
PM programs are prone to crash-consistency bugs because they need

to flush stores from CPU caches to PM and correctly order them using

fence operations

Silhouette: Leveraging Consistency Mechanisms to Detect Bugs

in Persistent Memory-Based File Systems
Bing Jiao Ashvin Goel An-I Andy Wang

 Florida State University University of Toronto Florida State University

Background

Key Idea

Silhouette

Evaluation

On-going Work

We tested Silhouette on NOVA, PMFS, and WineFS and found 15 new

bugs (refer to the paper for the full list):

• Segfault due to incorrect pointer persistence in NOVA

• Data leak since truncate is not atomic in NOVA

• Data loss due to reusing inodes in orphan list in PMFS and WineFS

Bug finding time of Silhouette, Chipmunk, and Vinter.

Dirty Reads: PM programs may have dirty read bugs when a thread

reads data that has been modified but not persisted or committed by

another thread

// Thread 1 // Thread 2

1. lock(A)

2. foo = new_value

3. unlock(A)

 1. lock(A)

 2. ret = foo

 3. unlock(A)

4. flush(foo) 4. return ret

5. fence

Cumulative Distribution Function of in-flight and unprotected stores

in PMFS, NOVA, and WineFS under ACE seq-3 workload.

CDF

Number of

Bugs

Problem

• Detecting crash-consistency bugs in PM file systems requires

exploring all subsets of in-flight stores at fence operations

• Search space is large, 𝑁 in-flight stores may lead to 2𝑁 crash

scenarios

• PM file systems use well-known crash consistency mechanisms

(e.g., journaling and log-structured writes) to provide atomicity and

durability guarantees.

• We can check whether a file system implements its crash

consistency mechanism correctly

• Then we only need to explore (unprotected) stores that are not

associated with these mechanisms

We propose Silhouette, a bug detection tool that combines static

instrumentation and data-type-based dynamic analysis to check:

• Whether each crash-consistency mechanism protect its stores correctly

• Whether remaining unprotected stores are crash-consistent when reordered

The Silhouette architecture.

Durinn [OSDI’22] and PMRace [ASPLOS’22] have explored such

bugs but their approaches are inaccurate or inefficient because they

rely on heuristics or fuzzing

Ideas:

• Reading unpersisted data is a special kind of data race

• Lockset algorithm is good at detecting data races

• Adopt Lockset algorithm for PM programs

1. lock(A)

2. store foo

3. unlock(A)

4. flush(foo)

5. fence

Persist interval of foo: [2, 5]

Lock interval of A: [1, 3]

In Thread 1: lockset when writing foo: 2, 5 ⊄ 1, 3 ⇒ ∅
In Thread 2: lockset when reading foo: {𝐴}
∅ ∩ {𝐴} ⇒ ∅ ⇒ PM Data Race

Incoherence Out-of-order Persistence

CPU

Cache

(Line 1, A: 2)

PM

(A: 0 or 2)

1. Store A, 2 1. Store A, 2

2. Flush A

3. Store B, 3

4. Flush BUpdates may

not be flushed

to PM yet

CPU

Cache

(Line 1, A: 2)

(Line 2, B: 3)

PM

(A: 0 or 2)

(B: 0 or 3)
2. Flush A

3. Fence
5. Fence

foo may not be persisted yet

Other challenges:

• How to detect data that is persisted but not yet committed

• How to detect happen-before-induced dirty reads

• How to avoid or detect false positives

• How to validate bugs efficiently

Scan to access Silhouette source code ⟹

Dirty read example

	Slide 1

