
TrueErase: Full-storage-data-path

Per-file Secure Deletion

Sarah Diesburg  Christopher Meyers  Mark Stanovich

 Michael Mitchell  Justin Marshall  Julia Gould

An-I Andy Wang

Florida State University

Geoff Kuenning

Harvey Mudd College

Overview

 Problem

 Per-file secure-deletion is difficult to achieve

 Important for expired data, statute of limitations, etc.

 Existing solutions tend to be

 Limited to a segment of legacy storage data path

 File-system- or storage-medium-specific

 TrueErase

 Storage-data-path-wide solution

 Works with common file systems & storage media

2

The Problem

 Most users believe that files are deleted once

 Files are no longer visible

 The trash can is emptied

 The partition is formatted

 In reality

 Actual data remains

3

The Problem

 Decommissioned storage devices leak

sensitive information

4

What is secure deletion?

 Rendering a file’s deleted content and

metadata (e.g., name) irrecoverable

 /dir/file

5

dir

i-node file

file

i-node

data

11110000…
allocation

bitmap

What is secure deletion?

 Rendering a file’s deleted content and

metadata (e.g., name) irrecoverable

 rm /dir/file

6

dir

i-node file

file

i-node

11010000…
allocation

bitmap

How hard can this be?

 Diverse threat models

 Attacks on backups, live systems, cold boot

attacks, covert channels, policy violations, etc.

 Our focus

 Dead forensic attacks on local storage

 Occur after the computer has been shut down properly

7

Basic Research Question

 Under the most benign environments

 What can we design and build to ensure that

the secure deletion of a file is honored?

 Throughout the legacy storage data path

8

TrueErase: A Storage-data-path-

wide Framework
 Irrevocably deletes data and metadata

 Offers a unique combination of properties

 Compatible with legacy apps, file systems, and

storage media

 Per-file deletion granularity

 Solution covers the entire data path

 Can survive common system failures

 Core logic systemically verified

9

Legacy Storage Data Path

 Limited control over

metadata

 Not aware of storage

medium; limited

control over storage

locations

 No access to a

block’s type, file

ownership, in-use

status

 10

applications

file system

storage

management

storage

Legacy Storage Data Path

 Limited control over

metadata

 Not aware of storage

medium; limited

control over storage

locations

 No access to a

block’s type, file

ownership, in-use

status

 11

applications

file system

storage

management

storage

Legacy Storage Data Path

 Limited control over

metadata

 Not aware of storage

medium; limited

control over storage

locations

 No access to a

block’s type, file

ownership, in-use

status

 12

applications

file system

storage

management

storage

Existing Secure-deletion Solutions

 May leak metadata

information

 Cannot ensure in-

place updates

 Encryption will not help

 Hard to provide per-

file solutions

 Cross-layer solutions

tend to be file-system-

and medium-specific

 13

applications

file system

storage

management

storage

Existing Secure-deletion Solutions

 May leak metadata

information

 Cannot ensure in-

place updates

 Encryption will not help

 Hard to provide per-

file solutions

 Cross-layer solutions

tend to be file-system-

and medium-specific

 14

applications

file system

storage

management

storage

Existing Secure-deletion Solutions

 May leak metadata

information

 Cannot ensure in-

place updates

 Encryption will not help

 Hard to provide per-

file solutions

 Cross-layer solutions

tend to be file-system-

and medium-specific

 15

applications

file system

storage

management

storage

Existing Secure-deletion Solutions

 May leak metadata

information

 Cannot ensure in-

place updates

 Encryption will not help

 Hard to provide per-

file solutions

 Cross-layer solutions

tend to be file-system-

and medium-specific

 16

applications

file system

storage

management

storage

Other Secure-deletion Challenges

 No legacy requests to

delete data blocks

 For performance

 Legacy optimizations

 Requests can be split,

reordered, cancelled,

consolidated, buffered,

with versions in transit

 Lack of global IDs

 Crashes/verification

17

applications

file system

storage

management

storage

TrueErase Overview

 A centralized, per-file

secure-deletion

framework

18

applications

file system

storage

management

storage

user model

TAP

secure-deletion

commands

TrueErase Overview

 User model

 Use extended

attributes to specify

files/dirs for secure

deletion

 Compatible to legacy

applications

19

applications

file system

storage

management

storage

user model

secure-deletion

commands

TAP

TrueErase Overview

 Type/attribute

propagation module

(TAP)

 File system reports

pending updates

 Uses global unique IDs

to track versions

 Tracks only soft states

 No need for mechanisms

to recover states

20

applications

file system

storage

management

storage

user model

secure-deletion

commands

TAP

TrueErase Overview

 Enhanced storage-

management layer

 Can inquire about file-

system-level info

 Added secure-deletion

commands for various

storage media

 Disabled some

optimizations (e.g.,

storage-built-in cache)

21

applications

file system

storage

management

storage

user model

secure-deletion

commands

TAP

TrueErase Overview

 After a crash

 All replayed and

reissued deletions are

done securely

 All data/metadata in

the storage data path

from prior session will

be securely deleted

22

applications

file system

storage

management

storage

user model

secure-deletion

commands

TAP

TrueErase Assumptions

 Benign personal computing environment

 Uncompromised, single-user, single-file-system,

non-RAID, non-distributed system

 Dead forensics attacks

 Full control of storage data path

 Journaling file systems that adhere to the

consistency properties specified in [SIVA05]

 All updates are reported

 Does not handle user copies (no tainting)

 23

TrueErase Design

 User model

 TAP

 Enhanced storage-management layer

 Exploiting file-system-consistency properties

to identify and handle corner cases

24

User Model

 Ideally, use traditional file-system permission

semantics

 Use extended-attribute-setting tools to mark

files/dirs sensitive

 Which will be securely deleted from the entire storage

data path

 Legacy apps just operate on specified files/dirs

25

Name Handling

 Legacy file-permission semantics

26

dir

i-node
file

file

i-node

data permission

Name Handling

 Legacy file-permission semantics

 TrueErase’s sensitive status

27

dir

i-node
file

file

i-node

data permission

dir

i-node
file

file

i-node

data sensitive

status

Toggling of the Sensitive Status

 Implications

 Tracking update versions for all files at all times

 Or, removing old versions for all files at all times

 TrueErase

 Enforces secure deletions for files/dirs that have

stayed sensitive since their creation

28

Name Handling

 By the time one can set attributes of a file

 File name may already be stored non-sensitively

 Some remedies

 Inherit the sensitive status

 Creating a file under a sensitive directory

 smkdir wrapper script

 Creates a temporary name, marks it sensitive, and

renames it to the sensitive name

29

TAP Module

 Tracks and propagates info from file-system

layer to storage-management layer

 Challenges

 Where to instantiate the deletion requests to file

content?

 What and how to track?

 How to interact with TAP?

31

Where to instantiate deletion

requests to file content?
 Can a file system

just issue zeroed

blocks?

32

applications

file system

storage

management

storage

TAP

data data

0s

Where to instantiate deletion

requests to file content?
 Can a file system

just issue zeroed

blocks?

33

data data 0s 0s

applications

file system

storage

management

storage

TAP

Where to instantiate deletion

requests to file content?
 Instead

 A file system attaches

deletion reminders to

other deletion requests

(zeroing allocation bits)

34

data data

applications

file system

storage

management

storage

TAP

Where to instantiate deletion

requests to file content?
 Storage-management

layer can choose

secure-deletion

methods

 Match the underlying

storage medium

35

data data

applications

file system

storage

management

storage

TAP

0/1s data

explicit

erase

What to track?

 Tracking deletion is not enough

 At the secure-deletion time

 Versions of a file’s blocks may have been stored

 Metadata may not reference to old versions

 Need additional persistent states to track old versions

 TrueErase deletes old versions along the way

 Overwriting a sensitive data

= Secure deletion + update (secure write)

 Tracks all in-transit sensitive updates

36

What to track?

 Tracking sensitive updates is still not enough

 Metadata items are small

 A metadata block can be shared by files with

mixed sensitive status

 A non-sensitive request can make sensitive metadata

appear in the storage data path

 TrueErase tracks all in-transit updates

 For simplicity and verification

37

How to track?

 Challenges

 Reuse of name space (i-node number), data

structures, memory addresses

 Versions of requests in transit

 TrueErase

 Global unique page ID per memory page

38

Tracking Granularity

 TrueErase tracks physical sector numbers

(e.g., 512B)

 Smallest update unit

 GUID: global unique page ID + sector number

39

How to interact with TAP?

 Report_write() creates a per-sector tracking

entry

 Report_delete() attaches deletion reminders

to a tracking entry

 Report_copy() clones a tracking entry and

transfers reminders

 Cleanup_write() deletes a tracking entry

 Check_info() retrieves the sensitive status of

a sector and its reminders

40

Enhanced Storage-management

Layer
 Decide which secure-deletion method to use

 Based on the underlying storage medium

 We used NAND flash for this demonstration

41

NAND Flash Basics

 Writing is slower than reading

 Erasure can be much slower

 NAND reads/writes in flash pages

 Deletes in flash blocks

 Consisting of contiguous pages

42

NAND Flash Basics

 In-place updates are not allowed

 Flash block containing the page needs to be

erased before being written again

 In-use pages are migrated elsewhere

 Each location can be erased 10K -1M times

43

Flash Translation Layer (FTL)

 To optimize performance

 FTL remaps an overwrite request to an erased

empty page

 To prolong the lifespan

 Wear leveling evenly spreads the number of

erasures across storage locations

44

Added NAND Secure-deletion

Commands
 Secure_delete(pages)

 Copies other in-use pages from the current flash

block to elsewhere

 Issue erase command on the current block

 Secure_write(page)

 Write the new page

 Call Secure_delete() on the old (if applicable)

45

Crash Handling

 A crash may occur during a secure operation

 Page migration may not complete

 Since copies are done first

 No data loss; but potential duplicates

 Journal recovery mechanisms will reissue the

request, and secure operations will continue

46

Wear Leveling

 When flash runs low on space

 Wear leveling compacts in-use pages into fewer

flash blocks

 Problem: internal storage reorganization

 No respect for file boundaries, sensitive status

47

Wear Leveling

 TrueErase

 Stores a sensitive-status bit in per-page control

areas

 Used to enforce secure-deletion semantics

 May not always be in sync with the file-system-

level sensitive status

 E.g., short-lived files

 When the bit disagrees with file system’s secure status,

mark the bit sensitive and treat it as such

48

File-system-consistency Properties

and Secure Deletion
 File-system-consistency properties

 A file’s metadata reference the right data and

metadata versions throughout the data path

 For non-journaling file systems

 Reuse-ordering & pointer-ordering properties

 Without both (e.g., ext2), a file may end up with

blocks from another file

 For journaling file systems

 Non-rollback property

49

Without Pointer-ordering Property

50

applications

file system

storage

management

storage

TrueErase

Without Pointer-ordering Property

51

file A’s

metadata

data

applications

file system

storage

management

storage

TrueErase

memory

storage

Without Pointer-ordering Property

52

file A’s

metadata

data

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

Without Pointer-ordering Property

53

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

Without Pointer-ordering Property

54

file B’s

metadata

data

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

Without Pointer-ordering Property

55

file B’s

metadata

data

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

• Secure deletion of A

can end up deleting

B’s block

Pointer-ordering Property

56

file A’s

metadata

data

applications

file system

storage

management

storage

TrueErase

memory

storage

Pointer-ordering Property

57

file A’s

metadata

data

data

applications

file system

storage

management

storage

TrueErase

memory

storage

• Data blocks are

propagated first

Pointer-ordering Property

58

file A’s

metadata

data

data

applications

file system

storage

management

storage

TrueErase

memory

storage

• May need to perform

secure write

• Need to handle

crash at this point

(remove

unreferenced

sensitive blocks at

recovery time)

• Need to ensure

persistence (e.g.,

disabling storage-

built-in caches)

Pointer-ordering Property

59

file A’s

metadata

data

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

Without Reuse-ordering Property

60

file A’s

metadata

data

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

Without Reuse-ordering Property

61

file A’s

metadata

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

Without Reuse-ordering Property

62

file A’s

metadata

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

file B’s

metadata

data

Without Reuse-ordering Property

63

file A’s

metadata

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

file B’s

metadata

data

• Secure deletion of A

can end up deleting

B’s block

Reuse-ordering Property

64

file A’s

metadata

data

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

Reuse-ordering Property

65

file A’s

metadata

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

• A block cannot be

reused until its free

status is persistent

Reuse-ordering Property

66

file A’s

metadata

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

• Pending updates to

the unreferenced

data block should

not be written

• Unreferenced in-

memory data blocks

need to be wiped

Reuse-ordering Property

67

file A’s

metadata

data

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

• By pointer ordering,

all prior data

updates are flushed

• Secure delete the

data block before

making its free

status persistent

Reuse-ordering Property

68

file A’s

metadata

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

• A crash will show

secure deletion in

progress

• Recovery

mechanism will

reissue file deletion

Reuse-ordering Property

69

file A’s

metadata

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

• Need to ensure

persistence (e.g.,

disabling storage-

built-in caches)

Reuse-ordering Property

70

file A’s

metadata

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

• Static file types and

ownerships for in-

transit blocks

• Still need GUIDs to

track versions

• Need to handle

dynamic sensitive

mode changes (once

marked sensitive,

always sensitive)

Reuse-ordering Property

71

file A’s

metadata

file A’s

metadata

applications

file system

storage

management

storage

TrueErase

memory

storage

file B’s

metadata

data

Non-rollback Property

 Older versions of updates will not overwrite

newer versions persistently

 Implications

 An update followed by a secure deletion will be

applied in the right order

 Need to disable some optimizations at the

storage-management layer (e.g., built-in cache)

 Merging/splitting requests okay (we track sectors)

 A consolidated update is sensitive, if one is

sensitive

 72

Structure of Corner Cases

 Ensuring that a secure deletion occurs before

a block is persistently declared free

 Hunting down the persistent sensitive blocks

left behind after a crash

 Making sure that secure deletion is not

applied to the wrong file

 Making sure that a securely deleted block is

not overwritten by a buffered unref block

 Handling versions of requests in transit

73

Crash Handling

 At recovery time

 Replay journal and reissue incomplete deletion

operations, with all operations handled securely

 For flash, securely delete the journal and sensitive

blocks not referenced by the file system

 For disk, securely overwrite journal and all free

space

74

TrueErase Implementation

 Linux 2.6.25

 File system: ext3 with its jbd journaling layer

 Proven to adhere to the file-system-consistency

properties [SIVA05]

 NAND flash: SanDisk’s DiskOnChip

 Lack of access to flash development environ.

 Dated hardware, but the same design principle

 Storage-management layer: Inverse NAND

File Translation Layer (INFTL)

 75

Implementation-level Highlights

 Steps in deletion sequence can be expressed

in secure write/delete data/metadata

 Exploited group-commit semantics

 Reduced the number of secure operations

 Handled buffer/journal copies

 Handled consolidation within and across

journal transactions

76

Verification

 Basic cases

 Sanity checks

 PostMark with 20% sensitive files

 Reporting of all updates

 File-system-consistency-based corner cases

 TAP state-space verification

77

TAP State-space Verification

 State-space enumeration

 Tracked down ~10K unique reachable states,

~2.7M state transitions

 Reached depth of 16 in the state-space tree

 Used two-version programming for

verification

 One based on conceptual rules

 One based on the TAP kernel module

 Identified 4 incorrect rules and 3 bugs

78

Empirical Evaluation

 Workloads

 PostMark

 Modified with up to 10% of sensitive files

 Sensitive files can be chosen randomly

 Each file operation takes < 0.17 seconds

 Good enough for interactive use

 OpenSSH make + sync with 27% of files that are

newly created marked sensitive

 Overhead within a factor of two

79

Related Work

 TRIM command

 FADED

 Type-safe disk

 Modified YAFFS with secure-deletion support

 TrueErase

 Legacy-compatible, persistent-state-light,

centralized info-propagation channel

80

Lessons Learned

 Retrofitting security features is more complex

than we thought

 The general lack of raw flash access and

development environments

 Vendors try to hide complexities

 File-system consistency and secure deletion rely

on exposed controls/details for data

layout/removal

81

Lessons Learned

 A holistic solution would not be possible

 Without expertise across layers and research

fields

 Highlights the importance of knowledge

integration

82

Conclusion

 We have presented the design,

implementation, evaluation, and verification

of TrueErase

 Legacy-compatible, per-file, secure-deletion

framework

 A secure-deletion solution that can withstand

diverse threats remains elusive

 TrueErase is a promising step toward this goal

83

Acknowledgements

 National Science Foundation

 Department of Education

 Philanthropic Educational Organization

 Florida State University Research Foundation

84

Questions?

 Google keyword: TrueErase

Thank you for your attention!

85

