
TrueErase: Per-File Secure Deletion
for the Storage Data Path

Sarah Diesburg, Christopher Meyers, Mark Stanovich, Michael Mitchell, Justin
Marshall, Julia Gould, and An-I Andy Wang

Florida State University
{diesburg, meyers, stanovic, mitchell, jmarshal, gould, awang}@cs.fsu.edu

Geoff Kuenning
Harvey Mudd

College
geoff@cs.hmc.edu

ABSTRACT
The ability to securely delete sensitive data from electronic
storage is becoming important. However, current per-file deletion
solutions tend to be limited to a segment of the operating system’s
storage data path or specific to particular file systems or storage
media.

 This paper introduces TrueErase, a holistic secure-deletion
framework. Through its design, implementation, verification, and
evaluation, TrueErase shows that it is possible to build a legacy-
compatible full-storage-data-path framework that performs per-
file secure deletion and works with common file systems and
solid-state storage, while handling common system failures. In
addition, this framework can serve as a building block for
encryption- and tainting-based secure-deletion systems.

Categories and Subject Descriptors

D.4.2 [Storage Management]: Allocation/deallocation strategies,
D.4.3 [File Systems Management]: Access methods, D.4.6
[Security and Protection]: Information flow controls

General Terms

Design, Security

Keywords

Secure deletion, file systems, storage, security, NAND flash

1. INTRODUCTION
Data privacy is an increasing concern as more sensitive

information is being stored in electronic devices. Once sensitive
data is no longer needed, users may wish to permanently remove
this data from electronic storage. However, typical file deletion
mechanisms only update the file’s metadata (e.g., pointers to the
data), leaving the file data intact. Even recreating the file system
from scratch does not ensure the data is removed [7].

A remedy is secure deletion, which should render data
irrecoverable. Much secure deletion is implemented through
partition- or device-wide encryption or overwriting techniques
(see §2). However, coarse-grained methods may not work on
media such as NAND flash [41], and are cumbersome to use when
only a few files need to be securely deleted. Further, securely
deleting an entire device or partition may be infeasible for
embedded devices.

Per-file secure deletion is concerned with securely removing a
specific file’s content and metadata (e.g., name). This ability can
assist with implementing privacy policies concerning the selective

destruction of data after it has expired (e.g., client files),
complying with government regulations to dispose of sensitive
data (e.g., HIPPA [10]), deleting temporarily shared trade secrets,
military applications demanding immediate destruction of selected
data, and disposing of media in one-time-use applications.

Unfortunately, existing per-file secure-deletion solutions tend
to be file-system- and storage-medium-specific, or limited to one
segment of the operating-system storage data path (e.g., the file
system) without taking into account other components (e.g.,
storage media type). For example, a secure deletion issued by a
program might not be honored by optimization software used on
typical flash devices that keep old versions of the data [41].
Solutions that rely on secure deletion of a stored encryption key
become a subset of this problem, because they, too, must have a
way to ensure the key is erased.

In addition, achieving secure deletion is hard due to diverse
threat models. This paper focuses on dead forensics attacks on
local storage, which occur after the computer has been shut down
properly. Attacks on backups or live systems, cold-boot attacks
[9], covert channels, and policy violations are beyond our scope.

In particular, our system assumes that we have full control of
the entire storage data path in a non-distributed environment.
Thus, the research question is, under benign user control and
system environments, what holistic solution can we design and
build to ensure that the secure deletion of a file is honored
throughout the legacy storage data path? Although tightly
constrained, this criterion still presents significant challenges.

We introduce TrueErase, a framework that irrevocably deletes
data and metadata upon user request. TrueErase goes to the heart
of the user's mental model: securely deleted data, like a shredded
document, should be irrecoverable.

We assume the presence of file-system-consistency properties
[34], which have been shown to be a requirement of secure
deletion. We also note that if we have control over the storage
layer, achieving raw NAND flash secure deletion is
straightforward [18, 27, 38, 41].

However, TrueErase is designed to overcome the many
challenges of correctly propagating secure deletion information in
a full-data-path manner—all the way from the user to the storage.
This framework is essential for building other secure-deletion
capabilities that rely on tainting or encryption-based key deletion.
Thus, our contributions are the following: (1) a per-file secure-
deletion framework that works with the legacy storage data path,
which (2) addresses the challenges raised throughout the data path
into a single work and (3) has been systematically verified.

2. EXISTING APPROACHES
We distinguish the need for TrueErase from existing

approaches by enumerating desirable characteristics of secure
deletion systems (Table 1).

• Per-file: Fine-granularity secure deletion brings greater
control to the user while potentially reducing costly secure
deletion operations on the storage device.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACSAC ’12, Dec. 3–7, 2012, Orlando, Florida, USA.
Copyright 2012 ACM 978-1-4503-1312-4/12/12 …$15.00.

• Encryption-free: Encryption systems securely delete by
destroying the keys of encrypted files. However, these
systems are complex due to managing per-file keys, providing
efficient random access, data and metadata padding and
alignments, etc. Encryption may also expire due to more
computing power (e.g., quantum computers) or
implementation bugs [4, 5]; thus, encrypted data might still be
recovered after its key is deleted. In addition, passphrase-
derived keys can be surrendered (e.g., via coercion) to retrieve
deleted files. For these reasons, systems that keep keys on
storage or third-party sites still need a way to securely delete
keys on various storage media.

• Data-path-wide: Many secure-deletion solutions are within
one layer of the legacy storage data path (Figure 1). The
storage-management layer has no information about a block’s
file ownership [6, 35] and cannot support per-file deletion.
File-system- and application-layer solutions are generally
unaware of the storage medium and have limited control over
the storage location of data and metadata. In addition, storage
such as NAND flash may leave multiple versions of sensitive
data behind. Thus, we need a solution that spans the entire
data path to enforce secure deletion.

• Storage-medium-agnostic: A secure-deletion framework
should be general enough to accommodate solid-state storage
and portable devices that use these types of storage.

• Limited changes to the legacy code: Per-file secure deletion
requires some information from the file system. However,
getting such information should not involve modifying
thousands of lines of legacy code.

• Metadata secure deletion: Secure deletion should also remove
metadata, such as the file name, size, etc.

• Crash handling: A secure-deletion solution should anticipate
system crashes and provide meaningful semantics afterwards.

Table 1: Existing secure-deletion methods and characteristics.

columns: F. per-file; E. encryption-free; D. data-path-wide;

S. storage-medium-agnostic; L. limited changes to legacy

code; M. securely delete metadata; C. handle crashes
 F E D S L M C

Secure delete encrypted device/partition key [12, 13,
19, 30, 40]

 � � �

Specialized hard drive commands [11] � � � �

Specialized flash medium commands (page
granularity) [41]

� � �

Stackable file system deletion [14, 15] � � � � �

Modified file system – deletion through overwriting
[1, 14, 15]

� � � � �

Modified file system – deletion through encryption
[25]

� ? ?

Dedicated server(s) for encryption keys [8, 24] � � ? �

Encrypted backup system [2] � � ?

User-space solution on top of flash file system [27] � � � ?

Overwriting tools [19, 28, 29, 31, 42] � � �

Modified flash file systems – device erasures and/or
overwriting [27, 38]

� � � � ? ?

Modified flash file systems – encryption with key
erasure [18]

� � ? � ?

Semantically-Smart Disk Systems [35, 36] � � � � �

Type-Safe Disks [33] � � � �

Data Node Encrypted File System [26] � � � � � �

TrueErase � � � � � � �

3. CHALLENGES AND ASSUMPTIONS
Designing and implementing per-file secure deletion is

challenging for a number of reasons:

• No pre-existing deletion operation: Other than removing
references to data blocks and setting the file size and
allocation bits to zeros, file systems typically do not issue
requests to erase file content. (Note that the ATA Trim
command was not implemented for security [32] and might
not delete all data [17].)

• Complex storage-data-path optimizations: Secure deletion
needs to retrofit legacy asynchronous optimizations. In
particular, storage requests may be reordered, concatenated,
split, consolidated (applying one update instead of many to
the same location), cancelled, or buffered while in transit.

• Lack of data-path-wide identification: Tracking sensitive
data throughout the operating system is complicated by the
possible reuse of data structures, ID numbers, and memory
addresses.

• Verification: Although verification is often overlooked by
various solutions, we need to ensure that (1) secure deletions
are correctly propagated throughout the storage data path,
and (2) assumptions are checked when possible.

Due to these challenges, we assume a user has administrative
control of an uncompromised, single-user, single-file-system,
non-RAID, non-distributed system. The threat model is dead
forensics attacks, which occur after a user unmounts and shuts
down the system after completing secure-deletion operations.

Our system assumes control of the entire storage data path.
Although assuming access to proprietary firmware may be
optimistic, this paper argues that there is a need for storage
devices to expose information and control to support secure-
deletion features correctly.

In addition, we assume that common journaling file systems
that adhere to the consistency properties specified by [34] are
used, since we cannot verify secure deletion in file systems that
cannot even guarantee their own consistency (e.g., ext2, FAT).
Further, all update events and block types are reported to our
framework to verify that we are tracking all important events.
These assumptions allow us to focus on building and verifying the
properties of secure deletion.

4. TRUEERASE DESIGN
We introduce TrueErase (Figure 1), a holistic framework that

propagates file-level information to the block-level storage-
management layer via an auxiliary communication path, so that
per-file secure deletion can be honored throughout the data path.

Our system is designed with the following observations and
formulated guidelines:

• Modifying the request ordering of the legacy data path is
undesirable because it is difficult to verify the legacy
semantics. Thus, we leave the legacy data flow intact.

• Per-file secure deletion is a performance optimization over
applying secure deletion to all file removals. Thus, we can
simplify tricky decisions about whether a case should be
handled securely by handling it securely by default.

• Persistent states complicate system design with mechanisms
to survive reboots and crashes. Thus, our solution minimizes
the use of persistent states.

The major areas of TrueErase’s design include (1) a user
model to specify which files or directories are to be securely
deleted, (2) tracking and propagating information across storage
layers via a centralized module named TAP, (3) enforcing secure
deletion via storage-specific mechanisms added to the storage-
management layer, and (4) exploiting file-system consistency
properties to enumerate cases for verification.

�����������	��

�ABBCD�E

F�����C	�ADE

�������E	�B

�	A�C�����B	��C���

�E��

���D��

�F�

��A����

������

���	A
��A����

�	A�C��

��A����C�����D	�� C��

BC�ADEF����F�

����F�F��

��	���D������D

	���C���

Figure 1. TrueErase framework. The shaded box and dotted

lines represent our augmented data path. Other boxes and

lines represent the legacy storage data path.

4.1 User Model
A naïve user may mark the entire storage device sensitive for

secure deletion. A more sophisticated user can mark all user-
modifiable folders sensitive. An expert user can follow traditional
permission semantics and apply common attribute-setting tools to
mark a file or directory as sensitive, which means the sensitive
file, or all files under the sensitive directory, will be securely
deleted when removed. A legacy application can then issue
normal deletion operations, which are carried out securely, to
remove sensitive file and directory data content, metadata, and
associated copies within the storage data path. However, there are
deviations from the traditional permission models.

Toggling the sensitive status: Before the status of a file or
directory is toggled from non-sensitive to sensitive, older versions
of the data and metadata may have already been left behind.
Without tracking all file versions or removing all old versions for
all files, TrueErase can enforce secure deletion only for files or
directories that have remained sensitive since their creation.
Should a non-sensitive file be marked sensitive, secure deletion
will be carried out only for the versions of the metadata and file
content created after that point.��

Name handling: A directory is traditionally represented as a
special file, with its data content storing the file names the
directory holds. Although file permissions are applied to its data
content, permission to handle the file name is controlled by its
parent directory.

Under TrueErase, marking a file sensitive will also cause its
name stored in the parent directory to be securely handled, even if
the parent is not marked sensitive. Otherwise, marking a file
sensitive would require its parent to be marked sensitive for
containing the sensitive file name, its grandparent to be marked
sensitive for containing the sensitive parent name, etc., until
reaching the root directory.

Links: Similar to legacy semantics, a secure deletion of a hard
link is performed when the link count decreases to zero.
Symbolic link names and associated metadata are not supported,
but file data written to a symbolic link will be treated sensitively if
the link's target file is sensitive.

4.2 Information Tracking and Propagation
Tracking and propagating information from the file system to

the lower layers is done through a centralized type/attribute
propagation (TAP) module.

4.2.1 Data Structures and Globally Unique IDs
TAP expands the interface between the file system and the

block layer in a backward-compatible way. This passive

forwarding module receives pending sensitive update and deletion
events from file systems, and uses internal write entries and
deletion reminders, respectively, to track these events.

Since various data structures (e.g., block I/O structures),
namespaces (e.g., i-node numbers), and memory addresses can be
reused, correct pairing of write entries and deletion reminders
requires a unique ID scheme. In particular, the IDs need to be (1)
accessible throughout the data path and (2) altered when its
content association changes. TrueErase embeds a monotonically
increasing globally unique page ID in each memory page structure
accessible throughout the data path. The ID is altered at
allocation time, so that the same page reallocated to hold versions
of the same logical block has different IDs.

To handle various tracking units, such as logical blocks,
requests, physical sectors, and device-specific units, TAP tracks
by the physical sector, because that is unique to the storage device
and can be computed from anywhere in the data path. The
globally unique page ID and the physical sector number form a
globally unique ID (GUID).

In addition to the GUID, a write entry contains the update type
(e.g., i-node) and the security status. A deletion reminder contains
a deletion list of physical sector numbers to be deleted.

Table 2: The TAP Interface.
TE_report_write(GUID, block type, secure status): Creates or updates a

TAP write entry associated with the GUID.

TE_report_delete(metadata GUID, metadata block type, metadata secure

status, deletion sector number): Creates or updates a TAP deletion
reminder that contains the sector number. The reminder is attached to
the write entry (created as needed) associated with the metadata GUID.

TE_report_copy(source GUID, destination GUID, flag): Copies
information from a write entry corresponding to the source GUID to a
new entry corresponding to the destination GUID. The flag determines
whether deletion reminders should be transferred.

TE_cleanup_write(GUID): Removes the write entry with a specified
GUID. This call also handles the case in which a file has already been
created, written, and deleted before being flushed to storage.

TE_check_info(GUID): Used to query TAP to retrieve information about
a block layer write with a specific GUID. �

4.2.2 TAP Interface and Event Reporting
Through the TAP interface (Table 2), the file system must

report all important events: file deletions and truncations, file
updates, and certain journaling activities.

File deletions and truncations: Data deletion depends on the
update of certain metadata, such as free-block bitmaps. TAP
allows file systems to associate deletion events with metadata
update events via TE_report_delete(). Within TAP, write entries
are associated with respective deletion reminders and their
deletion lists.

Eventually, the file system flushes the metadata update. Once
the block-layer interface receives a sector to write, the interface
uses the GUID to look up information in TAP through
TE_check_info(). If the write entry is linked to a deletion
reminder, the storage-management layer must securely delete
those sectors on the deletion list before writing the metadata
update.

 Additionally, the storage-management layer can choose a
secure-deletion method that matches the underlying medium. For
NAND flash, triggering the erase command once may be
sufficient (details in §4.3). For a hard drive, the sectors can be
directly overwritten with random data.

After secure deletion has been performed and the metadata has
been written to storage, the block-layer interface can call
TE_cleanup_write() to remove the associated TAP write entries
and deletion reminders.

For data-like metadata blocks (e.g., directory content),
deletion handling is the same as that of data blocks.

File updates: Performing deletion operations is not enough to
ensure all sensitive information is securely deleted. By the time a
secure-deletion operation is issued for a file, several versions of
its blocks might have been created and stored (e.g., due to flash
optimizations), and the current metadata might not reference old
versions. One approach is to track all versions, so that they can be
deleted at secure-deletion time. However, tracking these versions
requires persistent states, and thus recovery mechanisms to allow
those states to survive failures.

TrueErase avoids persistent states by tracking and deleting old
versions along the way. That is, secure deletion is applied for
each update that intends to overwrite a sensitive block in place
(secure write for short). Therefore, in addition to deletion
operations, TrueErase needs to track all in-transit updates of
sensitive blocks.

The file system can report pending writes to TAP through
TE_report_write(). Eventually, the block-layer interface will
receive a sector to write and can then look up information via
TE_check_info(). If the corresponding write entry states that the
sector is secure, the storage-management layer will write it
securely. Otherwise, it will be written normally. After the sector
is written, the block-layer interface calls TE_cleanup_write().

4.2.3 Journaling and Other Events
Sometimes file blocks are copied to other memory locations

for performance and accessibility reasons (e.g., file-system
journal, bounce buffers, etc.). When that happens, any write
entries associated with the original memory location must be
copied and associated with the new location. If there are
associated deletion reminders, whether they are transferred to the
new copy is file-system-specific. For example, in ext3, the
deletion reminders are transferred to the memory copy in the case
of bounce buffers or to the memory copy that will be written first
in the case of journaling. Memory copies are reported to TAP
through TE_report_copy().

4.3 Enhanced Storage-management Layer
TrueErase does not choose a secure-deletion mechanism until

a storage request has reached the storage-management layer. By
doing so, TrueErase ensures that the chosen mechanism matches
the characteristics of the underlying storage medium. For
example, the process of securely erasing flash memory (erase) is
quite different from the process of securely erasing information on
a disk (overwrite). Users should be unaware of this difference.

In addition, we can further add different secure-deletion
methods at the storage layer in accordance with different
requirements and government regulations [21, 37].

 TrueErase can work with both flash storage and traditional
hard drives. Due to the difficulty of secure deletion on flash, we
concentrate on applying TrueErase to flash storage in this paper.
However, we also provide a high-level design of a hard drive
solution to show the generalizability of TrueErase.

4.3.1 NAND Flash Storage Management
NAND flash basics: NAND flash has the following

characteristics: (1) writing is slower than reading, and erasure can
be more than an order of magnitude slower [3]; (2) NAND reads
and writes are in flash pages (of 2-8 Kbytes), but erasures are
performed in flash blocks (typically 64-512 Kbytes consisting of
contiguous pages); (3) in-place updates are generally not
allowed—once a page is written, the flash block containing this
page must be erased before this page can be written again, and

other in-use pages in the same flash block need to be copied
elsewhere; and (4) each storage location can be erased only 10K-
1M times [3].

As a common optimization, when flash receives a request to
overwrite a flash page, a flash translation layer (FTL) remaps the
write to a pre-erased flash page, stamps it with a version number,
and marks the old page as invalid, to be cleaned later. (Flash
overwrites might be allowed for some special cases.) These
invalid pages are not accessible to components above the block
layer; however, they can be recovered by forensic techniques [20].
To prolong the lifespan of the flash, wear-leveling techniques are
often used to spread the number of erasures evenly across all
storage locations.

NAND secure commands: We added two secure-deletion
commands to the storage-management layer (i.e., FTL) for flash.

Secure_delete(page numbers):� �This call specifies pages on
flash to be deleted securely. The call copies other in-use pages
from the current flash block to other areas, and marks those pages
as unused in the block. The specified pages then can be marked
invalid, and the current flash block can be cleared via a flash erase
command.

Secure_write(page numbers, data):��Generally, writing to the
same logical page to flash would result in a new physical page
being allocated and written, with the physical page holding old
data versions marked invalid. This call, on the other hand, would
securely delete those invalid pages with Secure_delete().

We choose this type of secure-deleting flash behavior instead
of zero-overwriting or scrubbing [27, 38, 41] for ease of
implementation and portability. Alternative flash secure deletion
schemes may have better performance on specific chips.�

NAND garbage collection: When a NAND flash device runs
low on space, it triggers wear leveling to compact in-use pages
into fewer flash blocks. However, this internal storage
reorganization does not consult with higher layers and has no
knowledge of file boundaries, sensitive status, etc. Thus, in
addition to storing a file’s sensitive status in the extended
attributes, we found it necessary to store a sensitive-status bit in
the per-page control area. (This area also contains a page’s in-use
status.) With this bit, when a sensitive page is migrated to a
different block, the old block is erased via Secure_delete().
Consistency between the file system and the storage status is
addressed in § 4.5.

4.3.2 Hard Drive Storage Management
Hard drive basics: On a hard drive, writes can be performed

in-place, in that a write to a logical sector will directly overwrite
the same physical sector.

Hard drive secure commands: Similarly to the NAND secure
commands, we can add secure_delete(sector numbers) and
secure_write(sector numbers, data) commands for disk. The
results of these commands are the same as for the flash case—
only the mechanism changes. The secure_delete command will
overwrite sector numbers in-place with random data, and the
secure_write command will first overwrite sectors specified by

sector numbers with random data before writing data. The
number of overwrites of random data is configurable. These
commands can be placed in a high-level software driver, such as
the Linux device-mapper layer.�

4.4 File-system-consistency Properties
We cannot guarantee the correctness of our framework if it is

required to interact with file systems that exhibit arbitrary
behaviors. Therefore, we applied the consistency properties of
file systems defined in [34] to enumerate corner cases. (These

properties also rule out ext2 and FAT, which are prone to
inconsistencies due to crashes.) By working with file systems that
adhere to these properties, we can simplify corner-case handling
and verify our framework systematically.

In a simplified sense, as long as pieces of file metadata
reference the correct data and metadata versions throughout the
data path, the system is considered consistent. In particular, we
are interested in three properties in [34]. The first two are for
non-journaling-based file systems. In a file system that does not
maintain both properties, a non-sensitive file may end up with
data blocks from a sensitive file after a crash recovery. The last
property is needed only for journaling-based file systems.

• The reuse-ordering property ensures that once a file’s block
is freed, the block will not be reused by another file before its
free status becomes persistent. Otherwise, a crash may lead
to a file’s metadata pointing to the wrong file’s content.
Thus, before the free status of a block becomes persistent, the
block will not be reused by another file or changed into a
different block type. With this property, we do not need to
worry about the possibility of dynamic file ownership and
types for in-transit blocks.

• The pointer-ordering property ensures that a referenced data
block in memory will become persistent before the metadata
block in memory that references the data block. With this
ordering reversed, a system crash could cause the persistent
metadata block to point to a persistent data block location not
yet written. This property does not specify the fate of
updated data blocks in memory once references to the blocks
are removed. However, the legacy memory page cache
prohibits unreferenced data blocks from being written. The
pointer-ordering property further indicates that right after a
newly allocated sensitive data block becomes persistent, a
crash at this point may result in the block being unreferenced
by its file. To cover this case, we will perform secure
deletion on unreferenced sensitive blocks at recovery time
(see §4.5).

• The non-rollback property ensures that older data or
metadata versions will not overwrite newer versions
persistently—critical for journaling file systems with
versions of requests in transit. That is, we do not need to
worry that an update to a block and its subsequent secure
deletion will be written persistently in the wrong order.

With these consistency properties, we can identify the
structure of secure-deletion cases and handle them by: (1)
ensuring that a secure deletion occurs before a block is
persistently declared free, (2) the dual case of hunting down the
persistent sensitive blocks left behind after a crash but before they
are persistently referenced by file-system metadata, (3) making
sure that secure deletion is not applied (in a sense, too late) to the
wrong file, (4) the dual case of making sure that a secure block
deletion is not performed too early and gets overwritten by a
buffer update from a deleted file, and (5) handling in-transit
versions of a storage request (mode changing, reordering,
consolidation, merging, and splitting). Buffering, asynchrony,
and cancelling of requests are handled by TAP.

4.5 Other Design Points
Crash handling: TAP contains no persistent states and

requires no additional recovery mechanisms. Persistent states
stored as file-system attributes are protected by journal-recovery
mechanisms. At recovery time, a journal is replayed with all
operations handled securely. We then securely delete the entire
journal. To hunt down leftover sensitive data blocks, we

sequentially delete sensitive blocks that are not marked as
allocated by the file system for flash and disk [1]. Since flash
migrates in-use pages from to-be-erased blocks by copying those
pages elsewhere before erasing the old versions, some sensitive
pages may have duplicates during a crash. Given that the secure
deletion of the page did not complete, the common journal crash-
recovery mechanism will reissue the operation, so that the other
remaining in-use pages in the same flash block can continue the
migration, and the block can then be erased.

Consolidation of requests: When consolidation is not
permitted (e.g., consolidations of overwrites on storage), we need
to disable storage-built-in write caches or use barriers and device-
specific flush calls to ensure that persistent updates are achieved
[22]. When consolidation is permitted (such as in the page cache
or journal), we interpret an update’s sensitive status during
consolidation conservatively. As long as one of the updates to a
given location is sensitive, the resulting update will be sensitive.

Dynamic sensitive-mode changes for in-transit blocks: To
simplify tracking the handling of a block’s sensitive status, we
allow a non-sensitive in-transit file or directory to be marked
sensitive, but a sensitive object is not allowed to be marked non-
sensitive.

Shared block security status: A metadata block often stores
metadata for many files, probably with mixed sensitive status.
Thus, updating non-sensitive metadata may also cause the
sensitive metadata stored on the same block to appear in the data
path. We simplify the handling of this case by treating a shared
metadata block sensitively as long as one of its metadata entries is
sensitive.

Partial secure deletion of a metadata sector: Securely
deleting a file’s metadata only at the storage level is insufficient,
since a metadata block shared by many files may still linger in the
memory containing the sensitive metadata. If the block is written
again, the metadata we thought securely deleted will return to
storage. In these cases, we zero out the sensitive metadata within
the block in memory, and then update the metadata as a sensitive
write.

5. TRUEERASE IMPLEMENTATION
We prototyped TrueErase under Linux 2.6.25.6 and applied

our framework to the popular ext3 and jbd journaling layer due to
their adherence to file-system-consistency properties [34].
Because raw flash devices and their development environments
were not widely available when we began our research, we used
SanDisk’s DiskOnChip flash and the associated Inverse NAND
File Translation Layer (INFTL) kernel module as our FTL.
Although DiskOnChip is dated, our design is applicable to
modern flash and development environments. As future work, we
will explore newer environments, such as OpenSSD [39].

Overall, our user model required 198 lines of C code; TAP,
939; secure-deletion commands for flash, 592; a user-level
development environment for kernel code, 1,831; and a
verification framework, 8,578.

5.1 Secure-deletion Attributes
A user can use the legacy ��������� command to mark a

file or directory as sensitive. However, by the time a user can set
attributes on a file, its name may already be stored non-
sensitively. Without modifying the OS, one remedy is to cause
files or directories under a sensitive directory to inherit the
attribute when they are created. We also provide �	ABC� and
���D�� wrapper scripts that create a file or directory with a
temporary name, mark it sensitive, and rename it to the sensitive
name.

5.2 TAP Module
TAP is implemented as a kernel module. We will give a brief

background on ext3 and jbd to clarify their interactions with TAP.

5.2.1 Background on Ext3, Journaling, and Jbd
File truncation/deletion under ext3: Ext3 deletes the data

content of a file via its truncate function, which involves updating
(t1) the i-node to set the file size to zero, (t2) metadata blocks to
remove pointers to data blocks, and (t3) the bitmap allocation
blocks to free up blocks for reuse. Multiple rounds of truncates
may be required to delete the content of a large file.

Deleting a file involves: removing the name and i-node
reference from the directory, adding the removed i-node to an
orphan list; truncating the entire file via (t1) to (t3); removing the
i-node from the orphan list; and updating the i-node map to free
the i-node.

Journaling: Typical journaling employs the notion of a
transaction, so the effect of an entire group of updates is either all
or nothing. With group-commit semantics, the exact ordering of
updates within a transaction (an update to an i-node allocation
bitmap block) may be relaxed while preserving correctness, even
in the face of crashes. To achieve this effect, all writes within a
transaction are (j1) journaled or committed to storage persistently;
then (j2) propagated to their final storage destinations, after which
(j3) they can be discarded from the journal.

A committed transaction is considered permanent even before
its propagation. Thus, once a block is committed to be free (j1), it
can be used by another file. At recovery time, committed
transactions in the journal are replayed to re-propagate or continue
propagating the changes to their final destinations. Uncommitted
transactions are aborted.

Jbd: Jbd differentiates data and metadata. We chose the
popular ordered mode, which journals only metadata but requires
(j0) data blocks to be propagated to their final destination before
the corresponding metadata blocks are committed to the journal.

5.2.2 Deployment Model
All truncation, file deletion, and journaling operations can be

expressed and performed as secure writes and deletions to data
and metadata blocks. The resulting deployment model and its
applicability are similar to those of a journaling layer. We
inserted around 60 TAP-reporting calls in ext3 and jbd, with most
collocated with block-layer interface write submission functions
and various dirty functions (e.g., ext3_journal_dirty_data).

Applicable block types: Secure writes and deletions are
performed for sensitive data, i-node, extended-attribute, indirect,
and directory blocks, and corresponding structures written to the
journal. Remaining metadata blocks (e.g., superblocks) are
frequently updated and shared among files (e.g., bitmaps) and do
not contain significant information about files. By not treating
these blocks sensitively, we reduce the number of secure-deletion
operations.

Secure data updates (Figure 2): Ext3/jbd calls
TE_report_write() on sensitive data block updates, and TAP
creates per-sector write entries. Updates to the same TAP write
entries are consolidated via GUIDs; this behavior reflects that of
the page cache.

The data update eventually reaches the block-layer interface
(via commit), which retrieves the sensitive status via
TE_check_info(). The layer can then perform the secure-write
operation and invoke TE_cleanup_write() to remove the
corresponding write entries.

Secure metadata updates: A metadata block must be securely
written to and deleted from the journal. Ext3 reports pending
journal writes to TAP via TE_report_copy().

Jbd manages its in-use persistent journal locations through its
own superblock allocation pointers and a clean-up function, which
can identify locations no longer in use. Through
TE_report_delete(), we can put those locations on the deletion list
and associate them with the journal superblock update. After the
journal superblock is securely updated, the locations on the
deletion list can be securely wiped. In the case of a crash, we
securely delete all journal locations through TE_report_delete()
once all committed updates have been securely applied.

Secure data deletions (Figure 3): When deleting sensitive file
content, ext3’s truncate function informs TAP of the deletion list
and associated file i-node via TE_report_delete(). Given the
transactional semantics of a journal (§5.2.1), we can associate the
content-deletion event with the file’s i-node update event instead
of the free-block bitmap update event. Thus, we securely delete
data before step (t1).

ext3/VFS jbd TAP

block/storage-

mgmt layer journal final

EF��D�������C�D���EF��D�������C�D���EF��D�������C�D���EF��D�������C�D���

��C�D�����C�D�����C�D�����C�D���

��		C������		C������		C������		C����

EF���D�A�C������EF���D�A�C������EF���D�A�C������EF���D�A�C������

EF��D���D���C�DEF��D���D���C�DEF��D���D���C�DEF��D���D���C�D������������

EF���D�������C�D���EF���D�������C�D���EF���D�������C�D���EF���D�������C�D���

(a)

Figure 2. Secure data updates. D is the data block in various

stages of being securely written.

ext3/VFS jbd TAP

block/storage-
mgmt layer journal final

EF��D�����BD�D�D������EF��D�����BD�D�D������EF��D�����BD�D�D������EF��D�����BD�D�D������

�������D�������������D�������������D�������������D������

��		C������		C������		C������		C��������

EF��D���D�BD�D�D���EF��D���D�BD�D�D���EF��D���D�BD�D�D���EF��D���D�BD�D�D���

EF���D�A�C�������EF���D�A�C�������EF���D�A�C�������EF���D�A�C�������

EF��D���D���C�D����EF��D���D���C�D����EF��D���D���C�D����EF��D���D���C�D����

EF���D�������C�D�������EF���D�������C�D�������EF���D�������C�D�������EF���D�������C�D�������

EF��D��������������EF��D��������������EF��D��������������EF��D��������������

(a)

Figure 3. Secure data deletion. M is the updated metadata

block; D is the data block in various stages of secure deletion;

MJ is the metadata journal block that corresponds to the

updated metadata block M.

TAP will create the i-node write entry and pair it with the
corresponding secure-deletion reminder to hold the deletion list.
When the write entry is copied via TE_report_copy(), reminders
are transferred to the journal copy to ensure that secure deletions
are applied to the matching instance of the i-node update.

When the block-layer interface receives the request to commit
the update of the sensitive i-node to the journal, the interface calls
TE_check_info() and retrieves the sensitive status of the i-node,
along with the deletion list. The data areas are then securely
deleted before the i-node update is securely written to the journal.

Secure metadata deletions: During a file truncation or
deletion, ext3 also deallocates extended attribute block(s) and
indirect block(s). Those blocks are attached to the i-node’s list of
secure-deletion reminders as well.

To securely delete an i-node or a file name in a directory, the
block containing the entry is securely updated and reported via
TE_report_write(). Additionally, we need to zero out the i-node
and variable-length file name in the in-memory copies, so that
they will not negate the secure write performed at the storage-
management layer.

If a directory is deleted, its content blocks will be deleted in
the same way as the content from a file.

Miscellaneous cases: Committed transactions might not be
propagated instantly to their final locations. Across committed
transactions, the same metadata entry (e.g., i-node) might have
changed file ownership and sensitive status. Thus, jbd may
consolidate, say, a non-sensitive update 1, sensitive update 2, and
non-sensitive update 3 to the same location into a non-sensitive
update. As a remedy, once a write entry is marked sensitive, it
remains sensitive until securely written.

5.3 Enhanced FTL Storage-management

Layer
We modified the existing Linux INFTL to incorporate secure

deletion. INFTL uses a stack-based algorithm to remap logical
pages to physical ones.

5.3.1 INFTL Extensions and Optimizations
INFTL remaps at the flash block level, where each 16-Kbyte

flash block contains 32 512-byte pages, with a 16-byte control
area per page. A remapped page always has the same offset
within a block.

A NAND page can be in three states: empty, valid with data,
or invalid. An empty page can be written, but an invalid page has
to be erased to become an empty page.

INFTL in-place updates: INFTL uses a stack of flash blocks
to provide the illusion of in-place updates. When a page P1 is
first written, an empty flash block B1 is allocated to hold P1. If
P1 is written again (P1’), another empty flash block B2 is
allocated and stacked on top of B1, with the same page offset
holding P1’. Suppose we write P2, which is mapped to the same
block. P2 will be stored in B2 because it is at the top of the stack,
and its page at page offset for P2 is empty.

The stack will grow until the device becomes full; it will then
be flattened into one block containing only the latest pages to free
up space for garbage collection.

INFTL reads: For a read, INFTL traverses down the
appropriate stack from the top and returns the first valid page. If
the first valid page is marked deleted, or if no data are found,
INFTL will return a page of zeros.

Secure-deletion extensions: Our added secure write
command is similar to the current INFTL in-place update.
However, if a stack contains a sensitive page, we set its maximum
depth to 1 (0 is the stack top). Once it reaches the maximum, the
stack must be consolidated to depth 0. When consolidating, old
blocks are immediately erased via the flash erase command,
instead of being left behind.

Since the existing stack algorithm already tracks old versions,
we also implemented the delayed-deletion optimization, which
allows data blocks to defer the secure-write consolidation to file
deletion time. Basically, the maximum depth is no longer
bounded. Delaying secure deletion for metadata is trickier and
will be investigated in future work.

A secure delete is a special case of a secure write. When a
page is to be securely deleted, an empty flash block is allocated on
top of the stack. All the valid pages, minus the page to be
securely erased, are copied to the new block. The old block is
then erased.

5.3.2 Disabled storage-management optimizations
Because jbd does not allow reordering to violate file system

constraints and our flash has no built-in cache, we do not disable
these optimizations.

6. VERIFICATION
We (1) tested the basic cases, assumptions, and corner cases

discussed in §4.4 and (2) verified the state space of TAP.

6.1 Basic Cases
Sanity checks: We verified common cases of secure writes

and deletes for empty, small, and large files and directories using
random file names and sector-aligned content. After deletion, we
scanned the raw storage and found no remnants of the sensitive
information. We also traced common behaviors involving
sensitive and non-sensitive objects; when the operation included a
source and a destination, we tested all four possible combinations.
The operations checked included moving objects to new
directories, replacing objects, and making and updating symbolic
and hard links. We also tested sparse files. In all cases, we
verified that the operations behaved as expected.

Simulation of workload: We ran the PostMark benchmark
[16] with default settings, modified with 20% of the files marked
sensitive, with random content. Afterwards, we found no
remnants of sensitive information.

Missing updates: To check that all update events and block
types are reported, we looked for errors such as unanticipated
block-type changes and unfound write entries in TAP, etc., which
are signs of missing reports from the file system. Currently, all
updates are reported.

Cases related to file-system-consistency properties: For cases
derived from the reuse-ordering property, we created an ext3 file
system with most of its i-nodes and blocks allocated, to encourage
reuse. Then we performed tight append/truncate and file
creation/deletion loops with alternating sensitive status. We used
uniquely identifiable file content to detect sensitive information
leaks and found none.

For pointer-ordering-related cases, we verified our ability to
recover from basic failures and remove remnants of sensitive
information. We also verified that the page cache prohibits
unreferenced data blocks from being written to the storage.

Since the page ID part of GUIDs increases monotonically, we
can use this property to detect illegal reordering of sensitive
updates for the cases derived from the non-rollback property. For
consolidations within a transaction, we used tight update loops
with alternating sensitive modes. For consolidations across
transactions, we used tight file creation/deletion loops with
alternating sensitive modes. We checked all consolidation
orderings for up to three requests (e.g., non-
sensitive/sensitive/non-sensitive).

6.2 TAP Verification
We enumerated the TAP state-transition table and verified its

correctness via two-version programming.
State representation: We exploited TAP’s properties to trim

the state space. First, a write entry will not consolidate with other
write entries. This property ensures that each sensitive update is
carried out unless explicitly cancelled. Various consolidation
behaviors (e.g., page cache) are achieved by performing updates
directly to the write entry. Second, the next state transition is
based on current write entries of different types within a current
state (plus inputs). With those two properties, we can reduce the
representation of a state to at most one write entry of each type,
and explore all state-generating rules.

To illustrate, each state holds one write entry for nine block
types: data, i-node, other metadata, journal copy of data, journal
copy of i-node, journal copy of other metadata, copy of data, copy
of i-node, and copy of other metadata. Additionally, each write
entry has four status bits: allocated, sensitive, having reminder
attached, and ready to be deleted from the journal. Thus, a state is
a 9x4 matrix and can be represented as 36 bits, with 236 states.

State transitions: Each interface call triggers a state transition
based on the input parameters. For example, the first
TE_report_write() on a non-sensitive i-node will transition from
the empty state (a zero matrix), say S0, to a state S1, where the
allocated bit for the i-node is set to 1. If TE_report_write() is
called again to mark the i-node as sensitive, S1 is transitioned to a
new state S2, with allocated and sensitive bits set to 1s.

State-space enumeration: To enumerate states and
transitions, we permuted all TAP interface calls with all possible
input parameters to the same set of write entries. A small range of
GUIDs was used so that each write entry could have a unique
GUID, but GUID collisions were allowed to test error conditions.
Given that the enumeration step can be viewed as traversing a
state-space tree in breadth-first order, the tree fanout at each level
is the total number of interface call-parameter combinations (261).
As an optimization, we visited only states reachable from the
starting empty state, and avoided repeated state-space and sub-tree
branches. As a result, we explored a tree depth of 16 and located
~10K unique reachable states, or ~2.7M state transitions.

Two-version-programming verification: Given that the state-
transition table is filled with mostly illegal transitions, we applied
n-version programming to verify the table, where the probability
of hitting the same bug with the same handling can be reduced as
we add more versions. In this work, n=2. We wrote a user-level
state-transition program based on hundreds of conceptual rules
(e.g., marking a write entry of any type as sensitive will set the
sensitive bit to 1). The enumerated state-transition table was
reconciled with the one generated by the TAP kernel module.

7. PERFORMANCE EVALUATION
We compared TrueErase to an unmodified Linux 2.6.25.6

running ext3. We ran PostMark [16] to measure the overhead for
metadata-intensive small-file I/Os. We also compiled OpenSSH
version 5.1p1 [23] to measure the overhead for larger files. We
ran our experiments on an Intel® Pentium® D CPU 2.80GHz
dual-core Dell OptiPlex GX520 with 4-GB DDR533 and 1-GB
DoC MD2203-D1024-V3-X 32-pin DIP mounted on a PCI-G
DoC evaluation board. Each experiment was repeated 5 times.
The 90% confidence intervals are within 22%.

PostMark: We used the default configuration with the
following changes: 10K files, 10K transactions, 1-KB block size
for reads and writes, and a read bias of 80%. We also modified
PostMark to create and mark different percentages of files as
sensitive. These files can be chosen randomly or with spatial
locality, which is approximated by choosing the first x% of file
numbers. Before running tests for each experimental setting, we
dirtied our flash by running PostMark with 0% sensitive files
enough times to trigger wear leveling. Thus, our experiments
reflect a flash device operating at steady state. A ���� command
was issued after each run and is reflected in the elapsed time.

Table 3 shows that when TrueErase operates with no sensitive
files, metadata tracking and queries account for 3% overhead
compared to the base case. With 10% of files marked sensitive,
the slowdown factor can be as high as 11, which confirmed the
numbers in a prior study [41]. However, with 5% of files marked
sensitive and with locality and delayed secure deletion of file data

blocks, the slowdown factor can be reduced to 3.4, which is
comparable to disk-based secure-deletion numbers [14].

We noticed some feedback amplification effects. Longer runs
mean additional memory page flushes, which translate into more
writes, which involve more reads and erases as well and lead to
even longer running times. Thus, minor optimizations can
improve performance significantly.

Table 3: Postmark flash operations, times, and overhead

percentage compared to base.
 page

reads
control-

area
reads

page
writes

control-
area

writes

erases time
(secs)

Base 300K 1.97M 218K 237K 4.28K 671

0% 0.99x 1.08x 1.01x 1.01x 1.00x 1.03x

1% random 3.69x 2.09x 2.82x 2.79x 2.58x 2.93x

1% locality 2.95x 1.89x 2.33x 2.31x 2.16x 2.44x

1% random, delayed deletion 3.41x 2.00x 2.61x 2.59x 2.47x 2.73x

1% locality, delayed deletion 2.77x 1.77x 2.20x 2.19x 2.08x 2.29x

5% random 10.3x 4.22x 6.91x 6.83x 6.67x 7.39x

5% locality 6.69x 3.19x 4.86x 4.81x 4.32x 5.05x

5% random, delayed deletion 7.56x 3.48x 4.99x 4.99x 5.18x 5.54x

5% locality, delayed deletion 4.40x 2.33x 3.29x 3.29x 3.02x 3.42x

10% random 15.3x 5.82x 9.96x 9.84x 9.75x 10.7x

10% locality 9.96x 4.24x 7.00x 6.92x 6.23x 7.27x

10% random, delayed deletion 9.44x 4.23x 5.91x 5.96x 6.54x 6.80x

10% locality, delayed deletion 5.82x 2.96x 4.19x 4.22x 3.90x 4.45x

Table 4: Compilation flash operations, times, and overhead

percentage compared to base.
 page

reads
control-area

reads
page

writes
control-

area
writes

erases time
(secs)

make + sync

Base 25.3K 108K 22.5K 23.9K 352 89

Random 4.79x 3.10x 3.15x 3.15x 3.13x 2.51x

Random, delayed deletion 1.70x 1.37x 1.41x 1.43x 1.40x 1.41x

make clean + sync

Base 1.60K 3.73K 445 514 22 3

Random 10.0x 10.1x 13.6x 15.0x 7.14x 8.13x

Random, delayed deletion 8.47x 8.36x 11.0x 12.6x 6.22x 6.87x

Total

Base 26.9K 112K 23.0K 24.4K 374 92

Random 5.10x 3.33x 3.35x 3.40x 3.37x 2.70x

Random, delayed deletion 2.10x 1.60x 1.59x 1.66x 1.69x 1.59x

OpenSSH compilations: We issued 	�AD+���� and 	�AD�

��D������� to measure the elapsed times for compiling and
cleaning OpenSSH [23]. For the TrueErase case, we marked the
��D���B ��	��� directory sensitive before issuing 	�AD,
which would cause all newly created files (e.g., .o files) in that
directory to be treated sensitively. These files account for roughly
27% of the newly generated files (8.2% of the total number of
files and 4.1% of the total number of bytes after compilation).
Before running each set of tests, we dirtied the flash in the same
manner as with PostMark and discarded the first run that warms
up the page cache. Table 4 shows that a user would experience a
compilation slowdown within 1.4x under the delay-deletion mode.
A user would experience a slowdown within 6.9x under the
delayed-deletion mode with a deletion-intensive workload. For
the entire compilation cycle of 	�AD����� with 	�AD�
��D�������, a user would experience an overall slowdown
within 60% under the delayed-deletion mode.

Overall, we find that the overhead is within our expectations.
Further improvements in performance are future work.

8. RELATED WORK
This section discusses existing cross-layer secure-deletion

solutions.
A semantically-smart-disk system (SDS) [36] observes disk

requests and deduces common file-system-level information such
as block types. The File-Aware Data-Erasing Disk is an ext2-
based SDS that overwrites deleted files at the file-system layer.

A type-safe disk [33] directly expands the block-layer
interface and the storage-management layer to perform free-space
management. Using a type-safe disk, a modified file system can
specify the allocation of blocks and their pointer relationships. As
an example, this work implements secure deletion on ext2.
Basically, when the last pointer to a block is removed, the block
can be securely deleted before it is reused.

Lee et al. [18] have modified YAFFS, a log-structured file
system for NAND flash, to handle secure file deletion. The
modified YAFFS encrypts files and stores each file’s key along
with its metadata. Whenever a file is deleted, its key is erased,
and the encrypted data blocks remain. Sun et al. [38] modified
YAFFS and exploited certain types of NAND flash that allow
overwriting of pages to achieve secure deletion. Raerdon et al.
[27] also modified YAFFS to use a flash-chip-specific zero-
overwriting technique. In addition, Raerdon et al. [26] developed
the Data Node Encrypted File System (DNEFS), which modifies
the flash file system UBIFS to perform secure deletion at the data
node level, which is the smallest unit of reading/writing. DNEFS
performs encryption and decryption of individual data nodes and
relies on a key generation and deletion scheme to prevent access
to overwritten or deleted data. Since UBIFS is designed for flash
with scaling constraints, this approach is not as applicable for
disks and larger-scale storage settings.

9. FUTURE WORK
Many opportunities exist to increase TrueErase’s performance

on NAND flash. We can implement flash-chip-specific zero-
overwriting or scrubbing routines [27, 38, 41]. However, this
optimization may make our solution less portable. We can add
encryption to our system and use TrueErase to ensure secure
deletion of the encryption key. We could also batch flash erasures
for better flash performance.

Other future work will include tracking sensitive data between
files and applications via tainting mechanisms, expanded handling
of other threat models, and generalizations to handle swapping,
hibernation, RAID, and volume managers.

10. LESSONS LEARNED/CONCLUSION
This paper presents our third version of TrueErase. Overall, we
found that retrofitting security features to the legacy storage data
path is more complex than we first expected.

Initially, we wanted to create a solution that would work with
all popular file systems. However, we found the verification
problem became much more tractable when working with file
systems with proven consistency properties, as described in § 4.4.

Our earlier designs experimented with different methods to
propagate information across storage layers, such as adding new
special synchronous I/O requests and sending direct flash
commands from the file system. After struggling to work against
the asynchrony in the data path, we instead associated secure-
deletion information with the legacy data path flow. We also
decoupled the storage-specific secure-deletion action from the
secure information propagation for ease of portability to different
storage types.

We also found it tricky to design the GUID scheme due to in-
transit versions and the placement of GUIDs. To illustrate, using

only the sector number was insufficient when handling multiple
in-transit updates to the same sector with conflicting sensitive
statuses. Placing a GUID in transient data structures such as a
block I/O structures led to complications when these structures
could be split, concatenated, copied, and even destroyed before
reaching storage. We solved this problem by associating a GUID
with the specific memory pages that contain the data.

Tracking-granularity issues exist throughout the datapath.
Data is stored in memory pages. File systems interact with
blocks, multiples of which may exist on one memory page. The
block layer may concatenate blocks together to form requests,
which may span more than one memory page. Finally, requests
are broken up into storage-specific granularities (e.g., flash
pages). Metadata entries with mixed sensitive status can collocate
within various access units as well. Various granularities make it
difficult to map our solution to existing theoretical verification
frameworks [34].

Finally, our work would not have been possible without direct
access to a flash FTL. An unfortunate trend of FTLs is that they
are mostly implemented in hardware, directly on the flash device
controller. An implication is that most FTLs (and their wear-
leveling/block-management routines) cannot be seen or accessed
by the OS. To leave the door of software FTL research open, we
need to create an environment that enables and eases
experimentation, to demonstrate the benefits of software-level
developments and controls.

To summarize, we have presented the design, implementation,
evaluation, and verification of TrueErase, a legacy-compatible,
per-file, secure-deletion framework that can stand alone or serve
as a building block for encryption- and taint-based secure deletion
solutions. We have identified and overcome the challenges of
specifying and propagating information across storage layers. We
show we can handle common system failures. We have verified
TrueErase and its core logic via cases derived from file-system-
consistency properties and state-space enumeration. Although a
secure-deletion solution that can withstand diverse threats remains
elusive, TrueErase is a promising step toward this goal.

11. ACKNOWLEDGMENTS
We thank Peter Reiher and anonymous reviewers for

reviewing this paper. This work is sponsored by NSF CNS-
0845672/CNS-1065127, DoE P200A060279, PEO, and FSU. Any
opinions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of the NSF, DoE, PEO, or FSU.

12. REFERENCES
[1] Bauer, S. and Priyantha, N.B. 2001. Secure data deletion for

Linux file systems. Proceedings of the 10th Usenix Security

Symposium (2001), 153–164.
[2] Boneh, D. and Lipton, R. 1996. A revocable backup system.

USENIX Security Symposium (1996), 91–96.
[3] Cooke, J. 2007. Flash memory technology direction. Micron

Applications Engineering Document. (2007).
[4] CWE - CWE-327: Use of a Broken or Risky Cryptographic

Algorithm (2.2):
http://cwe.mitre.org/data/definitions/327.html. Accessed:
2012-09-05.

[5] Diesburg, S.M., Meyers, C.R., Lary, D.M. and Wang, A.I.A.
2008. When cryptography meets storage. Proceedings of the

4th ACM International Workshop on Storage Security and

Survivability (2008), 11–20.

[6] Ganger, G.R. 2001. Blurring the line between OSes and

storage devices. Technical Report CMU-CS-01-166,
Carnegie Mellon University.

[7] Garfinkel, S.L. and Shelat, A. 2003. Remembrance of data
passed: a study of disk sanitization practices. Security

Privacy, IEEE. 1, 1 (Feb. 2003), 17 – 27.
[8] Geambasu, R., Kohno, T., Levy, A.A. and Levy, H.M. 2009.

Vanish: increasing data privacy with self-destructing data.
Proceedings of the 18th USENIX Security Symposium
(Berkeley, CA, USA, 2009), 299–316.

[9] Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W.,
Paul, W., Calandrino, J.A., Feldman, A.J., Appelbaum, J.
and Felten, E.W. 2009. Lest we remember: cold-boot attacks
on encryption keys. Commun. ACM. 52, 5 (May. 2009), 91–
98.

[10] Health Insurance Portability and Accountability Act of 1996:
http://www.hhs.gov/ocr/privacy/hipaa/administrative/statute/

hipaastatutepdf.pdf. Accessed: 2012-07-24.
[11] Hughes, G. 2004. CMRR Protocols for disk drive secure

erase. Technical report, Center for Magnetic Recording
Research, University of California, San Diego.

[12] Hughes, G.F. 2002. Wise drives [hard disk drive]. Spectrum,

IEEE. 39, 8 (Aug. 2002), 37 – 41.
[13] Ironkey: http://www.ironkey.com. Accessed: 2012-07-26.
[14] Joukov, N., Papaxenopoulos, H. and Zadok, E. 2006. Secure

deletion myths, issues, and solutions. Proceedings of the

Second ACM Workshop on Storage Security and

Survivability (New York, NY, USA, 2006), 61–66.
[15] Joukov, N. and Zadok, E. 2005. Adding secure deletion to

your favorite file system. Security in Storage Workshop,

2005. SISW ’05. Third IEEE International (Dec. 2005), 8
pp.–70.

[16] Katcher, J. 1997. Postmark: A new file system benchmark.
Technical Report TR3022, Network Appliance, 1997. www.
netapp. com/tech_library/3022. html.

[17] King, C. and Vidas, T. 2011. Empirical analysis of solid
state disk data retention when used with contemporary
operating systems. Digital Investigation. 8, (2011), S111–
S117.

[18] Lee, J., Heo, J., Cho, Y., Hong, J. and Shin, S.Y. 2008.
Secure deletion for NAND flash file system. Proceedings of

the 2008 ACM Symposium on Applied Computing (New
York, NY, USA, 2008), 1710–1714.

[19] Mac OS X Security Configuration for Mac OS X Version
10.6 Snow Leopard:
http://images.apple.com/support/security/guides/docs/SnowL

eopard_Security_Config_v10.6.pdf. Accessed: 2012-07-25.
[20] Marcel Breeuwsma, Martien De Jongh, Coert Klaver,

Ronald Van Der Knijff and Roeloffs, M. 2009. Forensic

Data Recovery from Flash Memory. CiteSeerX.
[21] National Industrial Security Program Operating Manual

5220.22-M: 1995.
http://www.usaid.gov/policy/ads/500/d522022m.pdf.
Accessed: 2012-07-26.

[22] Nightingale, E.B., Veeraraghavan, K., Chen, P.M. and Flinn,
J. 2008. Rethink the sync. ACM Trans. Comput. Syst. 26, 3
(Sep. 2008), 6:1–6:26.

[23] OpenSSH: http://openssh.com/. Accessed: 2012-06-07.
[24] Perlman, R. 2005. The ephemerizer: making data disappear.

Sun Microsystems, Inc.
[25] Peterson, Z.N.J., Burns, R., Herring, J., Stubblefield, A. and

Rubin, A. 2005. Secure deletion for a versioning file system.
Proceedings of the USENIX Conference on File And Storage

Technologies (FAST) (2005), 143–154.

[26] Reardon, J., Capkun, S. and Basin, D. 2012. Data Node
Encrypted File System: Efficient Secure Deletion for Flash
Memory. 21st USENIX Security Symposium (Aug. 2012).

[27] Reardon, J., Marforio, C., Capkun, S. and Basin, D. 2011.
Secure Deletion on Log-structured File Systems. Technical
Report arXiv:1106.0917.

[28] Scrub utility: http://code.google.com/p/diskscrub/. Accessed:
2012-07-26.

[29] Secure rm: http://sourceforge.net/projects/srm/. Accessed:
2012-07-26.

[30] Secure USB Flash Drives | Kingston:
http://www.kingston.com/us/usb/encrypted_security.
Accessed: 2012-07-26.

[31] shred(1) - Linux man page: http://linux.die.net/man/1/shred.
Accessed: 2012-08-13.

[32] Shu, F. and Obr, N. 2007. Data set management commands

proposal for ATA8-ACS2.
[33] Sivathanu, G., Sundararaman, S. and Zadok, E. 2006. Type-

safe disks. Proceedings of the 7th Symposium on Operating

Systems Design and Implementation (Berkeley, CA, USA,
2006), 15–28.

[34] Sivathanu, M., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.
and Jha, S. 2005. A logic of file systems. Proceedings of the

4th USENIX Conference on File and Storage Technologies -

Volume 4 (Berkeley, CA, USA, 2005), 1–1.
[35] Sivathanu, M., Bairavasundaram, L.N., Arpaci-Dusseau,

A.C. and Arpaci-Dusseau, R.H. 2004. Life or death at block-
level. Proceedings of the 6th Conference on Symposium on

Opearting Systems Design & Implementation - Volume 6
(Berkeley, CA, USA, 2004), 26–26.

[36] Sivathanu, M., Prabhakaran, V., Popovici, F.I., Denehy,
T.E., Arpaci-Dusseau, A.C. and Arpaci-Dusseau, R.H. 2003.
Semantically-smart disk systems. Proceedings of the 2nd

USENIX Conference on File and Storage Technologies
(2003), 73–88.

[37] Special Publication 800-88: Guidelines for Media
Sanitization: 2006.
http://csrc.nist.gov/publications/nistpubs/800-

88/NISTSP800-88_with-errata.pdf. Accessed: 2012-07-26.
[38] Sun, K., Choi, J., Lee, D. and Noh, S.H. 2008. Models and

Design of an Adaptive Hybrid Scheme for Secure Deletion
of Data in Consumer Electronics. Consumer Electronics,

IEEE Transactions on. 54, 1 (Feb. 2008), 100 –104.
[39] The OpenSSD Project: http://www.openssd-

project.org/wiki/The_OpenSSD_Project. Accessed: 2012-07-
29.

[40] Thibadeau, R. 2006. Trusted Computing for Disk Drives and
Other Peripherals. Security Privacy, IEEE. 4, 5 (Oct. 2006),
26 –33.

[41] Wei, M., Grupp, L.M., Spada, F.E. and Swanson, S. 2011.
Reliably erasing data from flash-based solid state drives.
Proceedings of the 9th USENIX Conference on File and

Stroage Technologies (Berkeley, CA, USA, 2011), 8–8.
[42] Wipe: Secure File Deletion: http://wipe.sourceforge.net/.

Accessed: 2012-07-26.

