Silhouette: Leveraging Consistency Mechanisms to Detect Bugs

FSU

FLORIDA STATE

UNIVERSITY

Bing Jiao
Florida State University

Problem

» Detecting crash-consistency bugs in PM file systems requires
exploring all subsets of in-flight stores at fence operations

« Search space Is large, N in-flight stores may lead to 2" crash
scenarios

Background

PM programs are prone to crash-consistency bugs because they need
to flush stores from CPU caches to PM and correctly order them using
fence operations

CPU CPU
1. Store A, 2 1. Store A, 2
Cache | Cache 2. Flush A
(Line 1, A: 2) % (Line 1, A: 2)| 3. Store B, 3
"] Updates may (Line 2, B: 3)| 4. Flush B

l not be flushed l
to PM yet %
oM PM

2. Flush A (A:0or2)
A:0o0r?2 . F
() 3. Fence (B: 0 or 3) 5. Fence
Incoherence Out-of-order Persistence

Key ldea

 PM file systems use well-known crash consistency mechanisms
(e.g., Journaling and log-structured writes) to provide atomicity and
durability guarantees.

« We can check whether a file system implements its crash
consistency mechanism correctly

 Then we only need to explore (unprotected) stores that are not
assoclated with these mechanisms

1.0 Tew= *

0.8 «
—*— NOVA - in-flight stores

0.6

; PMES - in-flight stores
CDF 0.4 - —&— WineFS - in-flight stores
''''' x- NOVA - unprotected stores
02« . PMES - unprotected stores
I & WineFS - unprotected stores
0.0 - . '
0 10 20 30 40

of in-flight stores at ordering points

Cumulative Distribution Function of in-flight and unprotected stores
In PMFS, NOVA, and WineFS under ACE seg-3 workload.

Silhouette

We propose Silhouette, a bug detection tool that combines static

Instrumentation and data-type-based dynamic analysis to check:

* Whether each crash-consistency mechanism protect Its stores correctly
* Whether remaining unprotected stores are crash-consistent when reordered

File System Annotations for
Source Code Workloads consistency mechanism

v v v

In Persistent Memory-Based File Systems onrverst

Ashvin Goel
University of Toronto

Evaluation

An-1 Andy Wang < TORONTO
Florida State University

We tested Silhouette on NOVA, PMFES, and WineFS and found 15 new
bugs (refer to the paper for the full list):

» Segfault due to Incorrect pointer persistence in NOVA

» Data leak since truncate iIs not atomic in NOVA

» Data loss due to reusing inodes in orphan list in PMFS and WineFS

—— Silhouette
Chipmunk

—&— Vinter

Number of
Bugs

0 50 100 150 200
Time (Minutes)

Bug finding time of Silhouette, Chipmunk, and Vinter.

On-going Work

Dirty Reads: PM programs may have dirty read bugs when a thread
reads data that has been modified but not persisted or committed by
another thread

/l Thread 1 Dirty read example /l Thread 2
1. lock(A)
2. foo = new value
3. unlock(A)
- ——————— . 1. lock(A)
2. ret = foo

foo may not be persisted yet| 3. unlock(A)
4. flush(foo) %——— 4. return ret

5. fence

Durinn [OSDI’22] and PMRace [ASPLOS’22] have explored such
bugs but their approaches are Inaccurate or inefficient because they
rely on heuristics or fuzzing

|deas:

* Reading unpersisted data is a special kind of data race
» | ockset algorithm Is good at detecting data races

» Adopt Lockset algorithm for PM programs

— 1. lock(A)

Lock interval of A: [1, 3] 4 2. store foo —

_ 3. unlock(A)
4. flush(foo)
5. fence _

In Thread 1: lockset when writing foo: [2,5] & [1, 3] = {0}
In Thread 2: lockset when reading foo: {4}
{d} n {A} = {0} = PM Data Race

— Persist interval of foo: [2, 5]

Other challenges:
* How to detect data that Is persisted but not yet committed
* How to detect happen-before-induced dirty reads

Execution

generate execution trace
3. Check consistency invariants
to detect consistency bugs

3. ldentify duplicate operations

data after recovery to detect
logic, ordering and
consistency bugs

1. Generate LLVM instrumented | 1. Identify data types of stores trace with 1. Generate FS crash images ° HOW to aVO|d or detect false pOSItlveS
FS kernel module Execution | | tagged . lid . £fioi |
trace |2. Tag stores associated with Stores | \/andate FS metadata and How to vallaate bugs efticiently
2. Mount FS, run workloads to » FS consistency mechanisms »

Instrumentation and Tracing Invariant Checking

The Silhouette architecture.

File System Validation

Scan to access Silhouette source code = [m] 48

	Slide 1

