
Silhouette: Leveraging Consistency Mechanisms to Detect Bugs in Persistent
Memory-Based File Systems

Bing Jiao
Florida State University

Ashvin Goel
University of Toronto

An-I Andy Wang
Florida State University

Abstract
The emergence of persistent memory (PM), with its

non-volatile and byte-addressable characteristics, has led
to a novel storage programming paradigm. However, PM
programs need to flush stores from CPU caches and correctly
order them to avoid inconsistencies after a crash. As a result,
many bug-detection tools have been developed for checking
crash-consistency bugs in PM software. These bug detectors
focus on reordering in-flight stores, crashing the system, and
then checking for crash consistency during recovery. However,
large-scale systems such as file systems have many in-flight
stores, resulting in a large exploration space that makes
exhaustive testing prohibitive.

This paper presents Silhouette, a bug-detection framework
that targets PM-based file systems. These file systems use
standard crash-consistency mechanisms such as journaling
and replication. Silhouette uses a novel combination of static
instrumentation and data-type-based dynamic analysis to
check whether these file systems implement their consistency
mechanisms correctly. If these checks pass, then all stores
associated with the consistency mechanism (e.g., logging
and checkpointing stores for journaling) are considered
protected and only the unprotected stores are reordered
during exploration. Our evaluation shows that Silhouette
dramatically reduces the exploration space, finds all bugs
found by existing tools 10x faster, and finds several new bugs
in various PM file systems.

1 Introduction

Non-volatile, byte-addressable persistent memory (PM) has
garnered attention in recent years due to its low latency and
high performance compared to traditional storage media, and
high storage density compared to DRAM. As a result, various
efforts have focused on developing PM software, including
PM indices [5–7, 17, 24, 25, 30, 33, 36, 38, 42–44, 48] and PM
file systems [3, 21, 22, 29, 45–47].

However, PM programming is challenging due to its
non-volatile and byte-addressable nature, making it prone

to bugs, especially in the event of crashes. Stores are not
immediately flushed from CPU caches to PM, so a crash may
lead to data loss and inconsistency. Furthermore, compilers
and processors may reorder instructions for performance,
which can lead to crash consistency bugs, e.g., when stores
execute out-of-order and a crash occurs in between. Thus PM
programs require explicit CPU cache flush and memory fence
instructions to persist stores to PM, which complicates these
programs and leads to subtle bugs.

As a result, there is a rich body of work and tools for
finding bugs in PM software. Yat [27], a seminal exhaustive
testing tool, injects failures before fence operations and
persists all subsets of in-flight (unpersisted) stores to detect
potential bugs. However, this exploration space of all possible
post-failure PM states (i.e., crash images) is immense and
so exhaustive testing is not feasible. Thus much work
has focused on pruning the exploration space to detect
bugs in PM libraries and indices [14–16] and PM file
systems [23, 28]. Vinter [23] focuses on stores whose data is
accessed during recovery, and Chipmunk [28] instruments at
cacheline granularity to reduce the search space. However,
the exhaustive exploration space remains a challenge.

We propose Silhouette, a framework for detecting crash
consistency bugs in PM file systems. Our key observation
is that all the PM file systems that we have examined
use a set of well-known crash consistency mechanisms,
such as journaling and replication, to provide atomicity and
durability guarantees. Based on our understanding of these
crash consistency mechanisms, Silhouette incorporates a set
of invariant checks for these mechanisms. For example, with
journaling, an in-place store can only be performed after the
store is logged. These invariants help reduce the search space
significantly.

Silhouette operates on a file-system execution trace and
detects consistency bugs in two steps. First, it applies
the invariant checks to determine whether the file system
implements its consistency mechanism correctly. To do so,
Silhouette uses the store, flush and fence instructions in the
execution trace to determine the update time (when the store

is issued) and the persist time (when the store is persisted) for
each store. The invariant checks use the update and persist
time of stores. For example, with journaling, the persist time
of the logged store must be earlier than the update time of the
in-place store. If any of these checks fail, the file system has a
consistency bug. Otherwise, Silhouette considers all the stores
associated with the consistency mechanism (e.g., logging and
checkpointing stores for journaling) as protected. Second, it
explores the reordering of stores, similar to previous systems,
but only for the unprotected stores, which reduces the search
space.

The key challenge in Silhouette lies in implementing
invariant checks on an execution trace. While the execution
trace contains instructions and memory addresses, the
invariant checks are logical, operating on writes to specific
data structures (e.g., the head and tail pointers of a
log, log entries). Silhouette uses a novel combination
of static instrumentation and data-type-based dynamic
analysis to implement the invariant checks. We use LLVM
instrumentation on file system code to map address ranges
to data types in the execution trace. During dynamic
analysis, this data type information in the trace enables
determining the type (e.g., data structure field type) for PM
loads and stores. For example, a store could be mapped to
nova_inode.log_tail = new_tail, where nova_inode
is an inode type and log_tail is the updated field.
Silhouette uses lightweight annotations to determine the data
structures associated with the invariant checks. For example,
the developer specifies that nova_inode.log_tail is the
NOVA inode’s log tail. Silhouette uses these annotations to
implement the invariant checks on the execution trace.

We also use a heuristic to reduce the combinatorial testing
for unprotected stores. While previous approaches test all
combinations of in-flight stores, Silhouette generates only two
crash images for each unprotected store. For each unprotected
store, we either (1) persist the unprotected PM store but none
of the other in-flight stores, or (2) persist all in-flight stores but
not the unprotected PM store. These two cases are sufficient
for finding all bugs found by existing tools.

We evaluate Silhouette using state-of-the-art PM file
systems, PMFS [12], NOVA-fortis (denoted as NOVA in the
rest of the paper) [46], and WineFS [21]. Our results show
that Silhouette can detect all crash consistency bugs found
by two state-of-the-art PM file-system bug-detection tools,
Vinter [23] and Chipmunk [28]. In addition, Silhouette finds
several new bugs.

The paper makes the following contributions:

• We design, implement, and evaluate Silhouette, a
novel framework that leverages knowledge about crash
consistency mechanisms to efficiently detect bugs in
PM-based file systems.

• We describe the persistence invariants for commonly used
consistency mechanisms.

• We propose lightweight annotations for describing the
metadata associated with crash consistency mechanisms.

• We present a heuristic for reordering stores that significantly
reduces the bug finding exploration space.

• We show that Silhouette significantly reduces the
exploration space, finds all existing consistency bugs
reported by recent work 10x faster, and finds new bugs.

2 Background and Related Work

In this section, we provide background on persistent memory
and then discuss related work on PM bug detection methods
to motivate our approach.

2.1 Persistent Memory
PM is a non-volatile storage media technology connected
to the memory bus that provides byte-addressable access
and 8-byte atomic access, similar to DRAM. Stores are
persisted to PM based on the memory persistency model of
an architecture [8, 39]. The x86 [20] architecture, for which
we implement Silhouette, buffers stores in volatile caches and
requires flush instructions (e.g., flush, flushopt, clwb) to
persist stores [40], while non-temporal stores bypass caches.
The execution of flush is ordered with respect to all (both
earlier and later) stores regardless of the cache line, while
flushopt and clwb are more efficient and ordered only with
respect to earlier stores on the same cache line. Also, stores
to the same cache line are persisted in order [27].

To provide control over the order in which stores to
different locations are persisted, x86 provides memory
barriers such as fence instructions and ensures that the flush
instructions cannot be reordered with respect to these fences.
Thus fences form ordering points at which a store, through
a flush and fence, is persisted. We refer to a store that has
been explicitly flushed and subsequently fenced as a persisted
store. Otherwise, the store is an in-flight store since it may
still be in the volatile cache.

2.2 PM Bug Detection
The persistency model described above complicates PM
programs, which need to ensure that stores are correctly
flushed and ordered or else crashes can lead to incorrect
program behavior, including data corruption. Thus many tools
have been developed for finding bugs in PM software. We
discuss such tools for PM file systems and then for other PM
applications.

Yat [27] is an early tool that injects failures before ordering
points (fence operations) and persists all combinations
of in-flight stores to detect potential bugs. However, this
exploration space is immense and so exhaustive testing is

0 10 20 30 40
of in-flight stores at ordering points

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

NOVA - in-flight stores
PMFS - in-flight stores
WineFS - in-flight stores
NOVA - unprotected stores
PMFS - unprotected stores
WineFS - unprotected stores

Figure 1: CDF of in-flight and unprotected stores in PMFS,
NOVA, and WineFS under the ACE workloads.

not feasible. For example, n in-flight stores (in different cache
lines) at an ordering point will generate 2n crash images. The
authors use Yat to find bugs in PMFS [12] and find that some
tests would take several years to complete.

Exhaustive exploration is challenging in file systems
because of the large number of in-flight stores. Figure 1
shows the cumulative distribution function (CDF) of in-flight
stores at ordering points when executing traces of VFS
operations from the ACE [35] Seq-3 workload on NOVA [46],
PMFS [12] and WineFS [21] (details in Section 5.3).

In this workload, the total number of ordering points
for NOVA, PMFS, and WineFS are 13,743, 2,702, and 582
respectively. The large exploration space in PM file systems
results from the numerous ordering points, many of which
have a large number of in-flight stores. WineFS and PMFS
exhibit similar distributions for 50% of the ordering points
due to their similar implementations. However, WineFS uses
copy-on-write, which requires more transactions for logging
block allocation and the extent tree, leading to a longer tail
of in-flight stores. NOVA has fewer than 8 in-flight stores for
80% of the ordering points but then has a long tail because it
buffers many metadata updates.

Vinter [23] and Chipmunk [28] are state-of-the-art systems
for detecting bugs in PM file systems. Vinter uses binary
translation to trace PM-related instructions in a virtual
machine running unmodified code and reduces the search
space by exploring only stores that are accessed during
recovery. However, this approach is time consuming because
it requires performing recovery to determine the addresses
that are read during recovery. Furthermore, its search space is
still large and so it was evaluated using only 16 system call
sequences. Additionally, this approach may miss bugs, e.g., an
ordering point after a missing fence leads to a crash consistent
state that requires no recovery. Chipmunk [28] uses Linux
Kprobes [26] to instrument flush, fence, and non-temporal
store functions. This approach is more efficient than Vinter
because it avoids instrumenting at the instruction level but it
can miss temporal stores that are not flushed.

The key novelty in Silhouette is its use of

data-structure-based analysis to check that the file system
implements its crash-consistency mechanism correctly. If
so, the stores associated with the consistency mechanism
are marked protected. Figure 1 also shows the CDF of
(in-flight) unprotected stores. Silhouette explores only these
stores, providing better scalability than Vinter and Chipmunk.
Furthermore, Silhouette uses the 2CP strategy for exploring
unprotected stores, which reduces the search space further.

Witcher [14] uses static and dynamic analysis to analyze
program data and control dependencies to infer likely
invariants regarding the persistency of program data. Then it
generates test cases that violate these invariants and checks
whether they cause crash inconsistency in PM indices and
key-value stores. Witcher’s invariants are based on pairs of
memory locations and do not take data structures into account.
We ran Witcher on a simplified file system (undo) journal and
its recovery code. Witcher did not generate invariants for
in-place writes and thus could not check for their correctness.

The large exploration space of in-flight stores has led
to an alternative testing approach that avoids exploration
and uses manual code annotations to detect typical bugs
during program execution [11, 31, 32]. PMTest [32] requires
developers to annotate their source code with checking rules
to ensure that the code establishes the correct persistency
and ordering properties and then evaluates these rules at
runtime. XFDetector [31] looks for stores that have not been
persisted but are read during post-failure recovery, but it
requires various annotations, including to avoid false positives.
PMDebugger [11] requires developers to specify durability
regions and ensures that stores issued within a region are
persisted together. None of these systems have been applied
to file system code.

Silhouette’s annotations are higher level because they are
designed to check the implementation of a crash-consistency
mechanism. Unlike code-level annotations, Silhouette’s
annotations require only specifying the structure names and
fields associated with a crash-consistency mechanism.

3 Crash-Consistency Invariants

PM file systems use standard crash consistency mechanisms,
such as journaling, to provide crash-consistency guarantees.
Using well-known mechanisms simplifies the file system
implementation and reduces the potential for bugs.

Based on our understanding of common crash consistency
mechanisms, Silhouette incorporates a set of invariants that
enable checking whether these mechanisms are implemented
correctly [13]. The invariants check that data is persisted in
the correct order (ordering invariants), in correct locations
(location invariants) and the correct data is persisted (data
invariants).

Silhouette operates on a file-system execution trace. The
ordering invariants use the store, flush and fence instructions
in the execution trace. For each store, we define its update

head

Jnl

tail

0x8000

0x8100

Block

10. write
11. flush

head

Jnl

tail

0x8000

0x8100

Block

13. update
14. flush
15. fence

Phase 3: In-place update Phase 4: Reclaim logs

head

tail

Block

1. update
2. flush
3. fence

Phase 1: Pre-allocate logs

head

Jnl

tail

0x8000

0x8100

Block
Phase 2: Log writes

4. write
5. flush
6. fence
7. commit write
8. flush
9. fence

12. fence

Figure 2: Journaling in PM file systems.

time as the time when the store is issued, its flush time as the
time when the store is subsequently explicitly flushed, and
its persist time as the time when a subsequent fence is issued.
Two stores are persisted in order when the persist time of the
first store precedes the update time of the second store.

This section describes three consistency mechanisms, their
PM implementations, and their invariants. Section 4 describes
how we check these invariants for different file systems using
lightweight annotations.

3.1 Journaling
Journaling uses write-ahead logging [34] to record file
system updates to a separate journal before persisting the
updates in-place to the file system. A typical PM journal
implementation uses a head and a tail pointer. The tail
points to the first available space at which the next record
is written. The head points to the first record that is processed
during recovery. When the system is consistent, the two
pointers point to the same address. The recovery process
scans records from the head to the tail and performs undo or
redo processing.

Figure 2 shows that journaling has four phases in PM file
systems. Each phase ends with a fence instruction. In this
implementation, the first phase pre-allocates the log space
by updating and persisting the tail pointer (Steps 1-3). The
second phase logs the file system writes starting from the
head pointer (Steps 4-6). In addition, some implementations,
such as PMFS and WineFS, require committing the log writes
(Steps 7-9). The next phase persists the file system writes
in place (Steps 10-12). The final phase reclaims the log by
persisting the updated head pointer (Steps 13-15).

The flush and fence instructions are critical for ensuring
that the stores in each phase are persisted in order. For

LSW

tail 1. write
2. flush
3. fence

tail4. update
5. flush
6. fence

LSW

Phase 1: Log writes Phase 2: Update tail

Figure 3: Log-structured writes in PM file systems.

example, without the flush in Step 2 in Phase 1, the in-place
write in Step 10 in Phase 3 may be persisted before the log
space allocation is persisted, but the system would appear
consistent during recovery. The journaling invariants are:

1. Ordering invariants: the persist time of writes in a phase
must precede the update time of writes in the next phase.

2. Location invariants: log space is allocated within the valid
journal area (typically a circular buffer), and log writes are
performed between the head and tail pointers.

3. Data invariants: logged writes have corresponding
in-place writes.

3.2 Log-structured Writes
Log-structured writes append file system updates to a log
space, a technique used in log-structured file systems [41].
This approach helps avoid random writes and reduces media
wear. Generally, log-structured writes use a tail pointer to
indicate the first available place to append new data. After a
crash, no recovery is needed, since the uncommitted logged
data is not visible unless the tail pointer is updated.

Figure 3 shows the phases associated with log-structured
writes in PM file systems. The first phase persists the file
system writes to the log space (Steps 1-3). Then the second
phase updates and persists the tail to commit the updates (Step
3-6). The log-structured write invariants are:

1. Ordering invariants: the persist time of writes in a phase
must precede the update time of writes in the next phase.

2. Location invariants: log space is allocated within the valid
log area, log writes are performed between the current and
updated tail pointers, and log writes do not overlap.

3.3 Replication
Data replication enables recovery from data corruption. For
example, if a crash occurs during an update, the recovery
process can restore data from an uncorrupted replica (whose
content matches its checksum) or when more than a half of
replicas have the same content.

Figure 4 shows the phases associated with checksum-based
replication in PM file systems. The first step updates and
persists the primary replica (Steps 1-4). The data and
checksum updates can happen in any order. The second step
copies the updates and checksum to the secondary replica
(Steps 5-7). The replication invariants are:

0x4000

0x4040

Primary

1. write data

3. flush 0x4000 – 0x4040
4. fence

2. update checksum

Replica
0x8000

0x8040

0x4000

0x4040

Primary

5. copy 64 bytes from
 0x4000 to 0x8000

Replica
0x8000

0x8040

6. flush 0x8000 – 0x8040
7. fence

Phase 1: Update primary data

Phase 2: Cloning

Figure 4: Replication in PM file systems.

1. Ordering invariants: the persist time of writes in a phase
must precede the update time of writes in the next phase.

2. Data invariants: replicas should have the same content
after they are updated.

4 Silhouette

We propose Silhouette, a scalable testing framework that
efficiently detects bugs in PM-based file systems by
leveraging the crash-consistency invariants described in
Section 3. Figure 5 shows the Silhouette architecture,
consisting of three phases, instrumentation, invariant checking
and validation. The following sections describe these phases.

4.1 Instrumentation and Tracing
Silhouette uses LLVM to instrument file system code. The
instrumented code is linked as a Linux module. When
a test case in a workload executes file system code, the
instrumentation generates an execution trace as shown
in Figure 6. The trace contains instructions executed
when top-level file-system-specific VFS operations, such
as pmfs_mount and pmfs_create, are invoked. Silhouette
performs invariant checks and validation for each VFS
operation invocation separately.

The instrumentation uses two passes. The first pass
determines the top-level VFS operations by searching
the initializer for the Linux inode and file operations
structures. This pass also assigns a unique ID to each
LLVM bytecode instruction (not shown in Figure 6) based
on the address of the emitted instruction, which helps detect
duplicate instruction sequences. Consider the sequence of
instructions in a VFS operation. We consider two instruction
sequences as duplicates when the PM-related instructions
(store, nt_store, cas, xchg, memset, memcpy, flush and
fence) in these sequences have the same IDs. We avoid
exploring duplicate instruction sequences in test cases, as
explained further in Section 5.3.

The second pass instruments the PM-related instructions.
This instrumentation associates a unique timestamp with
each instruction in execution order, as shown in the first

column of the trace. For all store-related instructions, the
instrumentation logs the old (before the store) and new (after
the store) data, which allows comparing post-recovery file
system state with the file system state before and after a
VFS operation. We also instrument the getelementptr (GEP)
instruction, whose operands include the address and type
of a data structure, as shown in Figure 6. This instruction
computes the address of an element of the data structure and
helps identify the data types of stores in the invariant checking
phase.

We also parse all the file system source code to determine
all data structures, such as the partial pmfs_journal and
pmfs_logentry_t structures shown at the top of Figure 6.
Note that the data type column refers to these structures.

4.2 Invariant Checking

The invariant checking phase operates in three steps, as
shown in Figure 5. First, it uses the execution trace to
determine the data types of all stores. Then, it uses a set of
lightweight annotations to identify the stores associated with
the crash-consistency mechanisms and tags them with a phase
number. For example, journaling has four phases, as described
in Section 3. Finally, it checks the consistency invariants
to determine whether the crash-consistency mechanism is
implemented correctly.

4.2.1 Identifying Data Structure Types

This step takes a single pass over the execution trace
to identify the data types associated with writes (i.e.,
stores, memcpy, etc.), as shown in the data type column
in Figure 6. We use the GEP records in the trace to
determine these data types. To do so, we maintain an interval
tree whose key is an address range and value consists of
one or more tuples containing a structure type, field and
a timestamp. At each GEP record, we use the GEP data
type to update the interval tree for each field of the data
type. For example, the GEP record at timestamp 13 in
Figure 6 creates entries for each field of the logentry_t type,
such as [2000, 2008]: [logentry_t, addr, 13] and
[2008, 2010]: [logentry_t, size, 13]. If the data
type of an address range changes as a result of a subsequent
GEP record, we append a tuple with the new data type and
timestamp for that range. We observed two cases where the
GEP data type changes in the tested file systems. One case
involved a union type, while the other involved variable-length
data structures. Then, for writes, we query the interval tree
using the address range of the write to determine the data
type of the write. If an address range has multiple tuples, we
choose the tuple with the largest timestamp that is less than
the write’s timestamp.

Instrumentation and Tracing Invariant Checking File System Validation

1. Generate FS crash images

2. Validate FS metadata and
data after recovery to detect
logic, ordering and
consistency bugs

1. Generate LLVM instrumented
FS kernel module

2. Mount FS, run workloads to
generate execution trace

3. Identify duplicate operations

1. Identify data types of stores

2. Tag stores associated with
FS consistency mechanisms

3. Check consistency invariants
to detect consistency bugs

Execution
trace

Execution
trace with

tagged
stores

Annotations for
consistency mechanismWorkloads

File System
Source Code

Figure 5: The Silhouette architecture.

Metadata Annotation

Journal head pmfs_journal.base + pmfs_journal.head
Journal tail pmfs_journal.base + pmfs_journal.tail
Buffer addr pmfs_journal.base
Buffer size pmfs_journal.size
Dest addr pmfs_logentry_t.addr_offset
Dest size pmfs_logentry_t.size
Pre-allocate true

LSW tail nova_inode.log_tail
LSW log size 4096
LSW log links nova_inode_page_tail.next_page
Pre-allocate false

Replication
structures

nova_inode, nova_file_write_entry,
nova_dentry, nova_setattr_logentry,
nova_link_change_entry

of replicas 2

Table 1: Annotation for PMFS’s journal (WineFS uses the
same annotations), NOVA’s log-structured write (LSW) and
replication. Annotations for NOVA’s journal are not shown.

4.2.2 Lightweight Annotations

While the previous step identifies the data structure and
fields associated with writes, we need to know the file-system
structures that are associated with the crash consistency
mechanisms. We use a small set of programmer-specified
annotations to determine these data structures. The
annotations are specified in a separate configuration
file and require no modifications to the file system
code. Table 1 shows the annotations for PMFS’s journal,
NOVA’s log-structured writes and NOVA’s replication. These
annotations and NOVA’s journal annotations are sufficient for
checking all the invariants implemented in Silhouette.

The PMFS journal data structure pmfs_journal has the
base, head, and tail structure fields, as shown in Figure 6.
In PMFS, the journal is a circular buffer but the head and tail
are offset addresses. The journal head and the tail pointers
are computed by adding the base address to the head and tail
offsets, as shown in the Journal head and tail annotations (first
and second rows). 1 The Buffer addr and size (third and fourth

1The annotation language supports simple arithmetic operations.

rows) specify the journal area. They help with detecting wrap
around in the circular buffer. The PMFS journal entry data
structure pmfs_logentry_t is shown in Figure 6. The Dest
addr and size annotations (fifth and sixth rows) specify the
address of the in-place write and the size of the logged data,
which help determine the location of the in-place writes. The
allocation annotation (the seventh row) indicates that PMFS
pre-allocates log space, as shown in the first phase of Figure 2.

For NOVA’s log-structured writes, the LSW tail annotation
(first row) specifies the tail pointer. NOVA uses a linked list
for its log-structured writes. The log size and links annotations
(second and third rows) enable traversing the log. NOVA’s
log-structured writes are per-file and thread-safe, so it does
not pre-allocate log space (fourth row). NOVA also uses
replication to protect the per-file logs.

For replication, we only need to know the data structures
that have replicas, since any writes to the data structure must
have corresponding writes to its replicas. We also require
the number of replicas to determine when all the replicas are
synchronized.

4.2.3 Identifying Phases of Consistency Mechanisms

This step uses the annotations to identify the writes associated
with crash-consistency mechanisms and tags them with a
phase number, as shown in the tag column in Figure 6.
Next, we describe this process for each crash-consistency
mechanism.

Journaling: We use two passes over the execution trace to tag
stores with the four phases associated with journaling. The
first pass searches for stores with a data type that matches the
journal structure (e.g., journal). In Figure 6, these are stores
at Records 3-5, 10, and 23. Stores 3-5 are issued by the mount
function and so they are tagged as initialization stores. Stores
10 and 23 are tagged Phase 1 and Phase 4 because they match
the head and tail annotations.

This pass also searches for stores with a data type that
matches the journal entry type (e.g., logentry_t). In this
case, they correspond to Records 14-16 and they are tagged
Phase 2. We use the Dest addr and size annotations to
determine the range of in-place updates from log entries. For
instance, Record 14 has an address value 0x8000 and Record

time inst addr
(hex)

size
(dec)

old
value
(hex)

new
value
(hex)

data type tag

1 startCall pmfs_mount
2 gep 1000 N/A journal
3 store 1000 8 0 2000 journal.base journal.init
4 store 1008 4 0 0 journal.head journal.init
5 store 100C 4 0 0 journal.tail journal.init
6 flush 1000 16 N/A
7 fence N/A
8 endCall pmfs_mount
9 startCall pmfs_create
10 store 100C 4 0 40 journal.tail journal.p1
11 flush 100C 4 N/A
12 fence N/A
13 gep 2000 N/A logentry_t
14 store 2000 8 0 8000 logentry_t.addr journal.p2
15 store 2008 8 0 30 logentry_t.size journal.p2
16 memcpy dst:

2010
src:

8000

48 xx xx logentry_t.data journal.p2

17 flush 2000 64 N/A
18 fence N/A
19 store 8000 48 xx xx xx journal.p3
20 flush 8000 48 N/A
21 fence N/A
22 store 3000 8 xx xx xx unprotected
23 store 1008 4 0 40 journal.head journal.p4
24 flush 1008 4 N/A
25 fence N/A
26 endCall pmfs_create

struct pmfs_journal {
u64 base;
u32 head;
u32 tail;

};

struct pmfs_logentry_t {
u64 addr_offset;
u64 size;
char[48] data;

};

Figure 6: A simplified PMFS execution trace generated by
the instrumentation phase. The gray fields are filled at run
time in the invariant checking phase.

15 has a size value 0x30. We track this in-place update range
[0x8000, 0x8030).

The second pass finds stores that lie within any in-place
update range and tags them as Phase 3, e.g., Record 19.

Log-structured writes: We use two passes over the execution
trace to tag stores with the two phases associated with
log-structured writes. The first pass searches for stores with
the tail data type (e.g., nova_inode.log_tail in Table 1).
These stores are tagged Phase 2. Then we extract the old
and new values of the tail update, which forms the log space
address range. The second pass looks for stores that lie within
any log space address range and tags them as Phase 1.

Replication: We use two passes over the execution trace to
tag writes with the two phases associated with replication.
Currently, we assume that replicas are synchronized using
the memcpy instruction. The first pass searches for memcpy

journal.p4

journal.p1

journal.p2
journal.p3

time 3 7 10 12 14 18 19 21 23 25

pmfs_
mount

pmfs_create

journal.init

Figure 7: The horizontal bars show the in-flight period of
writes in different journaling phases.

with a data type that matches the replication annotation and
tags them as Phase 2. It also records the source address range
of the instruction. The second pass looks for stores that lie
within any source address range and tags them as Phase 1. We
also support memcpy-based replication that is performed by
copying from PM to DRAM and then to PM.

Unprotected writes: All remaining untagged stores are then
tagged as unprotected stores.

4.2.4 Checking Invariants

Our invariant checks require the flush and persist time for
all stores associated with the consistency mechanisms. We
derive these times by modifying Witcher’s cache/NVM
simulator that simulates the effects of store, flush and fence
instructions as per the memory consistency model of the
x86-64 architecture [14]. When a store is issued to a cache
line, we append it to the cache line with null flush and persist
times. When a flush is issued on a cache line, all stores in
the cache line that have a null flush time are assigned a flush
time. When a fence is issued, stores in all cache lines with a
non-null flush time are assigned a persist time, and removed
from their cache line, indicating that they are persisted.

We call the time interval of an in-flight store, from update
time to persist time, the in-flight period. Similarly, the in-flight
period of a phase is the earliest update time and latest persist
time of the stores in the phase. The invariant checks typically
traverse the execution trace, look for stores associated with
a consistency mechanism in timestamp order, and check
ordering invariants based on these in-flight periods. Next,
we describe how we check invariants for each consistency
mechanism.

Journaling: Figure 7 shows the in-flight period of the
journaling phases for the execution trace shown in Figure 6.
The ordering invariants check that the in-flight periods of
the different phases occur in order and are not overlapping.
For the location invariants, when we find a Phase 1 store
(tail update, T10-12), we use the address range from the
old value to the new value of the tail to check that the log
writes (Phase 2, T14-18) are within this address range. For
the data invariants, when we find a Phase 4 store (head update,
T23-25), we check whether Phase 2 log writes have matching
Phase 3 in-place writes and with the same content.

Log-structured writes: The invariant checks for
log-structured writes are similar to the journaling invariants.
The ordering invariants simply check that the Phase 1
in-flight period is earlier than the Phase 2 in-flight period.
The location invariants check that the log writes do not
overlap and are performed in the valid log area.

Replication: The ordering invariants check that the Phase 1
in-flight period is earlier than the Phase 2 in-flight period.
The data invariants check that the contents of the Phase
1 writes match the Phase 2 memcpy operation. While
we check consistency invariants for each VFS operation
separately, some VFS operations, e.g., nova_mkdir, may
replicate multiple objects in overlapping in-flight periods.
The replication invariants operate on each object separately.

4.3 File System Validation
After the invariant checking phase, the file system validation
phase in Silhouette tests for crash consistency. It aims
to validate whether a file system remains consistent, i.e.,
provides its stated consistency guarantees, in the presence
of crashes. While the POSIX standard does not define
file-system crash consistency semantics [2], the PM file
systems we analyzed provide strong atomicity guarantees
for all metadata and file data operations. Thus the validation
phase checks whether the file system provides operation
atomicity (i.e., all-or-nothing semantics) after a crash.

Our testing methodology is based on constructing and
testing file-system crash states using oracles, which avoids
false positives, similar to previous approaches [14, 23, 28].
However, our search space is more targeted, and we perform
detailed consistency checks on the crash states, both of which
help reveal new file system bugs. Next, we describe how we
generate and then test file-system crash states.

4.3.1 Generating Crash States

For testing, we reuse the execution trace generated by a test
case and simulate a crash before each reordering point within
a file system operation in the trace. At each crash, we generate
crash plans, which consist of all the persisted writes (writes
with a persist time that precedes the crash time) and a subset
of in-flight writes since they may not have been persisted.

We generate crash plans targeting 1) crash-consistency
mechanisms, and 2) unprotected stores. The former detect
crash-consistency mechanism bugs, while the latter detect
ordering and other logic bugs (bugs that are not fixed by
adding flush or fence instructions).

Crash-consistency mechanisms: The consistency invariants
we use may not be comprehensive, and the checks could
have been implemented incorrectly, both of which would lead
to missing bugs. Thus, we generate crash plans to detect
potential crash-consistency mechanism related bugs during
recovery. For journaling, Silhouette generates a crash plan

before Phase 4 (writes in Phases 1, 2, and 3 are persisted) to
trigger journal recovery. For replication, Silhouette generates
two crash plans: 1) writes to the primary are partially
persisted (e.g., Step 1 is persisted but Step 3 is not persisted
in Figure 4) to test whether the primary can be recovered
from the secondary, and 2) writes to the secondary are
partially persisted (e.g., parts of memcpy) to check whether
the secondary is updated from the primary during recovery.
For log-structured writes, Silhouette does not generate crash
plans since the tail updates are performed atomically.

Unprotected stores: Generating file-system crash plans
based on reordering in-flight stores [23] or cache lines [28]
leads to an exponential number of plans (2n plans for n
in-flight stores or cache lines). Figure 1 shows that PM file
systems have as many as 40 in-flight stores at reordering
points, which exacerbates this problem.

Silhouette generates crash plans based only on the
unprotected (in-flight) stores. Figure 1 shows that the
maximum number of such stores is fewer than 10, which
significantly reduces the search space.

However, instead of exploring all combinations of
unprotected stores, we propose a simple heuristic that only
generates two crash plans for each unprotected store. Thus,
with n unprotected stores, we generate 2n crash plans. For
each unprotected store, the first crash plan persists only the
chosen unprotected store, while none of the other in-flight
stores are persisted, and the second crash plan, persists all
in-flight stores except the chosen unprotected store.

This 2CP (two crash plans) scheme detects all file-system
bugs found by Vinter and Chipmunk for the three file systems
we use in our evaluation. The reason is that PM programs
often use a single critical store for persistence ordering.
For example, a guarded read during recovery of the form
“if (flag) return data;” likely implies that the persist
time of data is earlier than the update time of the critical flag
variable [14]. Below, we denote this persists-before relation
as data→flag.

Our 2CP scheme can detect violations of all
persists-before relations of the form (S1, S2, ...)→C,
and C→(S1, S2, ...), where C is the critical store, and
(S1, S2, ...) are one or more other stores. Assuming that
an unprotected store is a critical store, our first crash plan,
which only persists the unprotected store, detects violations
of the first persists-before relation, and our second crash
plan, which persists all the other stores, detects violations of
the second persists-before relation. Since we do not know
whether an unprotected store is a critical store, we generate
two crash plans for each unprotected store (thus treating each
unprotected store as a critical store).

The 2CP scheme will not exhaustively test cases such as
(A, B)→(C, D). We have only observed one real-world
case with this constraint. Consider checksum-based
replication in which if the primary is corrupted, it can
be recovered from the secondary, which has the correct

checksum. However, if there is no fence between the updates
to the two replicas then the persist-before relationship
does not exist. In this case, even though the replicas could
be corrupted, (e.g., only A and C are persisted), 2CP will
not construct this crash plan. Fortunately, our replication
invariants test this case.

4.3.2 Testing Crash States

For each crash plan, we create a crash image, which is a file
system image that is constructed by replaying the writes in
the crash plan. To test a crash image, we mount the image,
which runs file-system recovery code, and check the system
log for any errors (e.g., kernel panic, KASAN report), which
we call the syslog test.

Then we compare the recovered file-system state against
the file-system states before and after the file-system
operation (at which the crash occurred in the crash plan)
has run. These pre- and post-operation states are obtained
via stat when running the test cases. A successful match
against either of them indicates that the operation executed
atomically and durably, otherwise a bug is found. We compare
the recovered file system against the pre- and post-operation
states by checking the stat metadata for all the files and
directories in the file system, which we call the stat test.

Some PM programs implement lazy recovery mechanisms
to improve their performance. For example, NOVA rebuilds a
file’s extent tree only when it is accessed. To ensure that the
lazy recovery works correctly and the recovered file system is
usable, we check that all the files and directories are writeable
and removable, which we call the write test.

We found that the pre/post-operation state may not be
reliable due to logic bugs. For instance, the recovered state
may match the pre-operation state but internal metadata
not exposed by stat may be modified, or the file-system
state may not reflect the expected state after the file system
operation. As a result, we created two additional tests
compared to previous work. In the unprotected store test,
if the recovered file system matches the pre-operation
(post-operation) state, then for 2CP, we test that the data at
the chosen unprotected store matches the old (new) value of
the store. In the file operation test, we use operation-specific
checks to verify the expected behavior of some file operations.
For example, after an append operation, the file size should
increase by the written size.

5 Evaluation

This section evaluates Silhouette by first presenting the
bugs that we found in three PM file systems, PMFS [12],
NOVA-fortis [46], and WineFS [21]. Then, we compare
the bug found timing of Silhouette with Vinter [23] and
Chipmunk [28], two state-of-the-art systems that focus on

detecting bugs in PM-based file systems. Last, we evaluate
the scalability of Silhouette.

Implementation: Silhouette uses a client-server architecture.
Each client is a VM that runs a test case, checks invariants,
generates crash plans and performs recovery. To do so, we
leverage Witcher’s cache simulator framework [14]. The
server runs on the host and manages the VMs, including
monitoring and restoring their state. As mentioned in
Section 4.1, Silhouette’s static instrumentation assigns unique
IDs to instructions in an instruction trace. The server stores
a hash of the IDs of the PM-related instructions (e.g., PM
store, flush, fence etc.) in each operation in the execution
trace. When two invocations of an operation (in the same or
different test cases) have the same hash, we only explore
the operation once. Silhouette randomly samples memcpy
and memset and treats the multiple stores issued by them
as a single atomic store. Silhouette is open-sourced at
https://github.com/iaoing/Silhouette.

System setup: All file systems are built as Linux v5.1 kernel
modules. We used the file system versions that were used
by Chipmunk in their evaluation. We enabled the checksum,
parity, and CoW options in NOVA. Also, we enabled the
CoW mode in WineFS because it ensures atomicity for data
operations. Our evaluation uses QEMU [1] VMs, running on
a Dell 7820 host machine. This machine is equipped with
an Intel Xeon Silver 4215R CPU, 144 GB DRAM (128 GB
simulated by a 128 GB Intel Optane PM 100 Series), Western
Digital 2 TB HDD (containing the VM images). Each QEMU
VM is configured with 1 core, 8 GB DRAM, and a 128 MB
PM device (emulated by DRAM). Both the host and the VMs
run Ubuntu 20.04.4 LTS.

Workloads: We used the ACE workload generator [35],
which generates test cases using a sequence of VFS
operations with the correct prerequisite operations (e.g.,
open) and specified sets of parameters. We tested the
following 11 operations: creat, mkdir, fallocate, write,
symlink, link, unlink, remove, rename, truncate, and
rmdir. We omitted the operations that are irrelevant for
PM (e.g., fsync, flush). We also explored some custom
workloads (e.g., to exercise long file names). Finally, we
created NOVA workloads to test NOVA’s functionality
(e.g., large log-structured writes, and create_snapshot and
delete_snapshot operations).

5.1 Bug Analysis

Silhouette found all bugs reported by Vinter [23] and
Chipmunk [28]. Vinter and Chipmunk reported 7 and 20 bugs
for the three PM file systems. In addition, Silhouette found 15
previously unreported (new) bugs, as shown in Table 2. We
have filed these bugs and currently 3 have been confirmed
and fixed.

The Type column in Table 2 shows that 1 bug is a PM

https://github.com/iaoing/Silhouette

Bug FS Type Cause Effect Test

1 NOVA PM Replica pointer not persisted correctly during inode allocation Segfault syslog
2 NOVA Logic i_size and i_blocks fields not set correctly in symlink Inconsistent attributes stat
3 NOVA Logic i_blocks field not set correctly in fallocate Inconsistent attributes unprotected store
4 NOVA Logic truncate is not atomic Data leak unprotected store
5 NOVA Logic Different dentrys have the same inode number Incorrect inode number file operation
6 NOVA Logic Atomicity violation in Unlink and rmdir File/Dir is inaccessible write
7 NOVA Logic Snapshot ID set incorrectly during recovery Cannot create snapshots write
8 NOVA Logic Traversing snapshots fails after snapshot removal Various errors syslog
9 NOVA Logic Extent tree unreadable due to wrong checksum Various errors syslog
10 NOVA Logic Unsafe user space read in procfs Segfault syslog
11 NOVA Logic DRAM inode structure not initialized Segfault syslog
12 PMFS Logic O_APPEND doesn’t work correctly Data loss file operation
13 PMFS,

WineFS
Logic Reuse inode in orphan list Data loss stat

14 NOVA Perf Garbage collection information not updated atomically Incorrect GC trigger unprotected store
15 All Perf Redundant memory barriers Performance degradation -

Table 2: New bugs found by Silhouette.

bug; 12 are logic bugs; and 2 are performance bugs. PM
bugs can be fixed by adding flush or fence instructions while
logic bugs are crash-related bugs in program logic that would
not be fixed by simply adding flush or fence instructions.
Performance bugs may degrade system performance. The
Cause and Effect columns show the root cause and the effects
of the bug. The Test column shows the Silhouette test (see
Section 4.3.2) that detected the bug. Next, we describe a few
bugs that were detected using different tests.

Bug 1: Replica pointer not persisted correctly
during inode allocation. NOVA uses a per-inode
log page (inode->page) and a replica of this page
(inode->replica_page) to log inode updates. The log page
also maintains a pointer to the replica page (page->replica).
This bug occurs when an inode’s log page is allocated but the
log page’s replica pointer is not persisted before the inode
(including inode->page, inode->replica_page, and the
inode’s checksum) is persisted. After a crash, the recovery
code checks the inode’s checksum and this check passes.
However, during normal operation, when file operations
update the inode, NOVA accesses the inode’s log page and
may access its replica pointer, which is null and causes a
crash. This bug can be fixed by adding a fence after the
replica pointer is flushed.

Silhouette generates a crash plan that persists the inode
but not inode->page->replica. It detects this bug
because after recovery, we write to the file, which causes
a segmentation fault. Vinter fails to detect this bug since a
log page’s replica pointer is not read during recovery and so
Vinter does not create a crash plan to test it. Chipmunk’s also
does not detect this bug because its consistency check does
not access the page’s replica pointer.

Bug 2: Inconsistent inode attributes between PM and
VFS cache. The symlink operation in NOVA updates the

inode’s i_size field in PM and the VFS cache inconsistently
(there is an off-by-one error). After an inode is evicted from
the VFS cache or after a remount, this field is read from PM
and updated in the VFS cache, which then has consistent
values. We detect this bug because the recovered PM state
shows that the symlink operation is complete but the file
size attribute is different between the recovered state and the
post-operation state. Chipmunk did not find this bug because
it did not test the symlink operation. Vinter tests symlink
but did not report this bug.

Bug 4: truncate is not atomic. When truncating a file to
a smaller size, the truncated data should be erased or else it
would be accessible if the file is subsequently truncated to a
larger size. In the truncate operation, NOVA changes the file
size and then erases the truncated data but these operations are
not performed atomically. The erasure is conducted using a
memset instruction (unprotected stores). If a crash occurs
before the erasure, then after recovery, Silhouette reports
that the attributes of the recovered file system match the
post-operation state but the unprotected store data matches
the pre-operation state. Chipmunk and Vinter did not find this
bug because they compare file-system attributes but not the
file-system state.

Bug 5: Different dentrys have the same inode number.
After creating a new file, Silhouette checks whether the inode
number of the file is unique. This file operation test revealed
that NOVA, in some cases, generates duplicate inode numbers,
where two files (with different directory entries) have the same
inode number. This bug occurs in the readdir operation.
Vinter and Chipmunk did not find this bug because they do
not perform the unique inode check.

Bug 11: DRAM inode structure not initialized. During
mount, NOVA reads a PM file to recreate its inode allocator
information in DRAM. To speed up recovery, it caches the PM

0 50 100 150 200
Time (Minutes)

0

2

4

6

8

10

N
um

be
r o

f B
ug

s

Silhouette
Chipmunk
Vinter

Figure 8: Bugs found in Nova with the ACE Seq3 workload.

file’s inode in a temporary DRAM inode structure. However,
it does not zero out this inode structure. After the inode
allocator information is rebuilt, NOVA accesses the DRAM
inode structure to clear the PM file. If the inode structure
has garbage data, a segmentation fault occurs when NOVA
dereferences a field in the structure. Silhouette detected
this bug because it generated a crash plan for the unmount
operation, which caused a crash during recovery. However,
this crash does not occur on a mount after a clean unmount.
Vinter and Chipmunk did not find this bug because they did
not test the unmount operation.

Bug 13: Reuse inode in orphan list. When truncating or
unlinking an open file (or directory), PMFS and WineFS add
an entry consisting of the file’s inode number and the new file
size (0 for unlink) to a persistent orphan list (similar to Ext4).
If a crash occurs while the file is open, the recovery process
traverses the orphan list to set the size of truncated files based
on their recorded size and to reclaim unlinked inodes. During
normal operations, when the truncated or unlinked file is
finally closed, the VFS code invokes a file system function
asynchronously to reclaim the inode (if nlinks count is zero)
and remove its corresponding entry from the orphan list.
However, a newly created file or directory may be assigned the
same inode number after the original inode is freed but before
its orphan list entry is removed by the asynchronous function.
If a crash occurs before the orphan list entry is removed, then
the recovery process will find the inode of the newly created
file in the orphan list entry. Since the nlinks count of this
file is greater than zero, the file size is truncated to 0, causing
data loss. Silhouette found this concurrency bug because it
did not replay the asynchronous PM writes (removal of the
orphan list entry) when generating crash plans and detected a
directory of size 0 after recovery.

5.2 Bug Finding Time

We compare the time it takes Silhouette, Chipmunk, and
Vinter to find bugs in NOVA. For this test, we used the NOVA
version evaluated in Chipmunk’s study since Chipmunk did
not report any new bugs in the latest version of NOVA. We

ran the ACE Seq3 workload on one VM and limited the test
to 6 hours since no bugs were found beyond this time.

Figure 8 shows the bugs found over time. Vinter only
tested 36 test cases in 6 hours and found 4 bugs in 156
minutes. Two bugs caused by atomicity violations in rename
were previously reported by Vinter. An atomicity bug in
link and unlink and a missing inode checksum update
when initializing LSW’s logs were previously reported by
Chipmunk. Chipmunk tested 2.6K test cases in 6 hours and
found 6 bugs in 164 minutes, including the 4 bugs found
by Vinter. The two additional bugs are a missing memory
fence after updating a metadata checksum, and a failure to
atomically update data and its parity during truncate, both
of which were reported by Chipmunk.

Silhouette tested 5.3K test cases in 6 hours and found 10
bugs in 17 minutes, including the 6 bugs found by Chipmunk
and 4 new bugs (Bugs 3, 5, 14, and 15). The rest of the bugs
in Table 2 were not found since we only tested operations
handled by all three systems. Thus, we did not test symlink
(Bug 2), snapshots (Bugs 6, 7, 8, and 10), and mount (Bug
11). Additionally, we disabled Bug 9 since it corrupts the file
system, preventing further testing of other operations. Bugs 1
and 4 were only found in later NOVA versions and they are
triggered by subsequent bug fixes.

5.3 Silhouette Scalability

In this section, we evaluate the scalability of Silhouette by
comparing the number of in-flight stores and crash plans
generated by Silhouette, Vinter and Chipmunk. To measure
scalability, we used the Seq3 workload for these experiments
to evaluate all systems. Similar to Chipmunk, we sampled
50K cases, as described under Workloads in Section 5.

For Silhouette, we ran 10 VMs in parallel and the total
run time is roughly 6.8, 3.4, and 5.1 hours for NOVA, PMFS,
and WineFS. Due to Chipmunk’s lack of support for parallel
testing and Vinter’s slow running speed, we disabled their
consistency checks (e.g., constructing crash images and
running recovery) so they can be run in reasonable time.

As mentioned in Section 4.1, Silhouette’s static
instrumentation assigns unique IDs to instructions,
which enables detecting duplicate instruction sequences in
an execution trace. We explore duplicate sequences once,
whether in the same or different test cases. For example,
suppose Test Case 1 has operations (A1, B1) and Test
Case 2 has operations (A1, B2), where A and B are two
different types of operations, and A1, B1 and B2 are three
unique instruction sequences. For Test Case 1, we explore the
instructions in A1 and B1. However, for Test Case 2, we only
explore the instructions in B2 after persisting all the writes
in A1. Although the 50K test cases in the Seq3 workload
contain 391,743 operations, Silhouette identified only 356,
285 and 81 unique operations for NOVA, PMFS and WineFS.
NOVA uses dedicated log types for different operations (e.g.,

link change log, data write log), leading to more unique
operations. WineFS has fewer unique operations compared to
PMFS since its CoW strict mode leads to more code reuse.

Vinter’s crash plans do not contain instruction addresses
and so it cannot detect duplicate instruction sequences
accurately. For example, two similar store sequences for
an operation may be emitted from different instructions.
Chipmunk only instruments flush and fence functions (but not
stores) and so it also cannot perform duplicate detection. To
assess the benefits of duplicate detection in these systems, we
used Silhouette to also generate test cases that avoid exploring
duplicate operations more than once and evaluated Vinter
and Chipmunk using them. We refer to these test cases as
Vinter/Chipmunk unique test cases.

Number of in-flight stores: Silhouette considers unprotected
(in-flight) stores, Vinter considers all in-flight stores
and Chipmunk considers in-flight flush operations when
generating crash plans. Figure 9 shows their CDF.

The Silhouette plots for the unprotected stores are the same
as the plots shown in Figure 1. While Vinter only reorders
in-flight stores whose data is read during recovery, the number
of such in-flight stores is still comparable to the total number
of in-flight stores, as shown in Figure 1. Vinter’s approach can
miss bugs, e.g., if a fence is missing but the next fence leads to
a crash-consistent state that requires no recovery. Chipmunk’s
in-flight flushes are comparable to Silhouette’s unprotected
stores. Unlike Silhouette, Chipmunk only observes stores that
are flushed. Moreover, if two stores write to the same cache
line and are then flushed, then Chipmunk cannot explore an
execution sequence in which only the first store is persisted.

Number of crash plans: Silhouette generates crash plans
for checking the crash-consistency mechanisms and for
reordering the unprotected stores based on the 2CP scheme.
Vinter generates crash plans by considering all subsets of
in-flight store operations whose data is read during recovery,
but it roughly limits the number of crash plans per ordering
point to 20. Chipmunk generates crash plans by considering
all subsets of in-flight flush (not store) operations but limits
the number of crash plans per ordering point to F ∗ (F−1)/2,
where F is the number of in-flight flush operations. Silhouette
does not impose any limit on the number of crash plans
generated by the 2CP scheme.

Table 3 shows the number of crash plans generated by
Vinter, Chipmunk, and Silhouette for the ACE Seq3 workload.
For Silhouette, we break down the number of crash plans
for checking the crash-consistency mechanisms and the
unprotected stores. The number of crash plans generated by
Chipmunk and Vinter ranges between 1-3 million. In contrast,
Silhouette generated 100x - 3000x fewer crash plans because
it avoids exploring duplicate operations, performs invariant
checking, and uses 2CP exploration.

Compared to Vinter (unique) and Chipmunk (unique),
Silhouette generates 1.9x and 4.2x fewer crash plans on

Scheme NOVA PMFS WineFS

Vinter 1,928,524 2,375,295 3,312,029
Chipmunk 3,392,143 1,640,534 995,865

Vinter (unique) 27,931 26,645 7,860
Chipmunk (unique) 61,218 15,386 2,179
Silhouette 6,378+8,038 265+2,162 61+1,018

2CP 115,304 26,472 5,888
Invariants+Comb 6,378+18,088 265+12,956 61+6,842

Table 3: The number of crash plans generated by Vinter,
Chipmunk and Silhouette for the ACE seq3 workload.

NOVA, 11x and 6.3x fewer crash plans on PMFS, and
7.3x and 2x fewer crash plans on WineFS. Unlike Vinter
and Chipmunk, which arbitrarily limit the number of crash
plans to prune the exploration space, Silhouette reorders all
unprotected stores. Further, Silhouette is much more scalable
than the (original) Vinter and Chipmunk and thus we are
able to run many more test cases (e.g., more types of system
calls, test snapshots, etc.) and we can perform more detailed
(unprotected store and file operation) tests on the crash states.

Next, we evaluate invariant checking and 2CP reordering
individually. First, we disabled invariant checking and applied
2CP reordering for all stores. The 2CP row in Table 3
shows that disabling invariant checking generates 5-11x
more crash plans than Silhouette. Second, we used invariant
checking but used exhaustive exploration, instead of 2CP, for
all unprotected stores. The Invariants+Comb row shows that
exhaustive exploration generates 2.3-6.7x more crash plans
than 2CP reordering, which is reasonable since the number
of unprotected stores at ordering points is relatively small, as
shown in Figure 9.

While the 2CP scheme generates more crash plans than
Silhouette, it does not require crash-consistency invariants.
We found that 2CP was able to find all the new bugs that
we found in Table 2. Thus, 2CP can serve as a good starting
point for detecting crash consistency bugs. Then, adding the
invariant checks further reduces the search space.

5.4 Discussion

Concurrency operations: Similar to prior works, Silhouette
does not support concurrent workloads. Although Bug
13 is triggered by a concurrent (asynchronous) operation,
Silhouette found it by not persisting the asynchronous PM
writes. Also, detecting bugs in concurrent operations requires
finer-grained control over concurrent accesses and thread
interleaving, which we leave as future work.
False positives: Silhouette can produce false positives
because the mismatched data content detected by the
unprotected store test may not affect file system consistency.
For example, the data may be in unallocated or unreferenced
blocks. Therefore, manual verification is needed. Fortunately,

0 10 20
0.00

0.25

0.50

0.75

1.00

C
D

F

Silhouette (unprotected stores)

(a) NOVA
0 10 20

0.00

0.25

0.50

0.75

1.00

C
D

F

Chipmunk (in-flight flushes)

(b) PMFS
0 10 20

0.00

0.25

0.50

0.75

1.00

C
D

F

Vinter (in-flight stores)

(c) WineFS

Figure 9: CDF of unprotected stores for Silhouette, in-flight stores for Vinter and in-flight flushes for Chipmunk at ordering
points in the Seq3 workload.

not much effort is needed since most writes were tagged with
the data type (structure fields). After identifying one false
positive, all cases with the same data type can be excluded.
False negatives: Silhouette may miss bugs since the 2CP
method tests only one PM critical store at a time and cannot
handle the persistence ordering such as (A, B)→(C, D) that
we found for checksum-based replication. Nevertheless, the
2CP method can be extended to test pairs of PM critical stores
(e.g., both A and C).
Annotations: Our annotation-based approach requires some
developer effort. However, the annotations can be provided
incrementally since they are optimizations that help prune
the search space. For example, if only the head and tail
pointers are known, Silhouette can still detect Phases 1, 2,
and 4 for journaling and apply invariant checks on them. The
in-place updates in Phase 3 will not be recognized but these
unprotected writes will be checked by our 2CP scheme.

Deploying Silhouette for a new PM file system involves
work for the file system developer and possibly for the
Silhouette developer. If the new file system uses one of
the crash-consistency mechanisms described in Section 4,
then the file system developer needs to add annotations that
specify the structure fields shown in Table 1. For example,
when we moved from NOVA to PMFS, we noticed that PMFS
uses preallocation for logging, but other than that, it took a
graduate student roughly 30 minutes to annotate PMFS. If
a file system uses a new crash-consistency mechanism, then
the Silhouette developer will need to define the update phases
and invariants of the crash-consistency mechanism. However,
in our experience, file systems generally use the well-tested
mechanisms that are supported by Silhouette.
Extended ADR: With the introduction of extended
asynchronous DRAM refresh (eADR) [18] in Intelr x86
architectures, CPU caches are persisted during crashes,
obviating the need for flush instructions. For example, eADR
can prevent the persistence reordering bug we found (Bug
1) but this bug is still possible if the compiler reorders
instructions. Most bugs found by Silhouette are logic bugs
and they are unaffected by eADR.

The future of PM: Intelr discontinued the OptaneTM

PM product line [19] in 2022, leading to uncertainties
about the future of PM. Fortunately, emerging Compute
Express LinkTM (CXLTM) aims to provide a cache-coherent
interconnect for processors, memory expansion, and
accelerators, and supports expanding PCIer devices as
storage-class memory [9]. However, with storage-class
memory, stores may be held in Processor/CXL Device
caches or Memory Device Write buffers for performance
reasons [37], leading to potential persistence bugs.
Furthermore, CXL memory pooling allows multiple hosts
to share memory in different failure domains, raising
crash-consistency issues even for volatile memory [10]. We
expect that Silhouette’s approach will be applicable for
detecting bugs in such systems.

6 Conclusions

This paper presents Silhouette, a new testing framework for
finding crash-consistency bugs in PM-based file systems.
Silhouette uses invariants to check whether PM file systems
correctly implement their crash-consistency mechanisms,
such as journaling and replication. If these checks pass, then
all stores associated with the consistency mechanism are
considered protected, and only the unprotected stores are
checked. Silhouette also uses a simple, novel exploration
strategy that scales well with the number of in-flight stores.
Together, these strategies enable Silhouette to scale testing
and find over a dozen new bugs in PM file systems.

7 Acknowledgments

We thank our shepherd Ramnatthan Alagappan and
anonymous reviewers for their invaluable feedback. This work
is sponsored by NSF DGE-2146354 and FSU. Any opinions,
findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the NSF or FSU.

A Artifact Appendix

Abstract
This artifact includes the Silhouette prototype, configurations,
test cases, and scripts for reproducing key findings from
Silhouette, such as identified bugs and the number of crash
plans. Additionally, it provides a virtual machine image (in
QCow2 format) with a pre-configured environment, including
a compiled Linux kernel supporting the tested PM file
systems.

Scope
The artifact supports the following use cases:

• Classifying PM stores into mechanism-protected and
unprotected stores, as shown in Figure 1.

• Reproducing the bug detection process for the newly
discovered bugs listed in Table 2.

• Testing various crash plan generation schemes and
generating results similar to Table 3.

• Evaluating Silhouette with different numbers of VMs
and workloads to achieve runtime results comparable to
those in Section 5.3.

Users can also extend the artifact to test additional file
systems, detect untested mechanisms, or implement custom
crash plan generators with modifications.

Contents
The artifact package includes the following components:

• README.md: Instructions for using and evaluating
Silhouette.

• codebase/: The source code of Silhouette, including the
LLVM instrumentation component, scripts for execution,
workloads, and related files.

• evaluation/: One-click scripts for reproducing bug
findings and evaluating Silhouette’s scalability. Each
subdirectory contains a README file with explanations
and guidance for reproduction and understanding test
outputs.

• thirdPart/: Source code for the tested file systems.

Hosting
Silhouette is open-sourced at https://github.com/
iaoing/Silhouette with the artifact hosted in the
fast25_artifact branch. For convenience, the
artifact is also hosted on Chameleon Cloud [4], an

NSF-funded testbed for computer science experimentation:
https://www.chameleoncloud.org/experiment/
share/3c807f1d-80db-443c-8d88-c645fa3695e8.
Users may choose to test Silhouette either on their
local machines or using Chameleon Cloud. The
pre-configured VM image is available on Zenodo:
https://zenodo.org/records/14550794.

Requirements

Testing Silhouette on Chameleon Cloud requires only a web
browser. Users without an account or allocated resources may
need to apply for a day pass to use Chameleon Cloud.

For testing on a personal machine, the following
requirements apply:

• A bare-metal machine running Linux (we have tested
on Ubuntu-22) or a Linux virtual machine supporting
nested virtualization.

• QEMU installed, with support for emulating NVDIMM
and Intel Xeon Scalable processors (2nd generation or
later).

• Memcached and Python3.10 installed.

• Additional dependencies (e.g., automake) and Python
packages can be installed using the install_dep.sh
script in the repository.

Other components, such as LLVM, the LLVM-compiled
Linux kernel, and related dependencies, are included in the
provided VM image, allowing users to test Silhouette without
affecting their host environment.

References

[1] Fabrice Bellard. QEMU, a fast and portable dynamic
translator. In 2005 USENIX Annual Technical
Conference (USENIX ATC 05), Anaheim, CA, April
2005. USENIX Association.

[2] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind
Krishnamurthy, Emina Torlak, and Xi Wang. Specifying
and checking file system crash-consistency models.
In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
83—-98, 2016.

[3] Miao Cai, Junru Shen, Bin Tang, Hao Huang, and
Baoliu Ye. FlatFS: Flatten hierarchical file system
namespace on non-volatile memories. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22), pages
899–914, 2022.

https://github.com/iaoing/Silhouette
https://github.com/iaoing/Silhouette
https://www.chameleoncloud.org/experiment/share/3c807f1d-80db-443c-8d88-c645fa3695e8
https://www.chameleoncloud.org/experiment/share/3c807f1d-80db-443c-8d88-c645fa3695e8
https://zenodo.org/records/14550794

[4] ChameleonCloud. Chameleoncloud. https://
chameleoncloud.org/, 2025.

[5] Shimin Chen and Qin Jin. Persistent b+-trees in
non-volatile main memory. Proceedings of the VLDB
Endowment, 8(7):786–797, 2015.

[6] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang,
and Jiwu Shu. uTree: a persistent b+-tree with low
tail latency. Proceedings of the VLDB Endowment,
13(12):2634–2648, 2020.

[7] Zhangyu Chen, Yu Hua, Bo Ding, and Pengfei Zuo.
Lock-free concurrent level hashing for persistent
memory. In Proceedings of the 2020 USENIX
Conference on Usenix Annual Technical Conference,
pages 799–812, 2020.

[8] Jeremy Condit, Edmund B. Nightingale, Christopher
Frost, Engin Ipek, Benjamin Lee, Doug Burger, and
Derrick Coetzee. Better I/O through byte-addressable,
persistent memory. In Proc. of the Symposium on
Operating Systems Principles (SOSP), pages 133–146,
2009.

[9] CXL Consortium. Compute Express Link: The
breakthrough cpu-to-device interconnect CXL. https:
//www.computeexpresslink.org/, 2025.

[10] Peter Desnoyers, Ian Adams, Tyler Estro, Anshul
Gandhi, Geoff Kuenning, Mike Mesnier, Carl
Waldspurger, Avani Wildani, and Erez Zadok. Persistent
memory research in the post-optane era. In Proceedings
of the 1st Workshop on Disruptive Memory Systems,
pages 23–30, 2023.

[11] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. Fast,
flexible, and comprehensive bug detection for persistent
memory programs. In Proceedings of the 26th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
503–516, 2021.

[12] Subramanya R. Dulloor, Sanjay Kumar, Anil
Keshavamurthy, Philip Lantz, Dheeraj Reddy,
Rajesh Sankaran, and Jeff Jackson. System software
for persistent memory. In Proceedings of the Ninth
European Conference on Computer Systems (Eurosys),
2014.

[13] Daniel Fryer, Mike Qin, Jack Sun, Kah Wai Lee,
Angela Demke Brown, and Ashvin Goel. Checking
the integrity of transactional mechanisms. ACM Trans.
Storage, 10(4), oct 2014.

[14] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi,
Mohannad Ismail, Sunny Wadkar, Dongyoon Lee, and
Changwoo Min. Witcher: Systematic crash consistency

testing for non-volatile memory key-value stores. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pages 100–115, 2021.

[15] Xinwei Fu, Dongyoon Lee, and Changwoo Min.
DURINN: Adversarial memory and thread interleaving
for detecting durable linearizability bugs. In 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pages 195–211, 2022.

[16] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky.
Jaaru: Efficiently model checking persistent memory
programs. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 415–428,
2021.

[17] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable transient inconsistency in
byte-addressable persistent b+-tree. In 16th USENIX
Conference on File and Storage Technologies (FAST 18),
pages 187–200, 2018.

[18] Intel. eADR: New opportunities for persistent memory
applications. https://www.intel.com/content/
www/us/en/developer/articles/technical/
eadr-new-opportunities-for-persistent-
memory-applications.html, 2021.

[19] Intel. Intel Q2 2022 earnings. https:
//d1io3yog0oux5.cloudfront.net/
_7476eb634cf21033bf2ce4974e02203e/intel/
db/887/8856/prepared_remarks/Intel-CEO-CFO-
2Q22-earnings-statements-1.pdf, 2022.

[20] Intel. Intel 64 and IA-32 architectures software
developer’s manual (combined volumes). https:
//software.intel.com/en-us/download/intel-
64-and-ia-32-architectures-sdm-combined-
volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4,
2023.

[21] Rohan Kadekodi, Saurabh Kadekodi, Soujanya
Ponnapalli, Harshad Shirwadkar, Gregory R Ganger,
Aasheesh Kolli, and Vijay Chidambaram. WineFS: a
hugepage-aware file system for persistent memory that
ages gracefully. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles,
pages 804–818, 2021.

[22] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
SplitFS: Reducing software overhead in file systems for
persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages
494–508, 2019.

https://chameleoncloud.org/
https://chameleoncloud.org/
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://d1io3yog0oux5.cloudfront.net/_7476eb634cf21033bf2ce4974e02203e/intel/db/887/8856/prepared_remarks/Intel-CEO-CFO-2Q22-earnings-statements-1.pdf
https://d1io3yog0oux5.cloudfront.net/_7476eb634cf21033bf2ce4974e02203e/intel/db/887/8856/prepared_remarks/Intel-CEO-CFO-2Q22-earnings-statements-1.pdf
https://d1io3yog0oux5.cloudfront.net/_7476eb634cf21033bf2ce4974e02203e/intel/db/887/8856/prepared_remarks/Intel-CEO-CFO-2Q22-earnings-statements-1.pdf
https://d1io3yog0oux5.cloudfront.net/_7476eb634cf21033bf2ce4974e02203e/intel/db/887/8856/prepared_remarks/Intel-CEO-CFO-2Q22-earnings-statements-1.pdf
https://d1io3yog0oux5.cloudfront.net/_7476eb634cf21033bf2ce4974e02203e/intel/db/887/8856/prepared_remarks/Intel-CEO-CFO-2Q22-earnings-statements-1.pdf
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4

[23] Samuel Kalbfleisch, Lukas Werling, and Frank
Bellosa. Vinter: Automatic non-volatile memory crash
consistency testing for full systems. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22), pages
933–950, 2022.

[24] Wonbae Kim, Chanyeol Park, Dongui Kim, Hyeongjun
Park, Young-ri Choi, Alan Sussman, and Beomseok
Nam. ListDB: Union of write-ahead logs and persistent
skiplists for incremental checkpointing on persistent
memory. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages
161–177, 2022.

[25] Wook-Hee Kim, R Madhava Krishnan, Xinwei Fu,
Sanidhya Kashyap, and Changwoo Min. PACTree:
A high performance persistent range index using PAC
guidelines. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, pages
424–439, 2021.

[26] R Krishnakumar. Kernel korner: kprobes-a kernel
debugger. Linux Journal, 2005(133):11, 2005.

[27] Philip Lantz, Subramanya Dulloor, Sanjay Kumar,
Rajesh Sankaran, and Jeff Jackson. Yat: A validation
framework for persistent memory software. In 2014
USENIX Annual Technical Conference (USENIXATC
14), pages 433–438, 2014.

[28] Hayley LeBlanc, Shankara Pailoor, Om Saran KRE,
Isil Dillig, James Bornholt, and Vijay Chidambaram.
Chipmunk: Investigating crash-consistency in
persistent-memory file systems. In Proceedings of the
Eighteenth European Conference on Computer Systems,
pages 1–20, 2023.

[29] Hayley LeBlanc, Nathan Taylor, James Bornholt, and
Vijay Chidambaram. SquirrelFS: using the rust compiler
to check file-system crash consistency. arXiv preprint
arXiv:2406.09649, 2024.

[30] Se Kwon Lee, Jayashree Mohan, Sanidhya
Kashyap, Taesoo Kim, and Vijay Chidambaram.
Recipe: Converting concurrent dram indexes to
persistent-memory indexes. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles,
pages 462–477, 2019.

[31] Sihang Liu, Korakit Seemakhupt, Yizhou Wei,
Thomas Wenisch, Aasheesh Kolli, and Samira Khan.
Cross-failure bug detection in persistent memory
programs. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
1187–1202, 2020.

[32] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli,
and Samira Khan. PMTest: A fast and flexible
testing framework for persistent memory programs.
In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 411–425,
2019.

[33] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric
Lo. Dash: Scalable hashing on persistent memory. arXiv
preprint arXiv:2003.07302, 2020.

[34] C. Mohan, Don Haderle, Bruce Lindsay, Hamid
Pirahesh, and Peter Schwarz. ARIES: A transaction
recovery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging. ACM Trans.
Database Syst., 17(1):94–162, mar 1992.

[35] Jayashree Mohan, Ashlie Martinez, Soujanya
Ponnapalli, Pandian Raju, and Vijay Chidambaram.
Crashmonkey and ACE: Systematically testing
file-system crash consistency. ACM Transactions on
Storage (TOS), 15(2):1–34, 2019.

[36] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H
Noh, and Beomseok Nam. Write-optimized dynamic
hashing for persistent memory. In FAST, volume 19,
pages 31–44, 2019.

[37] Mahesh Natu and Thomas Won Ha Choi. Compute
Express Link (CXL): Supporting persistent memory.
https://computeexpresslink.org/wp-content/
uploads/2023/12/CXL-2.0-Presentation-
Persistent-Memory-20210615_FINAL.pdf, 2023.

[38] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas
Willhalm, and Wolfgang Lehner. FPTree: A hybrid
SCM-DRAM persistent and concurrent b-tree for
storage class memory. In Proceedings of the 2016
International Conference on Management of Data,
pages 371–386, 2016.

[39] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch.
Memory persistency. In 2014 ACM/IEEE 41st
International Symposium on Computer Architecture
(ISCA), pages 265–276, 2014.

[40] Azalea Raad, John Wickerson, Gil Neiger, and Viktor
Vafeiadis. Persistency semantics of the Intel-x86
architecture. Proceedings of the ACM on Programming
Languages, 4(POPL):1–31, 2019.

[41] Mendel Rosenblum and John K Ousterhout. The
design and implementation of a log-structured file
system. ACM Transactions on Computer Systems
(TOCS), 10(1):26–52, 1992.

https://computeexpresslink.org/wp-content/uploads/2023/12/CXL-2.0-Presentation-Persistent-Memory-20210615_FINAL.pdf
https://computeexpresslink.org/wp-content/uploads/2023/12/CXL-2.0-Presentation-Persistent-Memory-20210615_FINAL.pdf
https://computeexpresslink.org/wp-content/uploads/2023/12/CXL-2.0-Presentation-Persistent-Memory-20210615_FINAL.pdf

[42] Chao Wang, Junliang Hu, Tsun-Yu Yang, Yuhong Liang,
and Ming-Chang Yang. SEPH: Scalable, efficient, and
predictable hashing on persistent memory. In 17th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 23), pages 479–495, 2023.

[43] Jing Wang, Youyou Lu, Qing Wang, Yuhao Zhang, and
Jiwu Shu. Revisiting secondary indexing in LSM-based
storage systems with persistent memory. In 2023
USENIX Annual Technical Conference (USENIX ATC
23), pages 817–832, 2023.

[44] Zhonghua Wang, Chen Ding, Fengguang Song, Kai Lu,
Jiguang Wan, Zhihu Tan, Changsheng Xie, and Guokuan
Li. WIPE: a write-optimized learned index for persistent
memory. ACM Transactions on Architecture and Code
Optimization, 21(2):1–25, 2024.

[45] Jian Xu and Steven Swanson. NOVA: A log-structured
file system for hybrid volatile/non-volatile main
memories. In 14th USENIX Conference on File and
Storage Technologies (FAST 16), pages 323–338, 2016.

[46] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. Nova-fortis: A
fault-tolerant non-volatile main memory file system.
In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 478–496, 2017.

[47] Shawn Zhong, Chenhao Ye, Guanzhou Hu, Suyan Qu,
Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, and
Michael Swift. MadFS: Per-file virtualization for
userspace persistent memory filesystems. In 21st
USENIX Conference on File and Storage Technologies
(FAST 23), pages 265–280, 2023.

[48] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized and
high-performance hashing index scheme for persistent
memory. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
461–476, 2018.

	Introduction
	Background and Related Work
	Persistent Memory
	PM Bug Detection

	Crash-Consistency Invariants
	Journaling
	Log-structured Writes
	Replication

	Silhouette
	Instrumentation and Tracing
	Invariant Checking
	Identifying Data Structure Types
	Lightweight Annotations
	Identifying Phases of Consistency Mechanisms
	Checking Invariants

	File System Validation
	Generating Crash States
	Testing Crash States

	Evaluation
	Bug Analysis
	Bug Finding Time
	Silhouette Scalability
	Discussion

	Conclusions
	Acknowledgments
	Artifact Appendix

