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ABSTRACT1 

Recent advances show that system-wide provenance gathering can 

be performed with reasonable overhead.  In addition, generative 

dependencies have been used to recover files for non-reliability 

purposes.  We pose the following research question:  Can 

provenance be used to regenerate lost files in the event of storage 

failures to improve reliability?    

 

We have designed, prototyped, and assessed the feasibility of 

the Legend file system, which exploits targeted provenance to 

regenerate lost files in order to improve reliability.  Under a 

number of workloads, we have observed Legend when combined 

with 2-way replication can outperform or match 3-way 

replication.  The regeneration rate exceeds the throttled recovery 

bandwidth for common RAIDs.   
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1 INTRODUCTION 

The quest for higher storage capacity has placed a growing 

strain on reliability mechanisms.  Greater storage demand leads to 

more devices in a system, increasing the chance of the system 

encountering device failures [6]. 

 

Common solutions rely on some form of data redundancy to 

mask failures.  For example, RAID-5 exploits partial data 

redundancy and can survive a single device failure, assuming 

independent device failures.  However, real-world device failures 

are not independent [4, 8].  Higher storage capacity also increases 

the chance of a device hosting corrupted bits [15, 19], undetected 

until the recovery time.  Thus, enterprise deployments sometimes 

resort to the use of 2- or 3-way full data replications [13, 18], 

which impose high storage overhead and can be cost-prohibitive 

for small-to-mid-scale deployments. 

 

We have observed that file regeneration could be used as a 

form of data redundancy.  A form of targeted provenance [14] can 

be used to log the dependency information required for file 

regeneration.  Based on these observations, we ask the following 

research question:  Can targeted provenance and file regeneration 

show promise to improve reliability?   

 

To test this question, we introduce the Legend file system, 

which exploits file regeneration to guard against data loss.  The 

key observation is that a combination of data and/or program 

file(s) may be used to generate other files.  A file set used to 

generate a file can serve as an implicit replica of the regenerated 

file.  Through the evaluation of our system, we have observed the 

most promise with a software development workload due to 

higher numbers of implicit file replicas.  We also show that 

Legend degrades gracefully as the number of failed storage 

devices increases.  Legend additionally mitigates the high storage 

capacity overhead imposed by n-way replications.   
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2 OBSERVATIONS AND MOTIVATION 

The following observations led to the design of Legend. 

2.1 Efficient Replication Using File Relationships 

Common reliability schemes do not exploit the provenance-

based relationships among files, overlooking potentially 

embedded data redundancy. For example, suppose X.jpg is 

derived from X.bmp.  Replication of both files under traditional 

schemes would provide two copies of X.bmp and effectively four 

copies of X.jpg (since X.bmp contains redundant information of 

X.jpg). Alternatively, the system can replicate only X.bmp 

twice to provide three copies of X.bmp and effectively four 

copies of X.jpg, reducing the efforts while increasing the overall 

replication factor. 

2.2 File Regeneration as Data Redundancy 

Suppose X.jpg is generated via running bmp2jpg X.bmp.  

All files associated with bmp2jpg and X.bmp can form a file set 

Y, which is effectively an implicit replica of X.jpg, since the loss 

of X.jpg can be regenerated via Y.  These types of opportunities 

can be found in workflow-related workloads such as simulation or 

general multi-stage data processing, where data files are 

statistically or visually transformed and analyzed [7]. 

2.3 Practical to Recall Past System States 

Recent systems, such as Arnold [5], have shown the feasibility 

of recalling all system states, including all file versions, by 

logging and compressing all dependency information (e.g., input 

files, X-Window events).  Arnold logs about 3GB/day, with a 

performance penalty under 8%.  Thus, the implicit-replica 

approach can potentially be applied system-wide. 

2.4 Tradeoff with Computation and Storage 

While trading computation with storage capacity for reliability 

may seem expensive, the continuation of Moore's Law in the 

number of CPU cores [12], along with the availability of massive 

parallelism, may make this tradeoff possible [3]. 

3 THE LEGEND FILE SYSTEM 

The Legend File System exploits the notion of implicit 

replicas to improve reliability.  As a proof of concept, Legend 

currently targets files that can be regenerated without 

dependencies on external inputs, while future inclusion of such 

inputs can broaden the benefit coverage.  However, even using 

files without dependencies, we have found improvements in 

overall reliability.  Unlike existing RAIDs, Legend is designed to 

fail gracefully and continue service proportional to the number of 

surviving devices, and it can be used as another line of defense. 

 

The following subsections discuss our major design 

components. We will use software compilation as an example, 

due to readers' likely familiarity with this type of computation and 

its richness in corner cases. 

3.1 Identifying Implicit Replicas 

3.1.1 File-creation Dependency Graph:  We identify implicit 

replicas by gathering traces on process- and file-related system 

calls.  Files referenced under the same process group form a file-

creation dependency graph, where nodes are files or processes 

associated with executables.  The reading of an input file I by an 

executable's process E forms an inbound edge I  E. The writing 

of an output file O by an executable's process E forms an 

outbound edge E  O.  If a mmap call has its writable flag set, it 

is treated as a write; otherwise, it is treated as a read.  An input 

file can also be the output file.  For example, an editor reads in a 

file, modifies it, and overwrites it with the new version.  

Similarly, a script file can be an input, output, and executable file.  

However, our system considers files with inbound edges, such as 

writeable files, as potentially regenerable. Thus, a dynamically 

generated script file is considered regenerable.  When the script is 

executed, a separate process node associated with the script is 

created.   

 

3.1.2 Graph Trimming:  A file-creation dependency graph is 

typically large. We trim this graph by grouping files from the 

same library package into a single node.   

 

 
 

Figure 1. A simplified file-creation dependency graph for a 

compilation example. Rectangles are executables, and the 

document boxes are input and output files.  The boxes containing 

vertical bars are one implicit replica of a.out. The boxes 

containing horizontal bars are the second implicit replica of 

a.out. ld is a member of both implicit replicas and contains 

vertical and horizontal bars. 

 

3.1.3 Implicit Replicas:  Figure 1 shows a simplified file 

creation dependency graph for a compilation example. a.out 

can be generated with the presence of the ld executable 

(represented in a rectangle box), taking in the input files of a.o 

and b.o (represented in document boxes). Thus, ld, a.o, and 
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b.o (boxes containing horizontal lines) are an implicit replica of 

a.out, resulting in the following regeneration rule: 

 

ld, a.o, b.o  a.out   (3.1.1) 

 

Similarly, a.o and b.o can be regenerated with the following 

rules: 

 

gcc, stdio.h, a.c  a.o   (3.1.2) 

gcc, stdio.h, b.c  b.o   (3.1.3) 

 

By expanding a.o and b.o in (3.1.1) with the left-hand side 

of (3.1.2) and (3.1.3), and with duplication removed, we can 

derive the following rule: 

 

gcc, ld, stdio.h, a.c, b.c  a.out   (3.1.4) 

 

Now, gcc, ld, stdio.h, a.c, and b.c (represented with 

boxes containing vertical bars) can serve as a second implicit 

replica of a.out. 

 

3.1.4 Duplicate File Memberships for Implicit Replicas:  

Since memberships are determined by rules, a file can be 

replicated to be the member of multiple implicit replicas.  In this 

case, the ld box contains both vertical and horizontal bars, 

denoting that it belongs to the first and second implicit replicas of 

a.out. 

 

3.1.5 Graph Consistency:  A file generated based on out-of-

date dependencies or upper stream input file updates may have a 

mismatching checksum for the output file.  Therefore, it is 

important that Legend recognize when an updated file is no longer 

an implicit replica.  Should a mismatch occur, however, we may 

fall back to the next layer of reliability mechanism (e.g., 

combining Legend with 2-way replication or other backup).  One 

implication of combining Legend with another backup scheme is 

that we do not need to maintain our graph consistency as 

aggressively. While traces are gathered continuously, daily 

updates of the dependency graph would be sufficient.  That also 

means that we can afford to replicate the dependency graph on all 

devices for fault tolerance. 

 

Additionally, we used file names instead of their content 

hashes to build the dependency graph.  Thus, as long as updates 

lead to the same checksum, our recovery is considered successful. 

 

3.1.6 Nondeterminism:  Files under /tmp often have 

randomly generated file names to avoid name collisions.  Suppose 

a.o and b.o are located under /tmp, our system omits them. 

The net effect is the same as replacing the file regeneration rule 

(3.1.1) with (3.1.4). 

 

The same technique can be applied to other intermediary 

regenerated files that contain nondeterministic content (e.g., 

embedded timestamps).  Currently, we handle regenerated files 

with nondeterministic content located at leaf nodes of the 

dependency graph. 

3.2 Implications of Using Implicit Replicas 

The use of implicit replicas has two implications.  First, to 

avoid correlated failures, implicit replicas should be placed on 

separate storage devices.  Second, spreading files within an 

implicit replica across multiple storage units increases the chance 

of losing a file within the implicit replica due to a device failure.  

However, it may increase the CPU parallelism to regenerate 

implicit replicas that are stored across devices. 

3.3 Device Assignment 

Assigning implicit replicas to storage devices resembles the n-

coloring problem, where each implicit replica within the same 

regeneration tree has a unique color (or storage device).  

Otherwise, two implicit replicas residing on the same device can 

fail together. 

 

Currently, we used a greedy scheme.  Each implicit replica is 

assigned a depth based on the file creation dependency graph. 

Each replica then is assigned to storage devices in a round-robin 

fashion (Figure 2).  If a file belongs to multiple implicit replicas, 

we duplicate it to avoid correlated failures. 

 

Device Content 

0 gcc, ld, stdio.h, a.c, b.c 

1 ld, a.o, b.o 

2 a.out 

Figure 2:  An example of an implicit replica assignment. 

 

If there are more storage devices than implicit replicas, we can 

spread out the files of some implicit replicas across multiple 

devices to improve parallelism and recovery speed, considering 

several constraints.  First, we should not spread out the files of an 

implicit replica that cannot be regenerated (e.g., .c files), since 

doing so increases its chance of failure.  Second, for regenerable 

replicas, we used a threshold of the maximum implicit replica size 

to the average replica size to determine whether we should 

balance the storage capacity.  Third, we used a threshold of the 

maximum implicit replica access frequency to the average replica 

access frequency to determine whether to balance the loads. 

3.4 Namespace Management 

Having assigned a file to a device, the path leading to the file 

is created or replicated.  Thus, having implicit replicas grouped by 

depths encourages spatial grouping of files and limits the extents 

of path replications.  For example, files /dir/A and /dir/B 

can be assigned to devices 1 and 2, respectively. However, this 

arrangement would require /dir to be replicated on both devices 

1 and 2.  Should those two files be stored on the same device, 

/dir no longer needs to be replicated. 
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4 IMPLEMENTATION 

The two major components of Legend are the trace analyzer 

and the file system itself.  We prototyped Legend via the 

Filesystem in User Space framework (FUSE) [16] running atop 

ext4 in Linux (Figure 3).  FUSE allowed us to prototype our 

system quickly at the user level, with associated performance 

overheads.  As future work, we will port Legend into the kernel. 

 

 
Figure 3:  Legend components (shaded) and the data path from 

applications to the underlying ext4. 

 

The trace analyzer gathers system call traces related to process 

executions and file-system-related calls from strace.  We 

captured all parameters (e.g., environmental variables) for file 

regeneration.  The analyzer then generates file creation 

dependency graphs, identifies implicit replicas, and maps files to 

storage devices, per-file checksums, and corresponding 

regeneration methods, to be used by Legend. 

 

To enable file allocation to individual storage devices without 

re-engineering the data layout, we modified Unionfs [1] as the 

code base for Legend, which can combine multiple file systems 

into a single namespace.  To illustrate, if /dir/file1 resides 

on device 0 and if /dir/file2 resides on device 1, /dir is 

then replicated on both devices, so that either device fails, /dir 

is still accessible.  In our case, we ran ext4 on each storage device. 

 

We modified Unionfs to use our file-to-device mapping to 

determine and speed up lookups.  In addition, in the case of 

failures, Legend would backtrace the file-creation dependency 

graph and trigger regeneration.  In our running example, should 

the device containing a.out fail, Legend would try to regenerate 

based on the first implicit replica, or ld, a.o, and b.o.  If the 

first implicit replica fails to regenerate, Legend would try to 

regenerate based on the second implicit replica, or gcc, ld, 

stdio.h, a.c, and b.c. 

 

Since the file-creation dependency graph does not capture 

timing dependencies, we had to conservatively estimate the time 

to reissue individual execution system calls.  Thus, our system 

tries to reissue top-level user commands (e.g., make) when 

applicable during recovery to better exploit concurrency. 

5 EVALUATION 

We evaluated the Legend file system's reliability using trace 

replays on a simulation and measured recovery cost and 

performance overhead based on the actual prototype. Each 

experiment was repeated 5 times, and results are presented as 90% 

confidence intervals. 

5.1 Reliability 

We built and used a 15-disk simulator to explore interactions 

between n-disk failures with reliability strategies, including no 

recovery (RAID-0) and Legend, as well as 2- and 3-way 

replication.  We omitted the results for RAID-5 and RAID-6 since 

they can either serve 100% of the requests or 0% of the requests 

after a threshold number of storage devices fails (1 for RAID-5 

and 2 for RAID-6). 

  

The simulator was populated with contents based on various 

traces.  The first seven-day 6.6MB compressed trace was gathered 

from a software development setting.  The trace contains 400K 

references to 29 million unique files (9.6 GB unique bytes) from 

1,440 execution calls.  Note that the trace can be processed 

incrementally during off-peak hours each day, and captured 

dependencies can be represented in a more compact table.  In this 

case, the 6.6MB trace can be represented with a 679KB 

dependency table.  The second 10-day 1.0GB compressed trace 

was gathered from a meteorology workstation running radar 

plotting, image generation, and statistical analysis. The trace 

contains 900K references to 63 million unique files (18 GB 

unique bytes) from 47K execution calls.  The resulting 

dependency table size is 342KB.  The third 10-day 189MB 

compressed trace was gathered from a meteorology student server 

running statistical analysis workloads. The trace contains 2.6K 

references to 192K unique files (180 MB unique bytes) from 4.4K 

execution calls.  The resulting dependency table size is 599KB. 

 

Given that Legend regenerates files based on past reference 

patterns, a longer deployment will yield a greater coverage of 

files.  For the simulation, all references are processed first prior to 

the replay of the traces.  We varied the number of randomly 

chosen failed storage devices at the beginning of the replay and 

compared the percentage of processes that can complete 

successfully [17]. 

 

Figure 4 compares the reliability of different schemes as the 

number of failed storage devices increases. The reliability 

provided by various schemes varies depending on the workloads. 

The software development trace contains the most generative 

dependencies among file groups (13K edges), followed by the 

meteorology workstation trace (9.5K edges). The student server 

trace only contains 569 edges. Legend performs better with more 

generative dependencies (Figure 4(a)). For the software 

development trace, with 3 disk failures, Legend can outperform 

the no recovery option by 50%, and Legend even outperforms 3-

way replication.  For workloads with fewer generative 
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dependencies, Legend performs less well compared to 2- and 3-

way replication. 

 

As an alternative, we combined Legend with 2-way 

replication, which means in the case of device failures, a file can 

be recovered either through the second replica or through 

regeneration.  Figure 4(b) and 4(c) show that the reliability of this 

combined setting can exceed or match the reliability of 3-way 

replication without the storage overhead of 3-way replication.  

Another possibility is to redirect the space used by files with 

implicit replicas to increase the effective replication factor of 

other files.  We will explore it as future work. 

 

 
(a) software development workload. 

 
(b) meteorology workstation workload. 

 
(c) meteorology student server workload. 

Figure 4:  Percentage of unaffected processes vs. number of failed 

disks. 

 

 

5.2 Recovery 

We compared the recovery performance of Legend stacked 

atop of 4-disk, per-disk ext4 via FUSE with that of the no-FUSE 

baseline ext4-based RAIDs. 

 

Table 1:  Experimental Platform. 

Processor 4x2GHz Intel®Xeon®E5335, 128KB L1 cache, 

8M L2 cache 

Memory 8GB 667Mhz, DDR2 

Disk 4x73GB, 15K RPM, Seagate Cheetah®, with 

16MB cache 

 

Given that RAID recoveries are typically performed in the 

background and throttled while serving foreground requests, we 

measured the bandwidth ranges that can be achieved through 

regeneration.  For the low bandwidth bound, we measured the 

regeneration of missing .o files of the game Dungeon Crawl 

(v0.13.0, with 13,157 files) [11], and for the higher bound, we 

measured the regeneration of one of our trace files from a 15MB 

.gz file (Table 2). We compared our numbers with the bandwidth 

ranges of a RAID-5 and a RAID-6 with the typical 10MB/s low-

end cap and achievable high bandwidth bound based on 

measurement.   

 

Table 2:  Recovery Bandwidth. 

System configurations Bandwidth (±1 %) 

FUSE + Legend 0.3 - 42 MB/s 

RAID-5 1-disk recovery 10 - 96 MB/s 

RAID-6 2-disk recovery 10 - 50 MB/s 

 

The high bandwidth bound of Legend shows that regeneration 

can recover at a rate faster than the common throttled threshold.  

While Legend's lower bound is lower than the threshold, 

prioritized regeneration of files in need can still be more 

responsive than waiting for the recovery of the entire device 

content for RAIDs.  In addition, Legend can continue service 

beyond 2-disk failures. 

5.3 Overheads 

We first compare the storage overhead of Legend to store 

dependency information to the overhead to store redundant data 

for RAID-0, RAID-5, 2-way replication, and 3-way replication 

(Table 3).  Legend’s storage overhead for the dependency table is 

small (<0.1%).  If the size of compressed traces is considered as 

well, the overhead can be as high as 10%, assuming the traces are 

converted into the table form each day. 
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Table 3:  Storage Overhead. 

System configurations Storage overhead 

RAID-0 1x 

RAID-5 1.25x 

2-way replication 2x 

3-way replication 3x 

Legend <1.01x - 1.1x 

Legend + 2-way replication 2x to 2.1x 

 

 

We then ran Filebench [10] with a file server personality, 

configured with default flags and 100K files.  This workload 

personality contains creates, deletes, appends, reads, writes and 

attribute operations on a directory tree. Table 4 shows that moving 

from RAID-0 to RAID-5 incurs 60% of the overhead.  Since 

Legend is prototyped on Unionfs, which is built on user-level 

FUSE, we found that 73% of the overhead is from 

FUSE+Unionfs, and Legend incurs a 9% overhead when 

compared to FUSE+Unionfs. The overhead of strace is highly 

load-dependent.  In this case, strace reduces bandwidth by another 

20%. Exploring other lightweight trace techniques will be future 

work. 

 

Table 4:  Filebench with File-Server Personality, Configured with 

Default Flags and 100K Files. 

System configurations (with ext4) Bandwidth (±1 %) 

RAID-0 84.1 MB/s 

RAID-5 35.0 MB/s 

FUSE + UnionFS 22.8 MB/s 

FUSE + Legend 20.7 MB/s 

FUSE + Legend + tracing 16.6 MB/s 

 

The next experiment involves compiling Dungeon Crawl.  The 

elapsed time of Legend (595 seconds) is within 1% compared to 

FUSE+Unionfs (594 seconds). strace introduces 10% more 

overhead (656 seconds). 

 

The current non-optimized single-threaded trace analyzer 

processes uncompressed traces at 1.5MB/sec. Optimizing this 

analyzer is future work.  For example, to speed up real-life 

deployments, the trace analyzer could run daily during non-peak 

hours. 

6 DISCUSSIONS 

In developing Legend, we identified several additional 

research questions raised by targeted provenance.   

6.1 Prioritized File Recovery 

As a reliability mechanism, targeted provenance introduces 

context by working at the file granularity.  With the added 

context, it is possible to perform prioritized recovery, ensuring 

that essential processes have their necessary files restored as 

quickly as possible, leaving less essential files to be restored later.  

This leaves the open question of what kind of priority algorithm to 

use.  In other words, which files are most important to be 

recovered first?  How is this determined?  Using a working 

temporal time slice as a guide, it might be possible for Legend to 

identify likely candidates for prioritized recovery [21]. 

 

Exchanging computational resources for storage resources 

allows us to take advantage of the variance in computational 

resource utilization.  While the utilization of storage is persistent 

and fixed, CPU utilization is more periodic.  This allows us to 

take advantage of periods of low CPU utilization for the purpose 

of recovery. 

6.2 Workloads 

We believe that the added context allows our approach to be 

generalized to additional forms of recovery.  Graphic and media 

design, document editing, system maintenance, and any process or 

workflow that can be described in terms of dependency graphs 

might benefit from recovery using targeted provenance. 

7 RELATED WORK 

The closest work to Legend is D-GRAID [17], which groups a 

file and its related blocks into isolated fault units (mostly in terms 

of directories) and aligns them to storage devices.  By doing so, a 

file, its metadata, and parent directories (replicated at times) are 

less affected by the failure of other disks. Legend replicates file 

paths as well, as needed, but it uses dynamic generative 

dependency information to identify implicit replicas, and it 

leverages regeneration for recovery. 

 

Generative dependencies have been used to recover files from 

malicious attacks [2, 9, 20] and to reduce the amount of network 

transmitted data [7].  However, these solutions are not designed 

for graceful degradation in the face of device failures. 

   

Within the context of high-performance computing, Spark 

leverages the concept of resilient distributed data sets to allow 

data to be recomputed in the event of failures [22]. 

 

Legend can be viewed as an example of applying specific 

types of provenance [14] to improve reliability.  However, 

provenance gathering has been resource-intensive, until the 

Arnold File System [5] demonstrates how system-wide 

information (including external inputs, X-Window events, and 

IPCs) can be gathered efficiently for lineage tracking and queries.  

Legend sees this advance as a potential springboard to improve 

reliability via file regenerations. 

 

Legend isolates files on disks based on their level in a process 

hierarchy.  This is done to eliminate the possibility that a given 

disk failure impacts multiple stages in a given file’s generation, 

maximizing the possibility that we can regenerate a lost file.  

Similar methods for isolating explicit replicas demonstrate the 
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viability of this approach and are generalizable to our notion of 

implicit replicas [24]. 

We recognize that other implicit sources of redundancy may 

exist across machine boundaries (e.g. git-cloned repositories, 

cloud-synced files, web caches, etc.).  We will investigate such 

possibilities in the future in order to develop an integrated 

solution. 

8 CONCLUSIONS 

We have presented the design, prototype, and feasibility 

assessment of the Legend file system, which exploits the use of 

implicit replicas to improve reliability.  Our results show that, 

under certain workloads, the use of implicit replicas can achieve a 

better process completion rate than 2-way replication in the face 

of multiple disk failures.   When combined with 2-way 

replication, we can potentially exceed or match the reliability of 

3-way replication without the storage overhead.  While the 

recovery speed depends on the effort to regenerate files, it can be 

mitigated with prioritization and parallelization via the growing 

availability of cheap CPU cycles. Legend can complement 

existing approaches for overcoming multiple storage device 

failures and achieving graceful degradation. 
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