

An Exploration of Targeted Provenance for Reliability

Robert Roy
Computer Science Department, FSU

Tallahassee, FL 32306
USA

roy@cs.fsu.edu

Erika Dennis
Computer Science Department, FSU

Tallahassee, FL 32306
USA

dennis@cs.fsu.edu

An-I Andy Wang
Computer Science Department, FSU

Tallahassee, FL 32306
USA

awang@cs.fsu.edu

 Peter Reiher
Computer Science Department, UCLA

Los Angeles, CA 90095
USA

reiher@cs.ucla.edu

Sarah Diesburg
Computer Science Department, UNI

Cedar Falls, IA 50614
USA

diesburg@cs.uni.edu

ABSTRACT1

Recent advances show that system-wide provenance gathering can

be performed with reasonable overhead. In addition, generative

dependencies have been used to recover files for non-reliability

purposes. We pose the following research question: Can

provenance be used to regenerate lost files in the event of storage

failures to improve reliability?

We have designed, prototyped, and assessed the feasibility of

the Legend file system, which exploits targeted provenance to

regenerate lost files in order to improve reliability. Under a

number of workloads, we have observed Legend when combined

with 2-way replication can outperform or match 3-way

replication. The regeneration rate exceeds the throttled recovery

bandwidth for common RAIDs.

CCS CONCEPTS

• Computer systems organization → Reliability

KEYWORDS

storage, provenance, replication, performance, reliability

ACM Reference format:

R. Roy, E. Dennis, A. Wang, P. Reiher, and S. Diesburg. 2020. In Proceedings of

ACM SAC Conference, Brno, Czech Republic, March 30- April 3, 2020 (SAC’20), 7

pages. DOI: 10.1145/3341105.3373860

1Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the owner/author(s). To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SAC’20, March 30 –April 3, 2020, Brno, Czech Republic

© 2020 Copyright held by the owner/author(s). 978-1-4503-6866-7/20/03. . . $15.00

https://doi.org/10.1145/3341105.3373860

1 INTRODUCTION

The quest for higher storage capacity has placed a growing

strain on reliability mechanisms. Greater storage demand leads to

more devices in a system, increasing the chance of the system

encountering device failures [6].

Common solutions rely on some form of data redundancy to

mask failures. For example, RAID-5 exploits partial data

redundancy and can survive a single device failure, assuming

independent device failures. However, real-world device failures

are not independent [4, 8]. Higher storage capacity also increases

the chance of a device hosting corrupted bits [15, 19], undetected

until the recovery time. Thus, enterprise deployments sometimes

resort to the use of 2- or 3-way full data replications [13, 18],

which impose high storage overhead and can be cost-prohibitive

for small-to-mid-scale deployments.

We have observed that file regeneration could be used as a

form of data redundancy. A form of targeted provenance [14] can

be used to log the dependency information required for file

regeneration. Based on these observations, we ask the following

research question: Can targeted provenance and file regeneration

show promise to improve reliability?

To test this question, we introduce the Legend file system,

which exploits file regeneration to guard against data loss. The

key observation is that a combination of data and/or program

file(s) may be used to generate other files. A file set used to

generate a file can serve as an implicit replica of the regenerated

file. Through the evaluation of our system, we have observed the

most promise with a software development workload due to

higher numbers of implicit file replicas. We also show that

Legend degrades gracefully as the number of failed storage

devices increases. Legend additionally mitigates the high storage

capacity overhead imposed by n-way replications.

SAC’20, March 30 –April 3, 2020, Brno, Czech Republic Roy et al.

2 OBSERVATIONS AND MOTIVATION

The following observations led to the design of Legend.

2.1 Efficient Replication Using File Relationships

Common reliability schemes do not exploit the provenance-

based relationships among files, overlooking potentially

embedded data redundancy. For example, suppose X.jpg is

derived from X.bmp. Replication of both files under traditional

schemes would provide two copies of X.bmp and effectively four

copies of X.jpg (since X.bmp contains redundant information of

X.jpg). Alternatively, the system can replicate only X.bmp

twice to provide three copies of X.bmp and effectively four

copies of X.jpg, reducing the efforts while increasing the overall

replication factor.

2.2 File Regeneration as Data Redundancy

Suppose X.jpg is generated via running bmp2jpg X.bmp.

All files associated with bmp2jpg and X.bmp can form a file set

Y, which is effectively an implicit replica of X.jpg, since the loss

of X.jpg can be regenerated via Y. These types of opportunities

can be found in workflow-related workloads such as simulation or

general multi-stage data processing, where data files are

statistically or visually transformed and analyzed [7].

2.3 Practical to Recall Past System States

Recent systems, such as Arnold [5], have shown the feasibility

of recalling all system states, including all file versions, by

logging and compressing all dependency information (e.g., input

files, X-Window events). Arnold logs about 3GB/day, with a

performance penalty under 8%. Thus, the implicit-replica

approach can potentially be applied system-wide.

2.4 Tradeoff with Computation and Storage

While trading computation with storage capacity for reliability

may seem expensive, the continuation of Moore's Law in the

number of CPU cores [12], along with the availability of massive

parallelism, may make this tradeoff possible [3].

3 THE LEGEND FILE SYSTEM

The Legend File System exploits the notion of implicit

replicas to improve reliability. As a proof of concept, Legend

currently targets files that can be regenerated without

dependencies on external inputs, while future inclusion of such

inputs can broaden the benefit coverage. However, even using

files without dependencies, we have found improvements in

overall reliability. Unlike existing RAIDs, Legend is designed to

fail gracefully and continue service proportional to the number of

surviving devices, and it can be used as another line of defense.

The following subsections discuss our major design

components. We will use software compilation as an example,

due to readers' likely familiarity with this type of computation and

its richness in corner cases.

3.1 Identifying Implicit Replicas

3.1.1 File-creation Dependency Graph: We identify implicit

replicas by gathering traces on process- and file-related system

calls. Files referenced under the same process group form a file-

creation dependency graph, where nodes are files or processes

associated with executables. The reading of an input file I by an

executable's process E forms an inbound edge I  E. The writing

of an output file O by an executable's process E forms an

outbound edge E  O. If a mmap call has its writable flag set, it

is treated as a write; otherwise, it is treated as a read. An input

file can also be the output file. For example, an editor reads in a

file, modifies it, and overwrites it with the new version.

Similarly, a script file can be an input, output, and executable file.

However, our system considers files with inbound edges, such as

writeable files, as potentially regenerable. Thus, a dynamically

generated script file is considered regenerable. When the script is

executed, a separate process node associated with the script is

created.

3.1.2 Graph Trimming: A file-creation dependency graph is

typically large. We trim this graph by grouping files from the

same library package into a single node.

Figure 1. A simplified file-creation dependency graph for a

compilation example. Rectangles are executables, and the

document boxes are input and output files. The boxes containing

vertical bars are one implicit replica of a.out. The boxes

containing horizontal bars are the second implicit replica of

a.out. ld is a member of both implicit replicas and contains

vertical and horizontal bars.

3.1.3 Implicit Replicas: Figure 1 shows a simplified file

creation dependency graph for a compilation example. a.out

can be generated with the presence of the ld executable

(represented in a rectangle box), taking in the input files of a.o

and b.o (represented in document boxes). Thus, ld, a.o, and

An Exploration of Targeted Provenance for Reliability SAC’20, March 30- April 3, 2020, Brno, Czech Republic

 3

b.o (boxes containing horizontal lines) are an implicit replica of

a.out, resulting in the following regeneration rule:

ld, a.o, b.o  a.out (3.1.1)

Similarly, a.o and b.o can be regenerated with the following

rules:

gcc, stdio.h, a.c  a.o (3.1.2)

gcc, stdio.h, b.c  b.o (3.1.3)

By expanding a.o and b.o in (3.1.1) with the left-hand side

of (3.1.2) and (3.1.3), and with duplication removed, we can

derive the following rule:

gcc, ld, stdio.h, a.c, b.c  a.out (3.1.4)

Now, gcc, ld, stdio.h, a.c, and b.c (represented with

boxes containing vertical bars) can serve as a second implicit

replica of a.out.

3.1.4 Duplicate File Memberships for Implicit Replicas:

Since memberships are determined by rules, a file can be

replicated to be the member of multiple implicit replicas. In this

case, the ld box contains both vertical and horizontal bars,

denoting that it belongs to the first and second implicit replicas of

a.out.

3.1.5 Graph Consistency: A file generated based on out-of-

date dependencies or upper stream input file updates may have a

mismatching checksum for the output file. Therefore, it is

important that Legend recognize when an updated file is no longer

an implicit replica. Should a mismatch occur, however, we may

fall back to the next layer of reliability mechanism (e.g.,

combining Legend with 2-way replication or other backup). One

implication of combining Legend with another backup scheme is

that we do not need to maintain our graph consistency as

aggressively. While traces are gathered continuously, daily

updates of the dependency graph would be sufficient. That also

means that we can afford to replicate the dependency graph on all

devices for fault tolerance.

Additionally, we used file names instead of their content

hashes to build the dependency graph. Thus, as long as updates

lead to the same checksum, our recovery is considered successful.

3.1.6 Nondeterminism: Files under /tmp often have

randomly generated file names to avoid name collisions. Suppose

a.o and b.o are located under /tmp, our system omits them.

The net effect is the same as replacing the file regeneration rule

(3.1.1) with (3.1.4).

The same technique can be applied to other intermediary

regenerated files that contain nondeterministic content (e.g.,

embedded timestamps). Currently, we handle regenerated files

with nondeterministic content located at leaf nodes of the

dependency graph.

3.2 Implications of Using Implicit Replicas

The use of implicit replicas has two implications. First, to

avoid correlated failures, implicit replicas should be placed on

separate storage devices. Second, spreading files within an

implicit replica across multiple storage units increases the chance

of losing a file within the implicit replica due to a device failure.

However, it may increase the CPU parallelism to regenerate

implicit replicas that are stored across devices.

3.3 Device Assignment

Assigning implicit replicas to storage devices resembles the n-

coloring problem, where each implicit replica within the same

regeneration tree has a unique color (or storage device).

Otherwise, two implicit replicas residing on the same device can

fail together.

Currently, we used a greedy scheme. Each implicit replica is

assigned a depth based on the file creation dependency graph.

Each replica then is assigned to storage devices in a round-robin

fashion (Figure 2). If a file belongs to multiple implicit replicas,

we duplicate it to avoid correlated failures.

Device Content

0 gcc, ld, stdio.h, a.c, b.c

1 ld, a.o, b.o

2 a.out

Figure 2: An example of an implicit replica assignment.

If there are more storage devices than implicit replicas, we can

spread out the files of some implicit replicas across multiple

devices to improve parallelism and recovery speed, considering

several constraints. First, we should not spread out the files of an

implicit replica that cannot be regenerated (e.g., .c files), since

doing so increases its chance of failure. Second, for regenerable

replicas, we used a threshold of the maximum implicit replica size

to the average replica size to determine whether we should

balance the storage capacity. Third, we used a threshold of the

maximum implicit replica access frequency to the average replica

access frequency to determine whether to balance the loads.

3.4 Namespace Management

Having assigned a file to a device, the path leading to the file

is created or replicated. Thus, having implicit replicas grouped by

depths encourages spatial grouping of files and limits the extents

of path replications. For example, files /dir/A and /dir/B

can be assigned to devices 1 and 2, respectively. However, this

arrangement would require /dir to be replicated on both devices

1 and 2. Should those two files be stored on the same device,

/dir no longer needs to be replicated.

SAC’20, March 30 –April 3, 2020, Brno, Czech Republic Roy et al.

4 IMPLEMENTATION

The two major components of Legend are the trace analyzer

and the file system itself. We prototyped Legend via the

Filesystem in User Space framework (FUSE) [16] running atop

ext4 in Linux (Figure 3). FUSE allowed us to prototype our

system quickly at the user level, with associated performance

overheads. As future work, we will port Legend into the kernel.

Figure 3: Legend components (shaded) and the data path from

applications to the underlying ext4.

The trace analyzer gathers system call traces related to process

executions and file-system-related calls from strace. We

captured all parameters (e.g., environmental variables) for file

regeneration. The analyzer then generates file creation

dependency graphs, identifies implicit replicas, and maps files to

storage devices, per-file checksums, and corresponding

regeneration methods, to be used by Legend.

To enable file allocation to individual storage devices without

re-engineering the data layout, we modified Unionfs [1] as the

code base for Legend, which can combine multiple file systems

into a single namespace. To illustrate, if /dir/file1 resides

on device 0 and if /dir/file2 resides on device 1, /dir is

then replicated on both devices, so that either device fails, /dir

is still accessible. In our case, we ran ext4 on each storage device.

We modified Unionfs to use our file-to-device mapping to

determine and speed up lookups. In addition, in the case of

failures, Legend would backtrace the file-creation dependency

graph and trigger regeneration. In our running example, should

the device containing a.out fail, Legend would try to regenerate

based on the first implicit replica, or ld, a.o, and b.o. If the

first implicit replica fails to regenerate, Legend would try to

regenerate based on the second implicit replica, or gcc, ld,

stdio.h, a.c, and b.c.

Since the file-creation dependency graph does not capture

timing dependencies, we had to conservatively estimate the time

to reissue individual execution system calls. Thus, our system

tries to reissue top-level user commands (e.g., make) when

applicable during recovery to better exploit concurrency.

5 EVALUATION

We evaluated the Legend file system's reliability using trace

replays on a simulation and measured recovery cost and

performance overhead based on the actual prototype. Each

experiment was repeated 5 times, and results are presented as 90%

confidence intervals.

5.1 Reliability

We built and used a 15-disk simulator to explore interactions

between n-disk failures with reliability strategies, including no

recovery (RAID-0) and Legend, as well as 2- and 3-way

replication. We omitted the results for RAID-5 and RAID-6 since

they can either serve 100% of the requests or 0% of the requests

after a threshold number of storage devices fails (1 for RAID-5

and 2 for RAID-6).

The simulator was populated with contents based on various

traces. The first seven-day 6.6MB compressed trace was gathered

from a software development setting. The trace contains 400K

references to 29 million unique files (9.6 GB unique bytes) from

1,440 execution calls. Note that the trace can be processed

incrementally during off-peak hours each day, and captured

dependencies can be represented in a more compact table. In this

case, the 6.6MB trace can be represented with a 679KB

dependency table. The second 10-day 1.0GB compressed trace

was gathered from a meteorology workstation running radar

plotting, image generation, and statistical analysis. The trace

contains 900K references to 63 million unique files (18 GB

unique bytes) from 47K execution calls. The resulting

dependency table size is 342KB. The third 10-day 189MB

compressed trace was gathered from a meteorology student server

running statistical analysis workloads. The trace contains 2.6K

references to 192K unique files (180 MB unique bytes) from 4.4K

execution calls. The resulting dependency table size is 599KB.

Given that Legend regenerates files based on past reference

patterns, a longer deployment will yield a greater coverage of

files. For the simulation, all references are processed first prior to

the replay of the traces. We varied the number of randomly

chosen failed storage devices at the beginning of the replay and

compared the percentage of processes that can complete

successfully [17].

Figure 4 compares the reliability of different schemes as the

number of failed storage devices increases. The reliability

provided by various schemes varies depending on the workloads.

The software development trace contains the most generative

dependencies among file groups (13K edges), followed by the

meteorology workstation trace (9.5K edges). The student server

trace only contains 569 edges. Legend performs better with more

generative dependencies (Figure 4(a)). For the software

development trace, with 3 disk failures, Legend can outperform

the no recovery option by 50%, and Legend even outperforms 3-

way replication. For workloads with fewer generative

An Exploration of Targeted Provenance for Reliability SAC’20, March 30- April 3, 2020, Brno, Czech Republic

 5

dependencies, Legend performs less well compared to 2- and 3-

way replication.

As an alternative, we combined Legend with 2-way

replication, which means in the case of device failures, a file can

be recovered either through the second replica or through

regeneration. Figure 4(b) and 4(c) show that the reliability of this

combined setting can exceed or match the reliability of 3-way

replication without the storage overhead of 3-way replication.

Another possibility is to redirect the space used by files with

implicit replicas to increase the effective replication factor of

other files. We will explore it as future work.

(a) software development workload.

(b) meteorology workstation workload.

(c) meteorology student server workload.

Figure 4: Percentage of unaffected processes vs. number of failed

disks.

5.2 Recovery

We compared the recovery performance of Legend stacked

atop of 4-disk, per-disk ext4 via FUSE with that of the no-FUSE

baseline ext4-based RAIDs.

Table 1: Experimental Platform.

Processor 4x2GHz Intel®Xeon®E5335, 128KB L1 cache,

8M L2 cache

Memory 8GB 667Mhz, DDR2

Disk 4x73GB, 15K RPM, Seagate Cheetah®, with

16MB cache

Given that RAID recoveries are typically performed in the

background and throttled while serving foreground requests, we

measured the bandwidth ranges that can be achieved through

regeneration. For the low bandwidth bound, we measured the

regeneration of missing .o files of the game Dungeon Crawl

(v0.13.0, with 13,157 files) [11], and for the higher bound, we

measured the regeneration of one of our trace files from a 15MB

.gz file (Table 2). We compared our numbers with the bandwidth

ranges of a RAID-5 and a RAID-6 with the typical 10MB/s low-

end cap and achievable high bandwidth bound based on

measurement.

Table 2: Recovery Bandwidth.

System configurations Bandwidth (±1 %)

FUSE + Legend 0.3 - 42 MB/s

RAID-5 1-disk recovery 10 - 96 MB/s

RAID-6 2-disk recovery 10 - 50 MB/s

The high bandwidth bound of Legend shows that regeneration

can recover at a rate faster than the common throttled threshold.

While Legend's lower bound is lower than the threshold,

prioritized regeneration of files in need can still be more

responsive than waiting for the recovery of the entire device

content for RAIDs. In addition, Legend can continue service

beyond 2-disk failures.

5.3 Overheads

We first compare the storage overhead of Legend to store

dependency information to the overhead to store redundant data

for RAID-0, RAID-5, 2-way replication, and 3-way replication

(Table 3). Legend’s storage overhead for the dependency table is

small (<0.1%). If the size of compressed traces is considered as

well, the overhead can be as high as 10%, assuming the traces are

converted into the table form each day.

SAC’20, March 30 –April 3, 2020, Brno, Czech Republic Roy et al.

Table 3: Storage Overhead.

System configurations Storage overhead

RAID-0 1x

RAID-5 1.25x

2-way replication 2x

3-way replication 3x

Legend <1.01x - 1.1x

Legend + 2-way replication 2x to 2.1x

We then ran Filebench [10] with a file server personality,

configured with default flags and 100K files. This workload

personality contains creates, deletes, appends, reads, writes and

attribute operations on a directory tree. Table 4 shows that moving

from RAID-0 to RAID-5 incurs 60% of the overhead. Since

Legend is prototyped on Unionfs, which is built on user-level

FUSE, we found that 73% of the overhead is from

FUSE+Unionfs, and Legend incurs a 9% overhead when

compared to FUSE+Unionfs. The overhead of strace is highly

load-dependent. In this case, strace reduces bandwidth by another

20%. Exploring other lightweight trace techniques will be future

work.

Table 4: Filebench with File-Server Personality, Configured with

Default Flags and 100K Files.

System configurations (with ext4) Bandwidth (±1 %)

RAID-0 84.1 MB/s

RAID-5 35.0 MB/s

FUSE + UnionFS 22.8 MB/s

FUSE + Legend 20.7 MB/s

FUSE + Legend + tracing 16.6 MB/s

The next experiment involves compiling Dungeon Crawl. The

elapsed time of Legend (595 seconds) is within 1% compared to

FUSE+Unionfs (594 seconds). strace introduces 10% more

overhead (656 seconds).

The current non-optimized single-threaded trace analyzer

processes uncompressed traces at 1.5MB/sec. Optimizing this

analyzer is future work. For example, to speed up real-life

deployments, the trace analyzer could run daily during non-peak

hours.

6 DISCUSSIONS

In developing Legend, we identified several additional

research questions raised by targeted provenance.

6.1 Prioritized File Recovery

As a reliability mechanism, targeted provenance introduces

context by working at the file granularity. With the added

context, it is possible to perform prioritized recovery, ensuring

that essential processes have their necessary files restored as

quickly as possible, leaving less essential files to be restored later.

This leaves the open question of what kind of priority algorithm to

use. In other words, which files are most important to be

recovered first? How is this determined? Using a working

temporal time slice as a guide, it might be possible for Legend to

identify likely candidates for prioritized recovery [21].

Exchanging computational resources for storage resources

allows us to take advantage of the variance in computational

resource utilization. While the utilization of storage is persistent

and fixed, CPU utilization is more periodic. This allows us to

take advantage of periods of low CPU utilization for the purpose

of recovery.

6.2 Workloads

We believe that the added context allows our approach to be

generalized to additional forms of recovery. Graphic and media

design, document editing, system maintenance, and any process or

workflow that can be described in terms of dependency graphs

might benefit from recovery using targeted provenance.

7 RELATED WORK

The closest work to Legend is D-GRAID [17], which groups a

file and its related blocks into isolated fault units (mostly in terms

of directories) and aligns them to storage devices. By doing so, a

file, its metadata, and parent directories (replicated at times) are

less affected by the failure of other disks. Legend replicates file

paths as well, as needed, but it uses dynamic generative

dependency information to identify implicit replicas, and it

leverages regeneration for recovery.

Generative dependencies have been used to recover files from

malicious attacks [2, 9, 20] and to reduce the amount of network

transmitted data [7]. However, these solutions are not designed

for graceful degradation in the face of device failures.

Within the context of high-performance computing, Spark

leverages the concept of resilient distributed data sets to allow

data to be recomputed in the event of failures [22].

Legend can be viewed as an example of applying specific

types of provenance [14] to improve reliability. However,

provenance gathering has been resource-intensive, until the

Arnold File System [5] demonstrates how system-wide

information (including external inputs, X-Window events, and

IPCs) can be gathered efficiently for lineage tracking and queries.

Legend sees this advance as a potential springboard to improve

reliability via file regenerations.

Legend isolates files on disks based on their level in a process

hierarchy. This is done to eliminate the possibility that a given

disk failure impacts multiple stages in a given file’s generation,

maximizing the possibility that we can regenerate a lost file.

Similar methods for isolating explicit replicas demonstrate the

An Exploration of Targeted Provenance for Reliability SAC’20, March 30- April 3, 2020, Brno, Czech Republic

 7

viability of this approach and are generalizable to our notion of

implicit replicas [24].

We recognize that other implicit sources of redundancy may

exist across machine boundaries (e.g. git-cloned repositories,

cloud-synced files, web caches, etc.). We will investigate such

possibilities in the future in order to develop an integrated

solution.

8 CONCLUSIONS

We have presented the design, prototype, and feasibility

assessment of the Legend file system, which exploits the use of

implicit replicas to improve reliability. Our results show that,

under certain workloads, the use of implicit replicas can achieve a

better process completion rate than 2-way replication in the face

of multiple disk failures. When combined with 2-way

replication, we can potentially exceed or match the reliability of

3-way replication without the storage overhead. While the

recovery speed depends on the effort to regenerate files, it can be

mitigated with prioritization and parallelization via the growing

availability of cheap CPU cycles. Legend can complement

existing approaches for overcoming multiple storage device

failures and achieving graceful degradation.

REFERENCES
[1] 2016. Unionfs: A Stackable Unification File System. In

http://unionfs.filesystems.org.

[2] Goel A, Po K, Farhadi K, Li Z, and de Lara E. 2005. The Taser Intrusion

Recovery System. In Proceedings of the 20th ACM Symposium on Operating

Systems Principles (SOSP).

[3] Timor A, Mendelson A, Birk Y, and Suri N. 2010. Using Underutilized CPU

Resources to Enhance Its Reliability. In IEEE Transactions on Dependable

and Secure Computing. 94–109.

[4] Schroeder B, Gibson GA. 2007. Disk Failures in the Real World: What Does

an MTTF of 1,000,000 Hours Mean to You?. In Proceedings of the 5th

USENIX Conference on File and Storage Technologies (FAST).

[5] Devecsery D, Chow M, Dou X, Flinn J, and Chen P. 2014. Eidetic Systems. In

Proceedings of the 2014 USENIX Symposium on Operating Systems Design

and Implementation (OSDI).

[6] Patterson DA, Gibson G, and Katz RH. 1998. A Case for Redundant Arrays of

Inexpensive Disks (RAID). In Proceedings of 1988 ACM SIGMOD

International Conference on Management of Data.

[7] Dou X, Chen PM, and Flinn J. 2017. Knockoff: Cheap versions in the cloud.

In Proceedings of the 15th USENIX Conference on File and Storage

Technologies (FAST).

[8] Mills E. 2009. Carbonite Sues Hardware Maker, Reseller. In CNET.

[9] Hsu F, Chen H. Ristenpart T, Li J, and Su Z. 2006. Back to the Future: A

Framework for Automatic Malware Removal and System Repair. In

Proceedings of the 22nd Annual Computer Security Applications Conference

(ACSAC).

[10] Filebench, https://github.com/filebench/filebench/wiki

[11] Dungeon Crawl. https://crawl.develz.org. 2016.

[12] Burt J. 2014. eWEEK at 30: Multicore CPUs Keep Chip Makers in Step with

Moores Law. In eWeek.

[13] Shvachko K, Kuang H, Radia S, and Chansler R. 2010. The Hadoop

Distributed File System. In Proceedings of the 2010 IEEE 26th Symposium on

Mass Storage Systems and Technologies (MSST).

[14] Muniswamy-Reddy KK, Holland DA, Braun U, and Seltzer M. 2006.

Provenance-Aware Storage Systems. In Proceedings of the USENIX Annual

Technical Conference.

[15] Grupp LM, Davis JD, and Swanson S. 2012. The Bleak Future of NAND

Flash Memory. In Proceedings of the 10th USENIX Conference on File and

Storage Technologies (FAST).

[16] Szeredi M. 2005. Filesystem in Userspace. In

http://userspace.fuse.sourceforge.net.

[17] Sivathanu M, Prabhakaran V, Arpaci-Dusseau AC, and Arpaci-Dusseau RH.

2004. Improving Storage System Availability with D-GRAID. In Proceedings

of the 3rd USENIX Conference on File and Storage Technologies.

[18] Park T. 2013. Data Replication Options in AWS. In Amazon Web Services.

[19] Harris R. 2007. Why RAID 5 Stops Working in 2009. In ZDNet.

[20] Kim T, Wang X, Zeldovich N, and Kaashoek MF. 2010. Intrusion Recovery

Using Selective Re-execution. In Proceedings of the 9th USENIX Symposium

on Operating Systems Design and Implementation.

[21] Kuenning GH, Popek GJ. 1997. Automated Hoarding for Mobile Computers.

In USENIX Symposium on Operating Systems Design and Implementation.

[22] Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Cluster

Computing with Working Set. Proceedings of the 2nd USENIX Workshop on

Hot Topics in Cloud Computing, 2010.

[23] SNIA, Storage and Networking Industry Association, https://www.snia.org/,

2019.

[24] Cidon A, Rumble S, Stutsman R, Katti S, Ousterhout J, Rosenblum M.

Copysets: Reducing the Frequency of Data Loss in Cloud Storage.

Proceedings of the 2013 USENIX Annual Technical Conference, 2013.

