
A Linux Implementation Validation of
Track-Aligned Extents and Track-Aligned RAIDs

Jin Qian, Christopher Meyers, and An-I Andy Wang

Florida State University, {qian, meyers, awang@cs.fsu.edu}

Abstract
Through clean-slate implementation of two storage
optimizations—track-aligned extents and track-aligned
RAIDs—this paper shows the values of independent
validations. The experience revealed many
unanticipated disk and storage data path behaviors as
potential roadblocks for wide deployment of these
optimizations, and also identified implementation issues
to retrofit these concepts to legacy data paths.

1 Introduction
Validation studies are common in science, but less
emphasized in computer science, because a rapidly
moving field tends to focus on advancing the frontier.

Through a clean-slate Linux implementation of two
storage optimization techniques, we aim to demonstrate
the values of validations. (1) Existing validations are
often implicit when the original contributors extend
their work. Therefore, subtle assumptions on the OS
platforms, system configurations, and hardware
constraints can become obscure over time.
Independent validations help identify these roadblocks,
to ease the technology transfer for wide adoptions. (2)
Independent validations can explore design alternatives
to verify the resiliency of a concept to different
platforms and hardware generations.

This paper presents a validation study of track-
aligned extents [9] and track-aligned RAIDs [10].
Both showed significant performance gains. Our
experience shows many unanticipated disk features and
interactions along the storage data path, and identifies
implementation issues to retrofit these concepts to the
legacy data path.

2 Track-aligned Extents
The basic idea of track-aligned extents is that an OS
typically accesses disks in blocks, each containing
multiple sectors. Therefore, accessing a block can
potentially cross a track boundary and incur additional
head positioning time to switch tracks. By exploiting
track boundaries, the performance of accessing a track
size of data can improve substantially [9].

2.1 Original Implementation

Track-aligned extents [9] was built under FreeBSD by
modifying FFS [7]. Two methods were proposed to
extract disk track boundaries, one from the user space
and one via SCSI commands. The track boundaries
are extracted once, stored, and imported to FFS at

mount times. The FFS free block bitmaps are
modified to exclude blocks that cross track boundaries.
The FFS prefetching mechanism was modified to stop
at track boundaries, so that speculative disk I/Os made
for sequential accesses would respect track alignments.

Track-aligned extents rely on disks that support
zero-latency access, which allows the tail-end of a
requested track to be accessed before the beginning of
the requested track content [13]. This feature allows
an aligned track of data to be transferred without
rotational overhead.

With Quantum Atlas 10K II disks, the measured
results showed 50% improvement in read efficiency.
Simulated and computed results also demonstrated
improved disk response times and support for 56%
higher concurrency under video-on-demand workloads.

2.2 Recreating Track-aligned Extents

Recreating track-aligned extents involves (1) finding
the track boundaries and the zero-latency access disk
characteristics, (2) making use of such information, and
(3) verifying its benefits. The hardware and software
experimental settings are summarized in Table 1.

Hardware/software Configurations
Processor Pentium D 830, 3GHz, 16KB L1 cache,

 2x1MB L2 cache
Memory 128 MB or 2GB
RAID controller Adaptec 4805SAS
Disks tested Maxtor SCSI 10K5 Atlas, 73GB, 10K

 RPM, 8MB on-disk cache [6]
Seagate CheetahR 15K.4 Ultra320 SCSI,
 36GB, 8MB on-disk cache [12]
Fujitsu MAP3367NC, 10K RPM, 37GB,
 with 8MB on-disk cache [5]

Operating system Linux 2.6.16.9
 File system Ext2 [4]

Table 1: Experimental settings.

2.3 Extracting Disk Characteristics

User-level scanning: Since the reported performance
gains for track alignments are high, conceivably a user-
level program can observe timing variations to identify
track boundaries. A program can incrementally issue
reads, requesting one more sector than before, starting
from the 0th sector. As the request size grows, the disk
bandwidth should first increase and then drop as the
request size exceeds the size of the first track (due to
track switching overhead). The process can then
repeat, starting from the first sector of the previously
found track. Binary search can improve the scheme.

To reduce disturbances caused by various disk data
path components, we used the DIRECT_IO flag to

bypass the Linux page cache, and we accessed the disk
as a raw device to bypass the file system. We used a
modified aacraid driver code to bypass the SCSI
controller, and we used sdparm to disable the read
cache (RCD=1) and prefetch (DPTL=0) of the disk.

As a sanity check, we repeated this experiment
with an arbitrary starting position at the 256th sector
(instead of the 0th sector). Additionally, we repeated
this experiment with a random starting sector between 0
and 512, with each succeeding request size increasing
by 1 sector (512 bytes).

Figure 1: Bandwidth for various read request sizes
from varying starting sectors on a Maxtor disk.

Surprisingly, although Figure 1 exhibits bandwidth
“cliffs,” the characteristic trends are not sensitive to the
starting location of requests, suggesting that those cliffs
are caused by sources of data misalignments other than
tracks. Some possibilities are transfer granularity of
the DMA and the management granularity of IO
buffers. The graph also suggests the presence of other
optimizations that are not disabled. For example, the
high bandwidth before the first cliff far exceeds our
expected performance gain. [2] conjectures that the
DEC prefetch scheme implemented in Maxtor may
override specified disk settings at times and proceed
with prefetching. Additionally, for certain ranges of
request sizes (e.g., between 1,000 and 1,500 sectors),
the average bandwidth shows multimodal behaviors.

To verify that those cliff locations are not track
boundaries, we wrote a program to access random cliff
locations with the access size of 512 sectors (256KB),
as indicated by the first cliff location. We ran multiple
instances of this program concurrently and perceived no
noticeable performance difference compared to the
cases where the accesses started with random sectors.

SCSI diagnostic commands: Unable to extract
track boundaries from a naive user-level program, we
resorted to SCSI SEND/RECEIVE DIAGNOSTIC
commands to map a logical block address (LBA) to a
physical track, surface, and sector number.1 However,
this translation for large drives is very slow, and it took
days to analyze a 73-GB drive. We modified the
sg_senddiag program in the Linux sg3_utils
package to speed up the extraction process, according
to the following pseudocode:

1 We did not use DIXtrac [8] for the purpose of clean-slate
implementation and validation.

1. Extract from LBA 0 sector-by-sector until either
track number or surface number changes. Record
LBA and the physical address of this track boundary.
Store the track size S.

2. Add S to the last known track boundary T and
translate S + T and S + T – 1.
a. If we detect a track change between S + T and S

+ T – 1, then S + T is a new boundary. Record
the boundary. Go to step 2.

b. If there is no change between S + T and S + T –
1, the track size has changed. Extract sector-
by-sector from the previous boundary until we
detect a new track boundary. Record the
boundary, update S, and go to step 2.

3. If sector reaches the end of the disk in step 2, exit.

Through this scheme, we extracted the layout mapping
specifics that are not always published in vendors’
datasheets and manuals [5, 6, 12] in about 7 minutes.

Figure 2: Non-monotonic mapping between LBA
and track numbers.

First, the LBA mapping to the physical track number is
not monotonic (Figure 2). For the Maxtor drive, LBA
0 starts on track 31 of the top surface and increases
outward (from the disk spindle) to track 0, and then the
LBA continues from the bottom surface of track 0
inward to track 31. Next, the LBA jumps to track 63
of the bottom surface growing outward to track 32, and
then switches back to the top surface’s track 32 and
continues inward to track 63. The pattern repeats.

Variants of this serpentine numbering scheme [1,
11] are observed in Seagate [12] and Fujitsu [5] drives
as well. At the first glace, one might conjecture this
numbering scheme relates to the elevator and scanning-
based IO schedulers, but this scheme is attributed to the
faster timing when switching a head track-to-track on
the same surface than when switching to a head on a
different surface [11].

Second, the track size differs even for the same
disk model from the same vendor, due to the
manufacturing process of the disks. After assembly,
the disk head frequency response is tested. Disk heads
with a lower frequency response are formatted with
fewer sectors per track [2]. We purchased 6 Maxtor
10K V drives at the same time and found 4 different
LBA numbering schemes (Table 2). The implication
is that track extraction needs to be performed on every

disk, even those from the same model. Track size may
differ in the same zone on the same surface due to
defects. Thus, we are no longer able to calculate the
track boundary with zone information but have to
extract all tracks.

Serial number Surface 0, outer
most track

Surface 1, outer
most track

J20 Q3 CZK 1144 sectors 1092 sectors
J20 Q3 C0K/J20 Q3 C9K 1092 sectors 1144 sectors

J20 TK 7GK 1025 sectors 1196 sectors
J20 TF S0K/J20 TF MKK 1060 sectors 1170 sectors

Table 2: Track sizes of Maxtor 10K V drives.

Verifying track boundaries: To verify track
boundaries, we wrote a program to measure the elapsed
time to access 64 sectors with shifting offsets from
random track boundaries. The use of 64 sectors eases
the visual identifications of boundaries. We measured
tracks only from the top surface within the first zone of
a Maxtor disk, so we could simplify our experiment by
accessing a mostly uniform track size of 1,144 sectors.

Figure 3: Elapsed time to access 64 sectors,
starting from different offsets from various track
boundaries on a Maxtor drive (the track size is 1,144
sectors).

Figure 3 confirms extracted track boundaries. Each
data point represents the time to access a 64-sector
request starting from a randomly chosen sector offset
from a track boundary. The 6-msec timing variation
reflects the rotation delay for a 10,000 RPM drive.
The average elapsed time for accessing 64 sectors
across a track boundary is 7.3 msec, compared to 5.7
msec for not crossing the track boundaries.
Interestingly, the difference of 1.6 msec is much higher
than the track switching time of 0.3 to 0.5 msec [6].
We also verified this extraction method with other
vendor drives. The findings were largely consistent.

Zero-latency feature verification: Since the
effectiveness of track-aligned extents relies on whether
a disk can access the data within a track out-of-order,
we performed the tests suggested in [13]. Basically,
we randomly picked two consecutive sectors, read those
sectors in reverse LBA order, and observed the timing
characteristics. We performed the test with various
caching options on.

As shown in Figure 4, with a Maxtor drive, 50% of
the time the second request is served from the on-disk
cache, indicating the zero-latency capability. (We did
not observe correlations between the chosen sectors and

whether the zero-latency feature is triggered.) In
contrast, the other two drives always need to wait for a
3- to 6-msec rotational delay before serving the second
sector request. For the remainder of the paper, we will
use the Maxtor drives.

Figure 4: CDF of disk access times for accessing
random sets of two consecutive LBAs in the reverse
order.

2.4 Exploiting Track Boundaries

The track boundary information can be exploited at
different levels.

User level: One possibility is to create a user
program to make use of this track information.
Similar to the disk defragmentation, instead of moving
file blocks to reduce the level of fragmentation, we can
move blocks to align with track boundaries. This
approach avoids kernel changes and can make files
smaller than a track not cross track boundaries, and files
larger than a track aligned to track boundaries.

However, this approach needs to overcome many
tricky design points. For example, certain blocks are
referenced from many places (e.g., hardlinks).
Moving those blocks requires tracking down and
updating all references to the block being moved.
Such information might not be readily available.

File system level: We can mark certain sectors as
bad so a file system cannot allocate blocks that consist
of sectors across track boundaries. However, this
method does not prevent a track-size file from being
allocated across two tracks. This approach also
anticipates some bandwidth loss when a single IO
stream accesses multi-track files due to unused sectors.
However, when a system is under multiple concurrent
IO streams, the performance benefits of accessing fewer
tracks when multiplexing among streams can outweigh
the performance loss.

Implementation: We implemented track-aligned
extents in ext2 [4] under Linux. First, we used the
track boundary list extracted by the SCSI diagnostic
commands as the bad-block list input for the mke2fs
program, which marks all of these blocks, so that they
will not be allocated to files. We also put this list in a
kernel module along with two functions. One
initializes and reads the list from user space. The
other is used by different kernel components to find a
track boundary after a given position.

We then modified the ext2 pre-allocation routine to
allocate in tracks (or up to a track boundary). One
disadvantage of this approach is over-allocation, but the
unused space can later be returned to the system.
However, should the system anticipate mostly track-
size accesses, we are less concerned with the wasted
space. For instance, database and multimedia
applications can adjust their access granularity
accordingly. With the aid of this list, we can also
change the read-ahead to perform prefetches with
respect to track boundaries.

Our experience suggests that individual file
systems only need to make minor changes to benefit
from track alignments.

2.5 Verification of the Performance Benefits

We used the sequential read and write phases of the
Bonnie benchmark [3], which is unaware of the track
alignments. The write phase creates a 1-GB file,
which exceeds our 128-MB memory limit. We
enabled SCSI cache, disk caching, and prefetch to
reflect normal usage. Each experiment was repeated
10 times, analyzed at a 90% confidence interval.

Figure 5 shows the expected 3% slowdown for a
single stream of sequential disk accesses, where
skipped blocks that cross track boundaries can no
longer contribute to the bandwidth.

We also ran diff from GNU diffutils 2.8.1
to compare two 512-MB large files via interleaved
reads between two files, with the –speed-large-
files option. Without this option, diff will try to
read one entire file into the memory and then the other
file and compare them if memory permits, which
nullifies our intent of testing interleaved reads. Figure
6 shows that track-aligned accesses are almost twice as
fast as the normal case. In addition, we observed that
disk firmware prefetch has no regard for track
boundaries. Disabling on-disk prefetch further speeds
up track-aligned access by another 8%. Therefore, for
subsequent experiments, we disabled disk firmware
prefetch for track-aligned accesses.

Additionally, we conducted an experiment that
involves concurrent processes issuing multimedia-like
traffic streams at around 500KB/sec. We used 2GB
for our memory size. We wrote a script that increases
the number of streams by one after each second, and the
script records the startup latency of each new stream.
Each emulated multimedia streaming process first
randomly selects a disk position and sequentially
accesses the subsequent blocks at the specified
streaming rate. We assumed that the acceptable
startup latency is around 3 seconds, and the program
terminates once the latency reaches 3 seconds.

Figure 7 shows that the original disk can support
up to 130 streams with a startup latency within 3
seconds. A track-size readahead window can reduce
the latency at 130 streams by 30%, while track-aligned
access can reduce the latency by 55%.

Figure 5: Bandwidth comparisons between
conventional and track-aligned accesses to a single
disk, when running the Bonnie benchmark.

Figure 6: Speed comparisons between conventional
and track-aligned accesses to a single disk, diffing
two 512MB files with 128MB of RAM.

Figure 7: Startup latency comparisons of
conventional I/O requests, requests with a one-track
prefetch window, and track-aligned requests on a
single disk, with a varying number of multimedia-
like request streams.

3 Track-aligned RAIDs
Original implementation: Schindler et al [10]
proposed Atropos, a track-aligned RAID. The
implementation was through a user-level logical
volume manager process. The process bypasses
conventional storage data paths and issues raw IOs.
An application needs to be linked with a stub library to
issue reads and writes. The library uses shared
memory to avoid data copies and communicates with
Atropos through a socket.

Without the conventional storage data path,
Atropos is responsible for scheduling requests with the
help of a detailed disk model. Atropos also needs to
duplicate logics provided by conventional RAID levels.
As a proof of concept, the measured prototype
implemented RAID-0 (no redundancy) and RAID-1

(mirroring), although issues relevant to other RAID
levels are addressed in the design.

To handle different track sizes due to disk defects,
for simplicity Atropos skips tracks that contain more
than a threshold number of defects, which translates to
about 5% of storage overhead.

The performance for track-aligned RAIDs matches
the efficiency expectation of track-aligned extents.

Recreating Track-aligned RAIDs: Our clean-
slate validation implements track-aligned RAIDs via
modifying RAID-5 (distributed parity), retrofitting the
conventional storage data path. Thus, unmodified
applications can enjoy the performance benefit as well.
However, we had to overcome a number of
implementation constraints.

Recall from Section 2.3 that the track sizes can
differ even from the same disk model. This difference
was much more than that caused by defects.
Therefore, we need measures beyond skipping tracks.
For one, we can construct stripes with tracks of
different sizes. Although this scheme can work with
RAID-0, it does not balance load well or work well
with other RAID levels. For example, RAID-5 parity
is generated via XORing chunks (units of data striping)
of the same size. Suppose we want the chunk unit to
be set to the size of a track. If we use the largest track
size as the chunk unit, some disks need to use 1+ tracks
to form a chunk. Or we can use the smallest track size
as the chunk unit, leading to about 10% of unused
sectors for disks with larger track sizes.

Additionally, we observed that parity in RAIDs can
interact poorly with prefetching in the following way.
Take RAID-5 as an example. At the file system level,
prefetching one track from each non-parity disk
involves a prefetching window that is the size of a track
multiplied by the number of disks that do not contain
the parity information. However, as a RAID redirects
the contiguous prefetching requests from the file system
level, the actual forwarded track-size prefetching
requests to individual disks are fragmented, since reads
in RAIDs do not need to access the parity information.

Another poor interaction is the Linux plug and
unplug mechanisms associated with disk queues and
multi-device queues. These mechanisms are designed
to increase the opportunities for data reordering by
introducing artificial forwarding delays at times (e.g., 3
msec), and do not respect track boundaries. Therefore,
by making these mechanisms aware of track boundaries,
we were finally able to make individual disks in a
RAID-5 access in a track-aligned manner.

Implementation: We modified Linux software
RAID-5 to implement the track-aligned accesses. We
altered the make_request function, which is
responsible for translating the RAID virtual disk
address into individual disk addresses. If the
translated requests crossed track boundaries, the unplug
functions for individual disk queues were explicitly
invoked to issue track-aligned requests.

To prevent the parity mechanisms from
fragmenting track-size prefetching requests, we
modified RAID-5. Whenever the parity holding disk
in a stripe was the only one not requested for that stripe,
we filled in the read request for that disk and passed it
down with all others. When this dummy request was
completed, we simply discarded the data. The data
buffer in Linux software RAID-5 is pre-allocated at
initialization, so this implementation does not cause
additional memory overhead.

Verification of performance benefits: We
compared the base case RAID-5 with a track-aligned
RAID-5 with five disks, and a chunk size of 4KB. For
the Bonnie benchmark, we used a 1-GB working set
with 128MB of RAM. Figure 8 shows that the write
bandwidth for the three system settings falls within a
similar range due to buffered writes. However, for
read bandwidth, the track-aligned RAID-5 outperforms
the conventional one by 57%.

The diff experiment compared two 512-MB files
with 128MB of RAM. Figure 9 shows that the track-
aligned RAID-5 can achieve a 3x factor speedup
compared to the original RAID-5.

Figure 8: Bandwidth comparisons of the track-
aligned RAID-5, a RAID-5 with a prefetch window
of four tracks, and the original RAID-5, running
Bonnie with 1GB working set and 128MB of RAM.

Figure 9: Elapsed time comparisons of the track-
aligned RAID-5, a RAID-5 with a prefetch window
of four tracks, and the original RAID-5, when
running diff comparing two 512MB files.

For the multimedia-like workload with 2GB of RAM,
the track-aligned RAID-5 demonstrates a 3.3x better
scaling in concurrency than the conventional RAID-5
(Figure 10), where a RAID-5 with a readahead window
comparable to the track-aligned RAID-5 contributes
only less than half of the scaling improvement. The
latency improvement of track-aligned RAID-5 is

impressive considering that the RAID-5 was expected
to degrade in latency when compared to the single-disk
case, due to the need to wait for the slowest disk for
striped requests. Track-aligned accesses reduce the
worst-case rotational timing variance and can realize
more benefits of parallelism.

Figure 10: Startup latency comparisons of the
track-aligned RAID-5, a RAID-5 with a prefetch
window of four tracks, and the original RAID-5,
with a varying number of multimedia-like request
streams.

4 Lessons Learned and Conclusions
Through clean-slate implementations of track-aligned
extents and track-aligned RAIDs, we have
demonstrated important values of independent
validations. First, the validation of research results
obtained five years ago shows the relative resiliency
and applicability of these concepts to different
platforms and generations of disks. On the other hand,
as the behaviors of disks and the legacy storage data
path become increasingly complex, extracting physical
disk geometries will likely become increasingly more
difficult. Also, as disks become less homogeneous
even within the same model, techniques such as track-
aligned RAIDs need to devise additional measures to
prevent a RAID from being limited by the slowest disk.

Second, through exploring design and
implementation alternatives, we revealed many
unanticipated interactions among layers of data path
optimizations. On-disk prefetching, IO scheduling
and aggregation, RAID parity, file system allocation,
and file system prefetching—all have side effects on IO
access alignment and profound performance
implications. Unfortunately, the interfaces among
data path layers are lacking in expressiveness and
control, leading to modifications of many locations to
retrofit the concepts of access alignment into the legacy
storage data path, the remedy for which is another
fruitful area of research to explore.

Acknowledgements
We thank Mark Stanovich and Adaptec for helping us
bypass some RAID controller features. We also thank
Peter Reiher and Geoff Kuenning for reviewing this
paper. This research is sponsored by NSF CNS-

0410896 and CNS-0509131. Opinions, findings, and
conclusions or recommendations expressed in this
document do not necessarily reflect the views of the
NSF, FSU, or the U.S. government.

References
[1] Anderson D. You Don’t Know Jack about Disks.

Storage. 1(4), 2003.
[2] Anonymous Reviewer, reviewer comments, the

6th USENIX Conf. on File and Storage Technologies,
2007.

[3] Bray T. Bonnie benchmark.
http://www.textuality.com/bonnie/download.html,
1996.

[4] Card R, Ts’o T, Tweedie S. Design and
Implementation of the Second Extended Filesystem.
The HyperNews Linux KHG Discussion.
http://www.linuxdoc.org, 1999.

[5] Fujitsu MAP3147NC/NP MAP3735NC/NP
MAP3367NC/NP Disk Drives Product/Maintenance
Manual.
http://www.fujitsu.com/downloads/COMP/fcpa/hdd/dis
continued/map-10k-rpm_prod-manual.pdf, 2007.

[6] Maxtor Atlas 10K V Ultra320 SCSI Hard Drive.
http://www.darklab.rutgers.edu/MERCURY/t15/disk.pd
f, 2004.

[7] McKusick MK, Joy WN, Leffler SJ, Fabry RS.
A Fast File System for UNIX, Computer Systems, 2(3),
pp. 181-197, 1984.

[8] Schindler J, Ganger GR. Automated Disk Drive
Characterization. CMU SCS Technical Report CMU-
CS-99-176, December 1999.

[9] Schindler J, Griffin JL, Lumb CR, Ganger GR.
Track-Aligned Extents: Matching Access Patterns to
Disk Drive Characteristics. Proc. of the 1st USENIX
Conf. on File and Storage Technologies, 2002.

[10] Schindler J, Schlosser SW, Shao M, Ailamaki
A, Ganger GR. Atropos: A Disk Array Volume
Manager for Orchestrated Use of Disks. Proc. of the
3rd USENIX Conf. on File and Storage Technologies,
2004.

[11] Schlosser SW, Schindler J, Papadomanolakis S,
Shao M, Ailamaki A, Faloutsos C, Ganger GR. On
Multidimensional Data and Modern Disks. Proc. of the
4th USENIX Conf. on File and Storage Technology,
2005.

[12] Seagate Product Manual: CheetahR 15K.4
SCSI.
http://www.seagate.com/staticfiles/support/disc/manual
s/enterprise/cheetah/15K.4/SCSI/100220456d.pdf,
2007.

[13] Worthington BL, Ganger GR, Patt YN, Wilkes
J. On-line Extraction of SCSI Disk Drive Parameters.
ACM Sigmetrics, 1

