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Abstract 
Through clean-slate implementation of two storage 
optimizations—track-aligned extents and track-aligned 
RAIDs—this paper shows the values of independent 
validations.  The experience revealed many 
unanticipated disk and storage data path behaviors as 
potential roadblocks for wide deployment of these 
optimizations, and also identified implementation issues 
to retrofit these concepts to legacy data paths. 

1  Introduction 
Validation studies are common in science, but less 
emphasized in computer science, because a rapidly 
moving field tends to focus on advancing the frontier.    

Through a clean-slate Linux implementation of two 
storage optimization techniques, we aim to demonstrate 
the values of validations.  (1) Existing validations are 
often implicit when the original contributors extend 
their work.  Therefore, subtle assumptions on the OS 
platforms, system configurations, and hardware 
constraints can become obscure over time.  
Independent validations help identify these roadblocks, 
to ease the technology transfer for wide adoptions.  (2) 
Independent validations can explore design alternatives 
to verify the resiliency of a concept to different 
platforms and hardware generations. 

This paper presents a validation study of track-
aligned extents [9] and track-aligned RAIDs [10].  
Both showed significant performance gains.  Our 
experience shows many unanticipated disk features and 
interactions along the storage data path, and identifies 
implementation issues to retrofit these concepts to the 
legacy data path.  

2  Track-aligned Extents 
The basic idea of track-aligned extents is that an OS 
typically accesses disks in blocks, each containing 
multiple sectors.  Therefore, accessing a block can 
potentially cross a track boundary and incur additional 
head positioning time to switch tracks.  By exploiting 
track boundaries, the performance of accessing a track 
size of data can improve substantially [9].  

2.1  Original Implementation 

Track-aligned extents [9] was built under FreeBSD by 
modifying FFS [7]. Two methods were proposed to 
extract disk track boundaries, one from the user space 
and one via SCSI commands.  The track boundaries 
are extracted once, stored, and imported to FFS at 

mount times.  The FFS free block bitmaps are 
modified to exclude blocks that cross track boundaries.  
The FFS prefetching mechanism was modified to stop 
at track boundaries, so that speculative disk I/Os made 
for sequential accesses would respect track alignments.   

Track-aligned extents rely on disks that support 
zero-latency access, which allows the tail-end of a 
requested track to be accessed before the beginning of 
the requested track content [13].  This feature allows 
an aligned track of data to be transferred without 
rotational overhead.   

With Quantum Atlas 10K II disks, the measured 
results showed 50% improvement in read efficiency.  
Simulated and computed results also demonstrated 
improved disk response times and support for 56% 
higher concurrency under video-on-demand workloads. 

2.2  Recreating Track-aligned Extents 

Recreating track-aligned extents involves (1) finding 
the track boundaries and the zero-latency access disk 
characteristics, (2) making use of such information, and 
(3) verifying its benefits. The hardware and software 
experimental settings are summarized in Table 1. 
 

Hardware/software Configurations 
Processor Pentium D 830, 3GHz, 16KB L1 cache,   

  2x1MB L2 cache 
Memory 128 MB or 2GB 
RAID controller Adaptec 4805SAS 
Disks tested Maxtor SCSI 10K5 Atlas, 73GB, 10K  

  RPM, 8MB on-disk cache [6] 
Seagate CheetahR 15K.4 Ultra320 SCSI,  
  36GB, 8MB on-disk cache [12] 
Fujitsu MAP3367NC, 10K RPM, 37GB,  
  with 8MB on-disk cache [5] 

Operating system Linux 2.6.16.9 
  File system Ext2 [4] 

Table 1:  Experimental settings. 

2.3  Extracting Disk Characteristics 

User-level scanning: Since the reported performance 
gains for track alignments are high, conceivably a user-
level program can observe timing variations to identify 
track boundaries.  A program can incrementally issue 
reads, requesting one more sector than before, starting 
from the 0th sector.  As the request size grows, the disk 
bandwidth should first increase and then drop as the 
request size exceeds the size of the first track (due to 
track switching overhead).  The process can then 
repeat, starting from the first sector of the previously 
found track.  Binary search can improve the scheme. 

To reduce disturbances caused by various disk data 
path components, we used the DIRECT_IO flag to 



bypass the Linux page cache, and we accessed the disk 
as a raw device to bypass the file system.  We used a 
modified aacraid driver code to bypass the SCSI 
controller, and we used sdparm to disable the read 
cache (RCD=1) and prefetch (DPTL=0) of the disk.  

As a sanity check, we repeated this experiment 
with an arbitrary starting position at the 256th sector 
(instead of the 0th sector).  Additionally, we repeated 
this experiment with a random starting sector between 0 
and 512, with each succeeding request size increasing 
by 1 sector (512 bytes).   

 
Figure 1:  Bandwidth for various read request sizes 
from varying starting sectors on a Maxtor disk. 

Surprisingly, although Figure 1 exhibits bandwidth 
“cliffs,” the characteristic trends are not sensitive to the 
starting location of requests, suggesting that those cliffs 
are caused by sources of data misalignments other than 
tracks.  Some possibilities are transfer granularity of 
the DMA and the management granularity of IO 
buffers.  The graph also suggests the presence of other 
optimizations that are not disabled.  For example, the 
high bandwidth before the first cliff far exceeds our 
expected performance gain.  [2] conjectures that the 
DEC prefetch scheme implemented in Maxtor may 
override specified disk settings at times and proceed 
with prefetching.  Additionally, for certain ranges of 
request sizes (e.g., between 1,000 and 1,500 sectors), 
the average bandwidth shows multimodal behaviors. 

To verify that those cliff locations are not track 
boundaries, we wrote a program to access random cliff 
locations with the access size of 512 sectors (256KB), 
as indicated by the first cliff location. We ran multiple 
instances of this program concurrently and perceived no 
noticeable performance difference compared to the 
cases where the accesses started with random sectors. 

SCSI diagnostic commands: Unable to extract 
track boundaries from a naive user-level program, we 
resorted to SCSI SEND/RECEIVE DIAGNOSTIC 
commands to map a logical block address (LBA) to a 
physical track, surface, and sector number.1  However, 
this translation for large drives is very slow, and it took 
days to analyze a 73-GB drive. We modified the 
sg_senddiag program in the Linux sg3_utils 
package to speed up the extraction process, according 
to the following pseudocode: 
                                                             
1  We did not use DIXtrac [8] for the purpose of clean-slate 
implementation and validation. 

1.  Extract from LBA 0 sector-by-sector until either 
track number or surface number changes.  Record 
LBA and the physical address of this track boundary.  
Store the track size S. 

2.  Add S to the last known track boundary T and 
translate S + T and S + T – 1.  
a. If we detect a track change between S + T and S 

+ T – 1, then S + T is a new boundary.  Record 
the boundary.  Go to step 2. 

b.  If there is no change between S + T and S + T – 
1, the track size has changed.  Extract sector-
by-sector from the previous boundary until we 
detect a new track boundary. Record the 
boundary, update S, and go to step 2. 

3.  If sector reaches the end of the disk in step 2, exit. 

Through this scheme, we extracted the layout mapping 
specifics that are not always published in vendors’ 
datasheets and manuals [5, 6, 12] in about 7 minutes. 

 
Figure 2:  Non-monotonic mapping between LBA 
and track numbers. 

First, the LBA mapping to the physical track number is 
not monotonic (Figure 2).  For the Maxtor drive, LBA 
0 starts on track 31 of the top surface and increases 
outward (from the disk spindle) to track 0, and then the 
LBA continues from the bottom surface of track 0 
inward to track 31.  Next, the LBA jumps to track 63 
of the bottom surface growing outward to track 32, and 
then switches back to the top surface’s track 32 and 
continues inward to track 63.  The pattern repeats. 

Variants of this serpentine numbering scheme [1, 
11] are observed in Seagate [12] and Fujitsu [5] drives 
as well.  At the first glace, one might conjecture this 
numbering scheme relates to the elevator and scanning-
based IO schedulers, but this scheme is attributed to the 
faster timing when switching a head track-to-track on 
the same surface than when switching to a head on a 
different surface [11].   

Second, the track size differs even for the same 
disk model from the same vendor, due to the 
manufacturing process of the disks.  After assembly, 
the disk head frequency response is tested.  Disk heads 
with a lower frequency response are formatted with 
fewer sectors per track [2].  We purchased 6 Maxtor 
10K V drives at the same time and found 4 different 
LBA numbering schemes (Table 2).  The implication 
is that track extraction needs to be performed on every 



disk, even those from the same model.  Track size may 
differ in the same zone on the same surface due to 
defects.  Thus, we are no longer able to calculate the 
track boundary with zone information but have to 
extract all tracks. 

Serial number Surface 0, outer 
most track 

Surface 1, outer 
most track 

J20 Q3 CZK 1144 sectors 1092 sectors 
J20 Q3 C0K/J20 Q3 C9K 1092 sectors 1144 sectors 

J20 TK 7GK 1025 sectors 1196 sectors 
J20 TF S0K/J20 TF MKK 1060 sectors 1170 sectors 

Table 2:  Track sizes of Maxtor 10K V drives. 

Verifying track boundaries: To verify track 
boundaries, we wrote a program to measure the elapsed 
time to access 64 sectors with shifting offsets from 
random track boundaries.  The use of 64 sectors eases 
the visual identifications of boundaries. We measured 
tracks only from the top surface within the first zone of 
a Maxtor disk, so we could simplify our experiment by 
accessing a mostly uniform track size of 1,144 sectors.   

 
Figure 3:  Elapsed time to access 64 sectors, 
starting from different offsets from various track 
boundaries on a Maxtor drive (the track size is 1,144 
sectors). 

Figure 3 confirms extracted track boundaries.  Each 
data point represents the time to access a 64-sector 
request starting from a randomly chosen sector offset 
from a track boundary.  The 6-msec timing variation 
reflects the rotation delay for a 10,000 RPM drive.  
The average elapsed time for accessing 64 sectors 
across a track boundary is 7.3 msec, compared to 5.7 
msec for not crossing the track boundaries. 
Interestingly, the difference of 1.6 msec is much higher 
than the track switching time of 0.3 to 0.5 msec [6].  
We also verified this extraction method with other 
vendor drives.  The findings were largely consistent. 

Zero-latency feature verification: Since the 
effectiveness of track-aligned extents relies on whether 
a disk can access the data within a track out-of-order, 
we performed the tests suggested in [13].  Basically, 
we randomly picked two consecutive sectors, read those 
sectors in reverse LBA order, and observed the timing 
characteristics. We performed the test with various 
caching options on.  

As shown in Figure 4, with a Maxtor drive, 50% of 
the time the second request is served from the on-disk 
cache, indicating the zero-latency capability.  (We did 
not observe correlations between the chosen sectors and 

whether the zero-latency feature is triggered.) In 
contrast, the other two drives always need to wait for a 
3- to 6-msec rotational delay before serving the second 
sector request.  For the remainder of the paper, we will 
use the Maxtor drives.  

 
Figure 4:  CDF of disk access times for accessing 
random sets of two consecutive LBAs in the reverse 
order. 

2.4  Exploiting Track Boundaries 

The track boundary information can be exploited at 
different levels. 

User level: One possibility is to create a user 
program to make use of this track information.  
Similar to the disk defragmentation, instead of moving 
file blocks to reduce the level of fragmentation, we can 
move blocks to align with track boundaries.  This 
approach avoids kernel changes and can make files 
smaller than a track not cross track boundaries, and files 
larger than a track aligned to track boundaries. 

However, this approach needs to overcome many 
tricky design points.  For example, certain blocks are 
referenced from many places (e.g., hardlinks).  
Moving those blocks requires tracking down and 
updating all references to the block being moved.  
Such information might not be readily available.   

File system level:  We can mark certain sectors as 
bad so a file system cannot allocate blocks that consist 
of sectors across track boundaries.  However, this 
method does not prevent a track-size file from being 
allocated across two tracks.  This approach also 
anticipates some bandwidth loss when a single IO 
stream accesses multi-track files due to unused sectors.  
However, when a system is under multiple concurrent 
IO streams, the performance benefits of accessing fewer 
tracks when multiplexing among streams can outweigh 
the performance loss. 

Implementation:  We implemented track-aligned 
extents in ext2 [4] under Linux.  First, we used the 
track boundary list extracted by the SCSI diagnostic 
commands as the bad-block list input for the mke2fs 
program, which marks all of these blocks, so that they 
will not be allocated to files.  We also put this list in a 
kernel module along with two functions.  One 
initializes and reads the list from user space.  The 
other is used by different kernel components to find a 
track boundary after a given position.   



We then modified the ext2 pre-allocation routine to 
allocate in tracks (or up to a track boundary).  One 
disadvantage of this approach is over-allocation, but the 
unused space can later be returned to the system.  
However, should the system anticipate mostly track-
size accesses, we are less concerned with the wasted 
space.  For instance, database and multimedia 
applications can adjust their access granularity 
accordingly.  With the aid of this list, we can also 
change the read-ahead to perform prefetches with 
respect to track boundaries. 

Our experience suggests that individual file 
systems only need to make minor changes to benefit 
from track alignments.   

2.5  Verification of the Performance Benefits  

We used the sequential read and write phases of the 
Bonnie benchmark [3], which is unaware of the track 
alignments.  The write phase creates a 1-GB file, 
which exceeds our 128-MB memory limit.  We 
enabled SCSI cache, disk caching, and prefetch to 
reflect normal usage.  Each experiment was repeated 
10 times, analyzed at a 90% confidence interval. 

Figure 5 shows the expected 3% slowdown for a 
single stream of sequential disk accesses, where 
skipped blocks that cross track boundaries can no 
longer contribute to the bandwidth.  

We also ran diff from GNU diffutils 2.8.1 
to compare two 512-MB large files via interleaved 
reads between two files, with the –speed-large-
files option.  Without this option, diff will try to 
read one entire file into the memory and then the other 
file and compare them if memory permits, which 
nullifies our intent of testing interleaved reads.  Figure 
6 shows that track-aligned accesses are almost twice as 
fast as the normal case.  In addition, we observed that 
disk firmware prefetch has no regard for track 
boundaries.  Disabling on-disk prefetch further speeds 
up track-aligned access by another 8%.  Therefore, for 
subsequent experiments, we disabled disk firmware 
prefetch for track-aligned accesses.   

Additionally, we conducted an experiment that 
involves concurrent processes issuing multimedia-like 
traffic streams at around 500KB/sec.  We used 2GB 
for our memory size.  We wrote a script that increases 
the number of streams by one after each second, and the 
script records the startup latency of each new stream.  
Each emulated multimedia streaming process first 
randomly selects a disk position and sequentially 
accesses the subsequent blocks at the specified 
streaming rate.  We assumed that the acceptable 
startup latency is around 3 seconds, and the program 
terminates once the latency reaches 3 seconds.  

Figure 7 shows that the original disk can support 
up to 130 streams with a startup latency within 3 
seconds.  A track-size readahead window can reduce 
the latency at 130 streams by 30%, while track-aligned 
access can reduce the latency by 55%. 

 
Figure 5: Bandwidth comparisons between 
conventional and track-aligned accesses to a single 
disk, when running the Bonnie benchmark. 

 
Figure 6: Speed comparisons between conventional 
and track-aligned accesses to a single disk, diffing 
two 512MB files with 128MB of RAM.  

 
Figure 7: Startup latency comparisons of 
conventional I/O requests, requests with a one-track 
prefetch window, and track-aligned requests on a 
single disk, with a varying number of multimedia-
like request streams. 

3  Track-aligned RAIDs 
Original implementation: Schindler et al [10] 
proposed Atropos, a track-aligned RAID.  The 
implementation was through a user-level logical 
volume manager process.  The process bypasses 
conventional storage data paths and issues raw IOs.  
An application needs to be linked with a stub library to 
issue reads and writes.  The library uses shared 
memory to avoid data copies and communicates with 
Atropos through a socket.   

Without the conventional storage data path, 
Atropos is responsible for scheduling requests with the 
help of a detailed disk model.  Atropos also needs to 
duplicate logics provided by conventional RAID levels. 
As a proof of concept, the measured prototype 
implemented RAID-0 (no redundancy) and RAID-1 



(mirroring), although issues relevant to other RAID 
levels are addressed in the design.   

To handle different track sizes due to disk defects, 
for simplicity Atropos skips tracks that contain more 
than a threshold number of defects, which translates to 
about 5% of storage overhead.  

The performance for track-aligned RAIDs matches 
the efficiency expectation of track-aligned extents. 

Recreating Track-aligned RAIDs:  Our clean-
slate validation implements track-aligned RAIDs via 
modifying RAID-5 (distributed parity), retrofitting the 
conventional storage data path.  Thus, unmodified 
applications can enjoy the performance benefit as well.  
However, we had to overcome a number of 
implementation constraints. 

Recall from Section 2.3 that the track sizes can 
differ even from the same disk model.  This difference 
was much more than that caused by defects.  
Therefore, we need measures beyond skipping tracks.  
For one, we can construct stripes with tracks of 
different sizes.  Although this scheme can work with 
RAID-0, it does not balance load well or work well 
with other RAID levels.  For example, RAID-5 parity 
is generated via XORing chunks (units of data striping) 
of the same size.  Suppose we want the chunk unit to 
be set to the size of a track.  If we use the largest track 
size as the chunk unit, some disks need to use 1+ tracks 
to form a chunk.  Or we can use the smallest track size 
as the chunk unit, leading to about 10% of unused 
sectors for disks with larger track sizes. 

Additionally, we observed that parity in RAIDs can 
interact poorly with prefetching in the following way.  
Take RAID-5 as an example.  At the file system level, 
prefetching one track from each non-parity disk 
involves a prefetching window that is the size of a track 
multiplied by the number of disks that do not contain 
the parity information.  However, as a RAID redirects 
the contiguous prefetching requests from the file system 
level, the actual forwarded track-size prefetching 
requests to individual disks are fragmented, since reads 
in RAIDs do not need to access the parity information.  

Another poor interaction is the Linux plug and 
unplug mechanisms associated with disk queues and 
multi-device queues.  These mechanisms are designed 
to increase the opportunities for data reordering by 
introducing artificial forwarding delays at times (e.g., 3 
msec), and do not respect track boundaries.  Therefore, 
by making these mechanisms aware of track boundaries, 
we were finally able to make individual disks in a 
RAID-5 access in a track-aligned manner. 

Implementation:  We modified Linux software 
RAID-5 to implement the track-aligned accesses.  We 
altered the make_request function, which is 
responsible for translating the RAID virtual disk 
address into individual disk addresses.  If the 
translated requests crossed track boundaries, the unplug 
functions for individual disk queues were explicitly 
invoked to issue track-aligned requests.  

To prevent the parity mechanisms from 
fragmenting track-size prefetching requests, we 
modified RAID-5.  Whenever the parity holding disk 
in a stripe was the only one not requested for that stripe, 
we filled in the read request for that disk and passed it 
down with all others.  When this dummy request was 
completed, we simply discarded the data.  The data 
buffer in Linux software RAID-5 is pre-allocated at 
initialization, so this implementation does not cause 
additional memory overhead. 

Verification of performance benefits: We 
compared the base case RAID-5 with a track-aligned 
RAID-5 with five disks, and a chunk size of 4KB.  For 
the Bonnie benchmark, we used a 1-GB working set 
with 128MB of RAM.  Figure 8 shows that the write 
bandwidth for the three system settings falls within a 
similar range due to buffered writes.  However, for 
read bandwidth, the track-aligned RAID-5 outperforms 
the conventional one by 57%.   

The diff experiment compared two 512-MB files 
with 128MB of RAM.  Figure 9 shows that the track-
aligned RAID-5 can achieve a 3x factor speedup 
compared to the original RAID-5. 

 
Figure 8:  Bandwidth comparisons of the track-
aligned RAID-5, a RAID-5 with a prefetch window 
of four tracks, and the original RAID-5, running 
Bonnie with 1GB working set and 128MB of RAM. 

 
Figure 9:  Elapsed time comparisons of the track-
aligned RAID-5, a RAID-5 with a prefetch window 
of four tracks, and the original RAID-5, when 
running diff comparing two 512MB files.  

For the multimedia-like workload with 2GB of RAM, 
the track-aligned RAID-5 demonstrates a 3.3x better 
scaling in concurrency than the conventional RAID-5 
(Figure 10), where a RAID-5 with a readahead window 
comparable to the track-aligned RAID-5 contributes 
only less than half of the scaling improvement.  The 
latency improvement of track-aligned RAID-5 is 



impressive considering that the RAID-5 was expected 
to degrade in latency when compared to the single-disk 
case, due to the need to wait for the slowest disk for 
striped requests. Track-aligned accesses reduce the 
worst-case rotational timing variance and can realize 
more benefits of parallelism. 

 
Figure 10:  Startup latency comparisons of the 
track-aligned RAID-5, a RAID-5 with a prefetch 
window of four tracks, and the original RAID-5, 
with a varying number of multimedia-like request 
streams. 

4  Lessons Learned and Conclusions 
Through clean-slate implementations of track-aligned 
extents and track-aligned RAIDs, we have 
demonstrated important values of independent 
validations.  First, the validation of research results 
obtained five years ago shows the relative resiliency 
and applicability of these concepts to different 
platforms and generations of disks.  On the other hand, 
as the behaviors of disks and the legacy storage data 
path become increasingly complex, extracting physical 
disk geometries will likely become increasingly more 
difficult.  Also, as disks become less homogeneous 
even within the same model, techniques such as track-
aligned RAIDs need to devise additional measures to 
prevent a RAID from being limited by the slowest disk.   

Second, through exploring design and 
implementation alternatives, we revealed many 
unanticipated interactions among layers of data path 
optimizations.  On-disk prefetching, IO scheduling 
and aggregation, RAID parity, file system allocation, 
and file system prefetching—all have side effects on IO 
access alignment and profound performance 
implications.  Unfortunately, the interfaces among 
data path layers are lacking in expressiveness and 
control, leading to modifications of many locations to 
retrofit the concepts of access alignment into the legacy 
storage data path, the remedy for which is another 
fruitful area of research to explore. 
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