-- Handler2 can be attached to a
-= signal dynamically
end Handlers;
end Protected_Unit;

with Ada.Interrupts;
with Ada.Interrupts.Names;
with Protected_Unit;
procedure Main is
H : Ada.Interrupts.Parameterless_Handler
:= Handlers.Handler2’access;
begin

Attach_Handler (H, Ada.Interrupts.Names.SIGUSR2);
-- Handler2 is dynamically attached
-- to the POSIX SIGUSR2 signal.

Detach_Handler (H);
end Main;

While this interface can be implemented (and is imple-
mented by GNAT/GNARL), POSIX.5b does not take
this approach. One reason is that, with POSIX.1c, the
semantics of signals have changed, so that they no longer
fit the Ada interrupt model. The Ada model assumes
that the interrupt associated with a protected proce-
dure can be masked during all protected operations of
the associated protected object, and that this or some
other mechanism can be used to prevent the handler
from interrupting the other protected operations of the
protected object. In a POSIX.1c multithreaded process,
this 1s not possible. There is no operation that simul-
taneously masks a signal for all threads, and there is
no locking operation that can be safely called from an
asynchronous signal handler. Thus, the required Ada

semantics cannot be implemented by having a POSIX
signal handler procedure directly call a protected proce-
dure. The other reason that POSIX.5b does not use the
Ada’95 interrupt handler mechanism for signals is that
amendments to POSIX currently in ballot would add
interfaces for true hardware interrupt handlers, which
behave differently from signals. It was felt that using
the same interface for both hardware interrupts and sig-
nals would be confusing.

The preferred application-level signal handling interface
in POSIX.5b is a binding to sigwait(), the synchronous
delivery mechanism. An Ada task calls Await_Signalor
Await Signal With Timeout to wait for a pending or ar-
riving instance in a specified set of signals. The effect is
similar to an Ada accept or selective wait statement, but
the procedure-call syntax does not allow mixing in ac-
cepts for Ada task entries or a terminate alternative, so
the implementation can be a direct mapping to sigwait()
if that operation is supported by the OS. POSIX.5b also
retains the POSIX.5 signal entry interface.

3 GNARL Implementation

In this section we explain how GNARL implements
POSIX signal services. All the mechanisms mentioned
above are supported:

1. Exceptions. Certain reserved signals are mapped
to standard Ada exceptions. SIGSEGV is mapped
to Storage Error or Constraint Error, depending
on context. SIGFPE and SIGILL are mapped to Con-
straint Error. SIGABRT is mapped to a special 2
exception which is used to implement both whole-
task abortion and the implementation of asyn-
chronous transfer of control (the asynchronous se-
lect statement).

2. Await signal. The GNARL uses sigwait() inter-
nally, to implement other operations, as explained
below. Applications are also able to access this
functionality directly using Await Signal. Await_-
Signal is provided by the FSU implementation of
POSIX.5b, which makes use of GNARL internals
but is not included in the standard GNAT distri-
bution.

3. Signal handlers. A protected procedure may be
attached to a signal, using the interfaces shown in

2The special feature is that this exception cannot be handled
by ordinary application code.



the example in Section 2.2. A special thread of con-
trol, created implicitly by the Ada runtime system,
“accepts” the signal using sigwait(), and then calls
the associated protected entry.

4. Signal entries. A task entry may be attached
to a signal, using an address clause as specified in
POSIX.5 and POSIX.5b. As with signal handlers,
a special thread of control accepts the signal and
calls the associated task entry.

The mapping of the reserved signals to Ada exceptions
is implemented by asynchronous signal handler proce-
dures that are attached using sigaction() by the runtime
system (RTS), and which propagate the appropriate ex-
ception. In the case of SIGABRT, the signal handler only
propagates the special exception Abort_Signal if abort
is not deferred for that task. Otherwise, a flag is set
that is checked at every point abort is undeferred; if the
flag is set, the undeferral of abort raises the exception.
Further discussion of the GNAT implementation of ex-
ceptions is outside the scope of this paper. See [4] for
more details.

For signal handlers (and signal entries), it may seem
wasteful to interpose a separate thread of control.
Specifically, one can imagine using sigaction() to in-
stall a low-level asynchronous handler procedure that
directly calls the protected procedure (or executes the
accept body). The signal would be kept unmasked in
one server task and masked in all the rest of the tasks.
The server task might be the environment task (or the
task that owns the signal entry). This approach does
not work, for several reasons. The main problem 1is
implementing mutual exclusion, to prevent concurrent
execution of the handler with other operations of the
protected object (or the acceptance of other entry calls

by the task).

As we mentioned above, the primary implementation
of the GNARL lower-level is implemented using POSIX
threads. In this situation, we have per-thread signal
masking, per-process signal actions, and do not have
any thread-level locking primitives that we can call from
inside an asynchronous signal handler.

In a POSIX multithreaded environment, we cannot rely
on masking the signal for mutual exclusion, because
there 1s no way for a task who executes another pro-
tected action of the protected object to mask the sig-
nal in the server task. On the other hand, the signal
handler procedure cannot call the POSIX thread-level
locking primitives to lock the protected object (or lock
the task control block of the task that owns the signal
entry), because those operations are not async-signal

safe3. Therefore, the only safe way to “handle” a sig-
nal is via the sigwait() operation in a server thread. The
server thread wakes up when the signal arrives, and calls
the associated protected procedure or task entry.

There is a choice is between dedicating one server task
for all signals and providing a server task for each sig-
nal. The former approach looks attractive, since it saves
runtime space, but it will block other signals during the
rendezvous or protected entry call. This may result in
delayed or lost signals. For this reason, GNARL pro-
vides a separate server task for each application-level
signal handler. A simple control structure for such a
task might be:

loop
pthread_sigmask (SIG_BLOCK, signal_set, old_set);
sig := sigwait (signal_set, Signal);

if (Handler_Installed (Signal)) then
<Make a call to a handler>
-- Make an entry or protected procedure call
-- depending on the type of handler installed
end if;

end loop;

This produces behavior that is acceptable when there
1s a handler installed, but we need to allow the han-
dler to be attached and detached dynamically. If the
signal 1s received when there is no handler attached we
want to take the default action. We cannot achieve
this effect so long as the handler task is sitting on the
sigwait(). Even if we have used sigaction()} to set the
asynchronous signal action to the default, that action
will not be taken unless the signal is unmasked, and we
cannot unmask the signal while the server is blocked
on sigwait() because in POSIX.1c the effect of sigwait()
is undefined if any of the signals for which it called is
unmasked. Therefore, when the application-level han-
dler is detached from the signal, we must wake up the
handler task and cause it to wait instead on some oper-
ation for which it is safe to leave the signal unmasked,
so that the default action can be taken. One possible
implementation might be as follows:

loop
if (not Handler_Installed (Signal)) then
sigaction (Signal, default_action, old_action);
pthread_sigmask (SIG_UNBLOCK, signal_set,
old_set);
pthread_mutex_lock (mutex);
pthread_cond_wait (cond, mutex);

3If the mutex locking operation were async-signal safe, there
would still be a potential problem with deadlock when the signal
interrupts a call to another protected operation by the same task.
In principle, this might be prevented using the per-task signal
mask, since it is the same task.



-- Wait to take a default action until a
-- handler needs to be installed
pthread_mutex_unlock (mutex);
pthread_sigmask (SIG_BLOCK, signal_set,
old_set);
else sig := sigwait (signal_set, Signal);
if (Handler_Installed (Signal)) then
<Make a call to an entry or a handler>
-- Make an entry or protected procedure call
-- depending on the type of handler installed
end if;

end loop;

In this way a handler task can correctly reflect the sig-
nal handling status change. The attaching and detach-
ing operations for a signal handler can be implemented
as signaling operations to the handler task correspond-
ing to the signal. The condition variable cond will be
“signaled”* when an interrupt entry or handler is in-
stalled using the pthread_cond_signal() operation and
an instance of the associated signal will be generated
using pthread_kill() when the interrupt entry or handler
is to be detached.

This implementation still has a drawback. Handler
tasks have to be activated for all the signals during
runtime system elaboration, even for signals that will
never have handlers; since with dynamic binding we
can’t know for sure which signals the application may
bind to handlers. A task is a fairly heavyweight object
to use as a signal handler; it requires a separate stack
and at least a partial task control block. This is espe-
cially onerous if we provide such a task for each signal.

GNARL solves this problem by introducing a single
task, called Handler_Manager, that is responsible for
taking default actions for all signals and coordinating
the attaching and detaching of handlers. This way there
is no need to create a special server task for a signal until
the application first attaches a handler to it. The basic
control structures of the Handler_Manager task and an
individual signal server, of type Handler_Task, are as
follows:

task body Handler_Manager is
begin
loop
select accept Bind_Handler
(Signal : Ada.Interrupts.Interrupt_ID) do
pthread_sigmask (SIG_BLOCK,
signal_set (Signal), old_set);

-- Mask the given signal for this task so
-- it is masked in all tasks.

4Despite the name, this operation, which wakes up a task that
is waiting on the condition variable, does not actually involve

POSIX signals.

-- A delivery of the signal will be
—— caught by the corresp. Handler Task
—— while it is wailing on sigwait.
pthread_cond_signal (cond (Signal));
end Bind_Handler;
or accept Unbind_Handler
(Signal : Ada.Interrupts.Interrupt_ID) do
-— Currently, there is a handler or an
-— entry attached and the corresponding
-— Handler Task is waiting on sigwail.
pthread_kill
(Handler_Task_ID (Signal), Signal);
-—- We have to wake the Handler Task up
-— to wait on a condition variable.
sigaction (Signal,
default_action (Signal), old_action);
-— Restore default action of this signal.
pthread_sigmask (SIG_UNBLOCK,
signal_set (Signal), old_set);
-— Unmask the interrupt for this task, to
-— allow the default action again.
end Unbind_Handler;
end select;
end loop;

end Handler_Manager;

task body Handler_Task is
begin
loop
if (not Handler_Installed (Signal)) then
pthread_mutex_lock (mutex (Signal));
pthread_cond_wait
(cond (Signal), mutex (Signal));
pthread_mutex_unlock (mutex (Signal));
else
sig := sigwait (signal_set, Signal);
if (Handler_Installed (Signal)) then
<Make a call to an entry or a handler>
-- Make an entry or protected procedure call
-- depending on the type of handler.
end if;
end if;
end loop;
end Handler_Task;

With the above construct, in order to attach a handler
for a signal, the RTS calls the entry Handler Manager.-
Bind Handler after registering the corresponding han-
dler in a global variable. Then Handler_Manager adds
the signal to 1ts own signal mask, so that all the tasks in
the current process will have the signal masked. Then
Handler Manager signals an appropriate condition vari-
able so that the Handler Task corresponding to that sig-
nal moves from pthread_cond_wait(} to sigwait(). Upon
receiving a signal the Handler_Task will then wake up
and perform appropriate action according to the infor-
mation stored in the global storage.



To detach a handler, the RTS calls the entry Handler_-
Manager.UnbindHandler after registering in global stor-
age that there is no handler attached. Then Handler_-
Manager signals an appropriate Handler_Task using
pthread_kill(). The Handler_Task will wake up from
the sigwait() and move on to the pthread_cond_wait().
Handler_Manager then installs a default action and re-
moves the signal from its signal mask, so that it is ready
to take default action for subsequent deliveries of that
signal.

All of the tasks created by the RTS for signal handling
are independent of the environment task. Therefore,
they are not required to complete before the termina-
tion of the environment task. When finalization of en-
vironment task is performed these tasks simply go away
along with the rest of the POSIX process, as a conse-
quenct of the process exit operation.

4 Performance

The use of protected procedures as signal handlers is
more efficient than task entries, since rendezvous re-
quires at least two extra task switches. However, direct
use of the Await_Signal procedures, which are bindings
to sigwait(), appear to be the most efficient Ada signal
handling mechanism. Both of the other two mechanisms
impose the time and memory overhead of creating a run-
time system task to act as server.

We suspect that the methods with higher runtime over-
head may aggravate a potential for lost signals that is
inherent in the POSIX signal semantics. If a signal is
generated for a thread while there is already an instance
of that signal pending, that signal may be lost; that is,
if the thread makes a subsequent call to sigwait() or un-
masks the signal with pthread_sigmask() it may be that
only one of the signal occurrences is delivered. Handling
signals indirectly though server tasks may increase the
probability of missed signals, because the interval dur-
ing which the signal is masked and unable to be deliv-
ered is longer than with a C-style asynchronous handler
procedure or the bare sigwait(). This is due to the ex-
tra overhead of waking up the handler task, making
the protected procedure or task entry call (with context
switches, in the latter case), and then the continued exe-
cution of the handler task while it is looping back around
to get ready for the next signal occurrence. However,
losing a few signals should not be a serious problem,
since correct POSIX applications must be designed to
tolerate lost signals.

In this section of the full paper we expect to give per-
formance measurements of the various signal delivery
mechanisms supported by GNARL, including measure-
ments of the overhead and statistics on the rates of sig-
nal loss. We expect the latter to shed light on whether
there is any noticeable increase in the probability of lost
signals. The performance results are not ready yet but
should be available by the time for the final submission
of the paper.

5 Conclusion

GNARL provides several mechanisms for an Ada ap-
plication to be notified of POSIX signals, including the
protected procedure and task entry mechanisms. The
exception mechanism is also supported, for the reserved
signals. An asynchronous exception mechanism is pro-
vided for SIGABRT, this is used to implement task abor-
tion and asynchronous transfer of control. All this is
part of the standard GNAT distribution.

GNAT, including GNARL, has been validated for exe-
cution on several computers made by Silicon Graphics
and running the IRIX® operating system. It has been
ported to a number of other combinations of hardware
and operating systems, including SPARC® workstations
running the Solaris 2.47 operating system. On both
IRIX and Solaris 2.4 GNARL makes use of OS kernel
threads; this provides true parallel execution on multi-
processor configurations.

The Await_Signal interface described here is part of
the FSU POSIX.5b prototype implementation. So far,
it has only been tested for Solaris 2.4, though it was
designed to be simple to port to other UNIX®-like sys-
tems. In further work, if we are able to obtain funding,
we plan to port the POSIX.5b implementation to some
of the other systems to which GNARL has been ported.

GNAT is available for free use, by anonymous ftp from
ftp.cs.nyu.edu. The FSU POSIX.5b implementation
will also be made available for free use, by anonymous
ftp from ftp.cs.fsu.edu (in directory /pub/PART).
New releases of both systems will continue to appear
over time.

More information on GNARL and the POSIX.5b im-
plementation can be found in the web home-page
http://www.cs.fsu.edu/"doh/realtime.html.

5TRIX is a trademark of Silicon Graphics, Inc.

8SPARC is a trademark Sun Microsystems, Inc.

7Solaris is a trademark of SunSoft, Inc.

8UNIX is a trademark of UNIX Systems Laboratories, Inc.



Acknowledgments

This work is part of the FSU POSIX/Ada Real-Time
(PART) Project. PART has been funded in part by
the HQ U.S. Army CECOM, Software Engineering Di-
rectorate, with support from the Ada9X Project Office
and Ada Joint Program Office’s Ada Technology Inser-
tion Program.

References

[1] ISO/TEC. ISO/IEC 9945-1: 1990 Information
Technology—Portable Operating System Interface
(POSIX)—Part 1: System Application Program In-
terface (API) [C Language], 1990. TEEE Std 1003.1-
1990.

[2] ISO/TEC. ISO/IEC 14519-1: 1995, Information
Technology— POSIX Ada Language Interfaces—
Part 1: Binding for System Application Program In-
terface (API), June 1992. IEEE Std 1003.5-1992.

[3] ISO/TEC. ISO/IEC 8652: 1995 (E) Informa-
tion Technology — Programming Languages — Ada,
February 1995.

[4] Richard Kenner. Integrating gnat into gec. In TRI-
Ada ’94 Proceedings. ACM, 1994.

[5] Technical Committee on Operating Systems and Ap-
plication Environments of the IEEE. Portable Op-
erating System Interface (POSIX)—Part 1: System
Application Program Interface (API)—Amendment
1: Realtime Eztension [C' Language], 1993. TEEE
Std 1003.1b-1993.

[6] Technical Committee on Operating Systems and Ap-
plication Environments of the IEEE. Portable Op-
erating System Interface (POSIX)—Part 1: System
Application Program Interface (API)—Amendment
2: Threads Extension [C Language], 1995. IEEE Std
1003.1¢c-1995.

[7] United States Department of Defense. ANSI/MIL-
STD-1815A-1983 Reference Manual for the Ada
Programming Language, February 1983.

[8] New York University. The Gnu NYU Ada Trans-
lator (GNAT). Available by anonymous FTP from
cs.nyu.edu.



