
TrueErase: Full-storage-data-path

Per-file Secure Deletion

Sarah Diesburg Christopher Meyers Mark Stanovich

 Michael Mitchell Justin Marshall Julia Gould

An-I Andy Wang

Florida State University

Geoff Kuenning

Harvey Mudd College

Overview

 Problem

 Per-file secure-deletion is difficult to achieve

 Important for expired data, statute of limitations, etc.

 Existing solutions tend to be

 Limited to a segment of legacy storage data path

 File-system- or storage-medium-specific

 TrueErase

 Storage-data-path-wide solution

 Works with common file systems & storage media

2

The Problem

 Most users believe that files are deleted once

 Files are no longer visible

 The trash can is emptied

 The partition is formatted

 In reality

 Actual data remains

3

The Problem

 Decommissioned storage devices leak

sensitive information

4

What is secure deletion?

 Rendering a file’s deleted content and

metadata (e.g., name) irrecoverable

 /dir/file

5

dir

i-node file

file

i-node

data

11110000…
allocation

bitmap

What is secure deletion?

 Rendering a file’s deleted content and

metadata (e.g., name) irrecoverable

 rm /dir/file

6

dir

i-node file

file

i-node

11010000…
allocation

bitmap

How hard can this be?

 Diverse threat models

 Attacks on backups, live systems, cold boot

attacks, covert channels, policy violations, etc.

 Our focus

 Dead forensic attacks on local storage

 Occur after the computer has been shut down properly

7

Basic Research Question

 Under the most benign environments

 What can we design and build to ensure that

the secure deletion of a file is honored?

 Throughout the legacy storage data path

8

TrueErase: A Storage-data-path-

wide Framework
 Irrevocably deletes data and metadata

 Offers a unique combination of properties

 Compatible with legacy apps, file systems, and

storage media

 Per-file deletion granularity

 Solution covers the entire data path

 Can survive common system failures

 Core logic systemically verified

9

Legacy Storage Data Path

 Limited control over

metadata

 Not aware of storage

medium; limited

control over storage

locations

 No access to a

block’s type, file

ownership, in-use

status

 10

applications

file system

storage

management

storage

Legacy Storage Data Path

 Limited control over

metadata

 Not aware of storage

medium; limited

control over storage

locations

 No access to a

block’s type, file

ownership, in-use

status

 11

applications

file system

storage

management

storage

Legacy Storage Data Path

 Limited control over

metadata

 Not aware of storage

medium; limited

control over storage

locations

 No access to a

block’s type, file

ownership, in-use

status

 12

applications

file system

storage

management

storage

Existing Secure-deletion Solutions

 May leak metadata

information

 Cannot ensure in-

place updates

 Encryption will not help

 Hard to provide per-

file solutions

 Cross-layer solutions

tend to be file-system-

and medium-specific

 13

applications

file system

storage

management

storage

Existing Secure-deletion Solutions

 May leak metadata

information

 Cannot ensure in-

place updates

 Encryption will not help

 Hard to provide per-

file solutions

 Cross-layer solutions

tend to be file-system-

and medium-specific

 14

applications

file system

storage

management

storage

Existing Secure-deletion Solutions

 May leak metadata

information

 Cannot ensure in-

place updates

 Encryption will not help

 Hard to provide per-

file solutions

 Cross-layer solutions

tend to be file-system-

and medium-specific

 15

applications

file system

storage

management

storage

Existing Secure-deletion Solutions

 May leak metadata

information

 Cannot ensure in-

place updates

 Encryption will not help

 Hard to provide per-

file solutions

 Cross-layer solutions

tend to be file-system-

and medium-specific

 16

applications

file system

storage

management

storage

Other Secure-deletion Challenges

 No legacy requests to

delete data blocks

 For performance

 Legacy optimizations

 Requests can be split,

reordered, cancelled,

consolidated, buffered,

with versions in transit

 Lack of global IDs

 Crashes/verification

17

applications

file system

storage

management

storage

TrueErase Overview

 A centralized, per-file

secure-deletion

framework

18

applications

file system

storage

management

storage

user model

TAP

secure-deletion

commands

TrueErase Overview

 User model

 Use extended

attributes to specify

files/dirs for secure

deletion

 Compatible to legacy

applications

19

applications

file system

storage

management

storage

user model

secure-deletion

commands

TAP

TrueErase Overview

 Type/attribute

propagation module

(TAP)

 File system reports

pending updates

 Uses global unique IDs

to track versions

 Tracks only soft states

 No need for mechanisms

to recover states

20

applications

file system

storage

management

storage

user model

secure-deletion

commands

TAP

TrueErase Overview

 Enhanced storage-

management layer

 Can inquire about file-

system-level info

 Added secure-deletion

commands for various

storage media

 Disabled some

optimizations (e.g.,

storage-built-in cache)

21

applications

file system

storage

management

storage

user model

secure-deletion

commands

TAP

TrueErase Overview

 After a crash

 All replayed and

reissued deletions are

done securely

 All data/metadata in

the storage data path

from prior session will

be securely deleted

22

applications

file system

storage

management

storage

user model

secure-deletion

commands

TAP

TrueErase Assumptions

 Benign personal computing environment

 Uncompromised, single-user, single-file-system,

non-RAID, non-distributed system

 Dead forensics attacks

 Full control of storage data path

 Journaling file systems that adhere to the

consistency properties specified in [SIVA05]

 All updates are reported

 Does not handle user copies (no tainting)

 23

TrueErase Design

 User model

 TAP

 Enhanced storage-management layer

 Exploiting file-system-consistency properties

to identify and handle corner cases

24

User Model

 Ideally, use traditional file-system permission

semantics

 Use extended-attribute-setting tools to mark

files/dirs sensitive

 Which will be securely deleted from the entire storage

data path

 Legacy apps just operate on specified files/dirs

25

Name Handling

 Legacy file-permission semantics

26

dir

i-node
file

file

i-node

data permission

Name Handling

 Legacy file-permission semantics

 TrueErase’s sensitive status

27

dir

i-node
file

file

i-node

data permission

dir

i-node
file

file

i-node

data sensitive

status

Toggling of the Sensitive Status

 Implications

 Tracking update versions for all files at all times

 Or, removing old versions for all files at all times

 TrueErase

 Enforces secure deletions for files/dirs that have

stayed sensitive since their creation

28

Name Handling

 By the time one can set attributes of a file

 File name may already be stored non-sensitively

 Some remedies

 Inherit the sensitive status

 Creating a file under a sensitive directory

 smkdir wrapper script

 Creates a temporary name, marks it sensitive, and

renames it to the sensitive name

29

TAP Module

 Tracks and propagates info from file-system

layer to storage-management layer

 Challenges

 Where to instantiate the deletion requests to file

content?

 What and how to track?

 How to interact with TAP?

31

Where to instantiate deletion

requests to file content?
 Can a file system

just issue zeroed

blocks?

32

applications

file system

storage

management

storage

TAP

data data

0s

Where to instantiate deletion

requests to file content?
 Can a file system

just issue zeroed

blocks?

33

data data 0s 0s

applications

file system

storage

management

storage

TAP

Where to instantiate deletion

requests to file content?
 Instead

 A file system attaches

deletion reminders to

other deletion requests

(zeroing allocation bits)

34

data data

applications

file system

storage

management

storage

TAP

Where to instantiate deletion

requests to file content?
 Storage-management

layer can choose

secure-deletion

methods

 Match the underlying

storage medium

35

data data

applications

file system

storage

management

storage

TAP

0/1s data

explicit

erase

What to track?

 Tracking deletion is not enough

 At the secure-deletion time

 Versions of a file’s blocks may have been stored

 Metadata may not reference to old versions

 Need additional persistent states to track old versions

 TrueErase deletes old versions along the way

 Overwriting a sensitive data

= Secure deletion + update (secure write)

 Tracks all in-transit sensitive updates

36

What to track?

 Tracking sensitive updates is still not enough

 Metadata items are small

 A metadata block can be shared by files with

mixed sensitive status

 A non-sensitive request can make sensitive metadata

appear in the storage data path

 TrueErase tracks all in-transit updates

 For simplicity and verification

37

How to track?

 Challenges

 Reuse of name space (i-node number), data

structures, memory addresses

 Versions of requests in transit

 TrueErase

 Global unique page ID per memory page

38

Tracking Granularity

 TrueErase tracks physical sector numbers

(e.g., 512B)

 Smallest update unit

 GUID: global unique page ID + sector number

39

How to interact with TAP?

 Report_write() creates a per-sector tracking

entry

 Report_delete() attaches deletion reminders

to a tracking entry

 Report_copy() clones a tracking entry and

transfers reminders

 Cleanup_write() deletes a tracking entry

 Check_info() retrieves the sensitive status of

a sector and its reminders

40

Enhanced Storage-management

Layer
 Decide which secure-deletion method to use

 Based on the underlying storage medium

 We used NAND flash for this demonstration

41

NAND Flash Basics

 Writing is slower than reading

 Erasure can be much slower

 NAND reads/writes in flash pages

 Deletes in flash blocks

 Consisting of contiguous pages

42

NAND Flash Basics

 In-place updates are not allowed

 Flash block containing the page needs to be

erased before being written again

 In-use pages are migrated elsewhere

 Each location can be erased 10K -1M times

43

Flash Translation Layer (FTL)

 To optimize performance

 FTL remaps an overwrite request to an erased

empty page

 To prolong the lifespan

 Wear leveling evenly spreads the number of

erasures across storage locations

44

Added NAND Secure-deletion

Commands
 Secure_delete(pages)

 Copies other in-use pages from the current flash

block to elsewhere

 Issue erase command on the current block

 Secure_write(page)

 Write the new page

 Call Secure_delete() on the old (if applicable)

45

Crash Handling

 A crash may occur during a secure operation

 Page migration may not complete

 Since copies are done first

 No data loss; but potential duplicates

 Journal recovery mechanisms will reissue the

request, and secure operations will continue

46

Wear Leveling

 When flash runs low on space

 Wear leveling compacts in-use pages into fewer

flash blocks

 Problem: internal storage reorganization

 No respect for file boundaries, sensitive status

47

Wear Leveling

 TrueErase

 Stores a sensitive-status bit in per-page control

areas

 Used to enforce secure-deletion semantics

 May not always be in sync with the file-system-

level sensitive status

 E.g., short-lived files

 When the bit disagrees with file system’s secure status,

mark the bit sensitive and treat it as such

48

File-system-consistency Properties

and Secure Deletion
 File-system-consistency properties

 A file’s metadata reference the right data and

metadata versions throughout the data path

 For non-journaling file systems

 Reuse-ordering & pointer-ordering properties

 Without both (e.g., ext2), a file may end up with

blocks from another file

 For journaling file systems

 Non-rollback property

49

Without Pointer-ordering Property

50

applications

file system

storage

management

storage

TrueErase

Without Pointer-ordering Property

51

file A’s

metadata

data

applications

file system

storage

management

storage

TrueErase

memory

storage

Without Pointer-ordering Property

52

file A’s

metadata

data

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

Without Pointer-ordering Property

53

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

Without Pointer-ordering Property

54

file B’s

metadata

data

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

Without Pointer-ordering Property

55

file B’s

metadata

data

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

• Secure deletion of A

can end up deleting

B’s block

Pointer-ordering Property

56

file A’s

metadata

data

applications

file system

storage

management

storage

TrueErase

memory

storage

Pointer-ordering Property

57

file A’s

metadata

data

data

applications

file system

storage

management

storage

TrueErase

memory

storage

• Data blocks are

propagated first

Pointer-ordering Property

58

file A’s

metadata

data

data

applications

file system

storage

management

storage

TrueErase

memory

storage

• May need to perform

secure write

• Need to handle

crash at this point

(remove

unreferenced

sensitive blocks at

recovery time)

• Need to ensure

persistence (e.g.,

disabling storage-

built-in caches)

Pointer-ordering Property

59

file A’s

metadata

data

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

Without Reuse-ordering Property

60

file A’s

metadata

data

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

Without Reuse-ordering Property

61

file A’s

metadata

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

Without Reuse-ordering Property

62

file A’s

metadata

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

file B’s

metadata

data

Without Reuse-ordering Property

63

file A’s

metadata

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

file B’s

metadata

data

• Secure deletion of A

can end up deleting

B’s block

Reuse-ordering Property

64

file A’s

metadata

data

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

Reuse-ordering Property

65

file A’s

metadata

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

• A block cannot be

reused until its free

status is persistent

Reuse-ordering Property

66

file A’s

metadata

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

• Pending updates to

the unreferenced

data block should

not be written

• Unreferenced in-

memory data blocks

need to be wiped

Reuse-ordering Property

67

file A’s

metadata

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

• By pointer ordering,

all prior data

updates are flushed

• Secure delete the

data block before

making its free

status persistent

Reuse-ordering Property

68

file A’s

metadata

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

• A crash will show

secure deletion in

progress

• Recovery

mechanism will

reissue file deletion

Reuse-ordering Property

69

file A’s

metadata

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

• Need to ensure

persistence (e.g.,

disabling storage-

built-in caches)

Reuse-ordering Property

70

file A’s

metadata

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

• Static file types and

ownerships for in-

transit blocks

• Still need GUIDs to

track versions

• Need to handle

dynamic sensitive

mode changes (once

marked sensitive,

always sensitive)

Reuse-ordering Property

71

file A’s

metadata

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

file B’s

metadata

data

Non-rollback Property

 Older versions of updates will not overwrite

newer versions persistently

 Implications

 An update followed by a secure deletion will be

applied in the right order

 Need to disable some optimizations at the

storage-management layer (e.g., built-in cache)

 Merging/splitting requests okay (we track sectors)

 A consolidated update is sensitive, if one is

sensitive

 72

Structure of Corner Cases

 Ensuring that a secure deletion occurs before

a block is persistently declared free

 Hunting down the persistent sensitive blocks

left behind after a crash

 Making sure that secure deletion is not

applied to the wrong file

 Making sure that a securely deleted block is

not overwritten by a buffered unref block

 Handling versions of requests in transit

73

Crash Handling

 At recovery time

 Replay journal and reissue incomplete deletion

operations, with all operations handled securely

 For flash, securely delete the journal and sensitive

blocks not referenced by the file system

 For disk, securely overwrite journal and all free

space

74

TrueErase Implementation

 Linux 2.6.25

 File system: ext3 with its jbd journaling layer

 Proven to adhere to the file-system-consistency

properties [SIVA05]

 NAND flash: SanDisk’s DiskOnChip

 Lack of access to flash development environ.

 Dated hardware, but the same design principle

 Storage-management layer: Inverse NAND

File Translation Layer (INFTL)

 75

Implementation-level Highlights

 Steps in deletion sequence can be expressed

in secure write/delete data/metadata

 Exploited group-commit semantics

 Reduced the number of secure operations

 Handled buffer/journal copies

 Handled consolidation within and across

journal transactions

76

Verification

 Basic cases

 Sanity checks

 PostMark with 20% sensitive files

 Reporting of all updates

 File-system-consistency-based corner cases

 TAP state-space verification

77

TAP State-space Verification

 State-space enumeration

 Tracked down ~10K unique reachable states,

~2.7M state transitions

 Reached depth of 16 in the state-space tree

 Used two-version programming for

verification

 One based on conceptual rules

 One based on the TAP kernel module

 Identified 4 incorrect rules and 3 bugs

78

Empirical Evaluation

 Workloads

 PostMark

 Modified with up to 10% of sensitive files

 Sensitive files can be chosen randomly

 Each file operation takes < 0.17 seconds

 Good enough for interactive use

 OpenSSH make + sync with 27% of files that are

newly created marked sensitive

 Overhead within a factor of two

79

Related Work

 TRIM command

 FADED

 Type-safe disk

 Modified YAFFS with secure-deletion support

 TrueErase

 Legacy-compatible, persistent-state-light,

centralized info-propagation channel

80

Lessons Learned

 Retrofitting security features is more complex

than we thought

 The general lack of raw flash access and

development environments

 Vendors try to hide complexities

 File-system consistency and secure deletion rely

on exposed controls/details for data

layout/removal

81

Lessons Learned

 A holistic solution would not be possible

 Without expertise across layers and research

fields

 Highlights the importance of knowledge

integration

82

Conclusion

 We have presented the design,

implementation, evaluation, and verification

of TrueErase

 Legacy-compatible, per-file, secure-deletion

framework

 A secure-deletion solution that can withstand

diverse threats remains elusive

 TrueErase is a promising step toward this goal

83

Acknowledgements

 National Science Foundation

 Department of Education

 Philanthropic Educational Organization

 Florida State University Research Foundation

84

Questions?

 Google keyword: TrueErase

Thank you for your attention!

85

