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Problem

» Detecting crash-consistency bugs in PM file systems requires
exploring all subsets of in-flight stores at fence operations

« Search space Is large, N in-flight stores may lead to 2" crash
scenarios

Background

PM programs are prone to crash-consistency bugs because they need
to flush stores from CPU caches to PM and correctly order them using
fence operations
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Key ldea

 PM file systems use well-known crash consistency mechanisms
(e.g., Journaling and log-structured writes) to provide atomicity and
durability guarantees.

« We can check whether a file system implements its crash
consistency mechanism correctly

 Then we only need to explore (unprotected) stores that are not
assoclated with these mechanisms
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Silhouette

We propose Silhouette, a bug detection tool that combines static

Instrumentation and data-type-based dynamic analysis to check:

* Whether each crash-consistency mechanism protect Its stores correctly
* Whether remaining unprotected stores are crash-consistent when reordered
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We tested Silhouette on NOVA, PMFES, and WineFS and found 15 new
bugs (refer to the paper for the full list):

» Segfault due to Incorrect pointer persistence in NOVA

» Data leak since truncate iIs not atomic in NOVA

» Data loss due to reusing inodes in orphan list in PMFS and WineFS
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On-going Work

Dirty Reads: PM programs may have dirty read bugs when a thread
reads data that has been modified but not persisted or committed by
another thread

/l Thread 1 Dirty read example /l Thread 2
1. lock(A)
2. foo = new value
3. unlock(A)
- ——————— . 1. lock(A)
2. ret = foo

foo may not be persisted yet| 3. unlock(A)
4. flush(foo) %——— 4. return ret

5. fence

Durinn [OSDI’22] and PMRace [ASPLOS’22] have explored such
bugs but their approaches are Inaccurate or inefficient because they
rely on heuristics or fuzzing

|deas:

* Reading unpersisted data is a special kind of data race
» | ockset algorithm Is good at detecting data races

» Adopt Lockset algorithm for PM programs

— 1. lock(A)

Lock interval of A: [1, 3] 4 2. store foo —

_ 3. unlock(A)
4. flush(foo)
5. fence _

In Thread 1: lockset when writing foo: [2,5] & [1, 3] = {0}
In Thread 2: lockset when reading foo: {4}
{d} n {A} = {0} = PM Data Race

— Persist interval of foo: [2, 5]

Other challenges:
* How to detect data that Is persisted but not yet committed
* How to detect happen-before-induced dirty reads

Execution

generate execution trace
3. Check consistency invariants
to detect consistency bugs

3. ldentify duplicate operations

data after recovery to detect
logic, ordering and
consistency bugs
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The Silhouette architecture.
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