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ABSTRACT 
The ability to securely delete sensitive data from electronic 
storage is becoming important.  However, current per-file deletion 
solutions tend to be limited to a segment of the operating system’s 
storage data path or specific to particular file systems or storage 
media. 

 This paper introduces TrueErase, a holistic secure-deletion 
framework.  Through its design, implementation, verification, and 
evaluation, TrueErase shows that it is possible to build a legacy-
compatible full-storage-data-path framework that performs per-
file secure deletion and works with common file systems and 
solid-state storage, while handling common system failures.  In 
addition, this framework can serve as a building block for 
encryption- and tainting-based secure-deletion systems. 

Categories and Subject Descriptors 

D.4.2 [Storage Management]: Allocation/deallocation strategies, 
D.4.3 [File Systems Management]:  Access methods, D.4.6 
[Security and Protection]:  Information flow controls 

General Terms 

Design, Security 

Keywords 

Secure deletion, file systems, storage, security, NAND flash 

1. INTRODUCTION 
Data privacy is an increasing concern as more sensitive 

information is being stored in electronic devices.  Once sensitive 
data is no longer needed, users may wish to permanently remove 
this data from electronic storage.  However, typical file deletion 
mechanisms only update the file’s metadata (e.g., pointers to the 
data), leaving the file data intact.  Even recreating the file system 
from scratch does not ensure the data is removed [7].  

A remedy is secure deletion, which should render data 
irrecoverable. Much secure deletion is implemented through 
partition- or device-wide encryption or overwriting techniques 
(see §2).  However, coarse-grained methods may not work on 
media such as NAND flash [41], and are cumbersome to use when 
only a few files need to be securely deleted.  Further, securely 
deleting an entire device or partition may be infeasible for 
embedded devices. 

Per-file secure deletion is concerned with securely removing a 
specific file’s content and metadata (e.g., name).  This ability can 
assist with implementing privacy policies concerning the selective 

destruction of data after it has expired (e.g., client files), 
complying with government regulations to dispose of sensitive 
data (e.g., HIPPA [10]), deleting temporarily shared trade secrets, 
military applications demanding immediate destruction of selected 
data, and disposing of media in one-time-use applications.   

Unfortunately, existing per-file secure-deletion solutions tend 
to be file-system- and storage-medium-specific, or limited to one 
segment of the operating-system storage data path (e.g., the file 
system) without taking into account other components (e.g., 
storage media type).  For example, a secure deletion issued by a 
program might not be honored by optimization software used on 
typical flash devices that keep old versions of the data [41].  
Solutions that rely on secure deletion of a stored encryption key 
become a subset of this problem, because they, too, must have a 
way to ensure the key is erased. 

In addition, achieving secure deletion is hard due to diverse 
threat models.  This paper focuses on dead forensics attacks on 
local storage, which occur after the computer has been shut down 
properly.  Attacks on backups or live systems, cold-boot attacks 
[9], covert channels, and policy violations are beyond our scope.    

In particular, our system assumes that we have full control of 
the entire storage data path in a non-distributed environment.  
Thus, the research question is, under benign user control and 
system environments, what holistic solution can we design and 
build to ensure that the secure deletion of a file is honored 
throughout the legacy storage data path?  Although tightly 
constrained, this criterion still presents significant challenges. 

We introduce TrueErase, a framework that irrevocably deletes 
data and metadata upon user request.  TrueErase goes to the heart 
of the user's mental model: securely deleted data, like a shredded 
document, should be irrecoverable. 

We assume the presence of file-system-consistency properties 
[34], which have been shown to be a requirement of secure 
deletion.  We also note that if we have control over the storage 
layer, achieving raw NAND flash secure deletion is 
straightforward [18, 27, 38, 41]. 

However, TrueErase is designed to overcome the many 
challenges of correctly propagating secure deletion information in 
a full-data-path manner—all the way from the user to the storage.  
This framework is essential for building other secure-deletion 
capabilities that rely on tainting or encryption-based key deletion.  
Thus, our contributions are the following: (1) a per-file secure-
deletion framework that works with the legacy storage data path, 
which (2) addresses the challenges raised throughout the data path 
into a single work and (3) has been systematically verified. 

2. EXISTING APPROACHES  
We distinguish the need for TrueErase from existing 

approaches by enumerating desirable characteristics of secure 
deletion systems (Table 1).  

• Per-file: Fine-granularity secure deletion brings greater 
control to the user while potentially reducing costly secure 
deletion operations on the storage device.  
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• Encryption-free:  Encryption systems securely delete by 
destroying the keys of encrypted files.  However, these 
systems are complex due to managing per-file keys, providing 
efficient random access, data and metadata padding and 
alignments, etc.  Encryption may also expire due to more 
computing power (e.g., quantum computers) or 
implementation bugs [4, 5]; thus, encrypted data might still be 
recovered after its key is deleted.  In addition, passphrase-
derived keys can be surrendered (e.g., via coercion) to retrieve 
deleted files.  For these reasons, systems that keep keys on 
storage or third-party sites still need a way to securely delete 
keys on various storage media.   

• Data-path-wide: Many secure-deletion solutions are within 
one layer of the legacy storage data path (Figure 1).  The 
storage-management layer has no information about a block’s 
file ownership [6, 35] and cannot support per-file deletion.  
File-system- and application-layer solutions are generally 
unaware of the storage medium and have limited control over 
the storage location of data and metadata.  In addition, storage 
such as NAND flash may leave multiple versions of sensitive 
data behind.  Thus, we need a solution that spans the entire 
data path to enforce secure deletion. 

• Storage-medium-agnostic: A secure-deletion framework 
should be general enough to accommodate solid-state storage 
and portable devices that use these types of storage.  

• Limited changes to the legacy code:  Per-file secure deletion 
requires some information from the file system.  However, 
getting such information should not involve modifying 
thousands of lines of legacy code. 

• Metadata secure deletion: Secure deletion should also remove 
metadata, such as the file name, size, etc.  

• Crash handling: A secure-deletion solution should anticipate 
system crashes and provide meaningful semantics afterwards. 
 

Table 1: Existing secure-deletion methods and characteristics. 

columns: F. per-file; E.  encryption-free; D.  data-path-wide; 

S. storage-medium-agnostic; L. limited changes to legacy 

code; M.  securely delete metadata; C.  handle crashes 
 F E D S L M C 

Secure delete encrypted device/partition key [12, 13, 
19, 30, 40] 

    � � � 

Specialized hard drive commands [11]  �   � � � 

Specialized flash medium commands (page 
granularity) [41] 

� �   �   

Stackable file system deletion [14, 15]  � �   � � � 

Modified file system – deletion through overwriting 
[1, 14, 15] 

� �   � � � 

Modified file system – deletion through encryption 
[25] 

�    ?  ? 

Dedicated server(s) for encryption keys [8, 24] �    � ? � 

Encrypted backup system [2] �    �  ? 

User-space solution on top of flash file system [27] � �   � ?  

Overwriting tools [19, 28, 29, 31, 42] � �   �   

Modified flash file systems – device erasures and/or 
overwriting [27, 38] 

� � �  � ? ? 

Modified flash file systems – encryption with key 
erasure [18] 

�  �  ? � ? 

Semantically-Smart Disk Systems [35, 36] � � �  �  � 

Type-Safe Disks [33] � � �    � 

Data Node Encrypted File System [26] � � �  � � � 

TrueErase � � � � � � � 

3. CHALLENGES AND ASSUMPTIONS 
Designing and implementing per-file secure deletion is 

challenging for a number of reasons: 

• No pre-existing deletion operation: Other than removing 
references to data blocks and setting the file size and 
allocation bits to zeros, file systems typically do not issue 
requests to erase file content.  (Note that the ATA Trim 
command was not implemented for security [32] and might 
not delete all data [17].)  

• Complex storage-data-path optimizations:  Secure deletion 
needs to retrofit legacy asynchronous optimizations.  In 
particular, storage requests may be reordered, concatenated, 
split, consolidated (applying one update instead of many to 
the same location), cancelled, or buffered while in transit.    

• Lack of data-path-wide identification:  Tracking sensitive 
data throughout the operating system is complicated by the 
possible reuse of data structures, ID numbers, and memory 
addresses.   

• Verification:  Although verification is often overlooked by 
various solutions, we need to ensure that (1) secure deletions 
are correctly propagated throughout the storage data path, 
and (2) assumptions are checked when possible.  

Due to these challenges, we assume a user has administrative 
control of an uncompromised, single-user, single-file-system, 
non-RAID, non-distributed system.  The threat model is dead 
forensics attacks, which occur after a user unmounts and shuts 
down the system after completing secure-deletion operations.   

Our system assumes control of the entire storage data path.  
Although assuming access to proprietary firmware may be 
optimistic, this paper argues that there is a need for storage 
devices to expose information and control to support secure-
deletion features correctly. 

In addition, we assume that common journaling file systems 
that adhere to the consistency properties specified by [34] are 
used, since we cannot verify secure deletion in file systems that 
cannot even guarantee their own consistency (e.g., ext2, FAT).  
Further, all update events and block types are reported to our 
framework to verify that we are tracking all important events.  
These assumptions allow us to focus on building and verifying the 
properties of secure deletion. 

4. TRUEERASE DESIGN 
We introduce TrueErase (Figure 1), a holistic framework that 

propagates file-level information to the block-level storage-
management layer via an auxiliary communication path, so that 
per-file secure deletion can be honored throughout the data path.   

Our system is designed with the following observations and 
formulated guidelines: 

• Modifying the request ordering of the legacy data path is 
undesirable because it is difficult to verify the legacy 
semantics.  Thus, we leave the legacy data flow intact.  

• Per-file secure deletion is a performance optimization over 
applying secure deletion to all file removals.  Thus, we can 
simplify tricky decisions about whether a case should be 
handled securely by handling it securely by default. 

• Persistent states complicate system design with mechanisms 
to survive reboots and crashes.  Thus, our solution minimizes 
the use of persistent states. 

The major areas of TrueErase’s design include (1) a user 
model to specify which files or directories are to be securely 
deleted, (2) tracking and propagating information across storage 
layers via a centralized module named TAP, (3) enforcing secure 
deletion via storage-specific mechanisms added to the storage-
management layer, and (4) exploiting file-system consistency 
properties to enumerate cases for verification.  
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Figure 1.  TrueErase framework.  The shaded box and dotted 

lines represent our augmented data path.  Other boxes and 

lines represent the legacy storage data path.   

4.1 User Model  
A naïve user may mark the entire storage device sensitive for 

secure deletion.  A more sophisticated user can mark all user-
modifiable folders sensitive.  An expert user can follow traditional 
permission semantics and apply common attribute-setting tools to 
mark a file or directory as sensitive, which means the sensitive 
file, or all files under the sensitive directory, will be securely 
deleted when removed.  A legacy application can then issue 
normal deletion operations, which are carried out securely, to 
remove sensitive file and directory data content, metadata, and 
associated copies within the storage data path.  However, there are 
deviations from the traditional permission models. 

Toggling the sensitive status:  Before the status of a file or 
directory is toggled from non-sensitive to sensitive, older versions 
of the data and metadata may have already been left behind.  
Without tracking all file versions or removing all old versions for 
all files, TrueErase can enforce secure deletion only for files or 
directories that have remained sensitive since their creation.  
Should a non-sensitive file be marked sensitive, secure deletion 
will be carried out only for the versions of the metadata and file 
content created after that point.��

Name handling:  A directory is traditionally represented as a 
special file, with its data content storing the file names the 
directory holds.  Although file permissions are applied to its data 
content, permission to handle the file name is controlled by its 
parent directory. 

Under TrueErase, marking a file sensitive will also cause its 
name stored in the parent directory to be securely handled, even if 
the parent is not marked sensitive.  Otherwise, marking a file 
sensitive would require its parent to be marked sensitive for 
containing the sensitive file name, its grandparent to be marked 
sensitive for containing the sensitive parent name, etc., until 
reaching the root directory. 

Links:  Similar to legacy semantics, a secure deletion of a hard 
link is performed when the link count decreases to zero.  
Symbolic link names and associated metadata are not supported, 
but file data written to a symbolic link will be treated sensitively if 
the link's target file is sensitive.   

4.2 Information Tracking and Propagation 
Tracking and propagating information from the file system to 

the lower layers is done through a centralized type/attribute 
propagation (TAP) module.   

4.2.1  Data Structures and Globally Unique IDs 
TAP expands the interface between the file system and the 

block layer in a backward-compatible way.  This passive 

forwarding module receives pending sensitive update and deletion 
events from file systems, and uses internal write entries and 
deletion reminders, respectively, to track these events.   

Since various data structures (e.g., block I/O structures), 
namespaces (e.g., i-node numbers), and memory addresses can be 
reused, correct pairing of write entries and deletion reminders 
requires a unique ID scheme.  In particular, the IDs need to be (1) 
accessible throughout the data path and (2) altered when its 
content association changes.  TrueErase embeds a monotonically 
increasing globally unique page ID in each memory page structure 
accessible throughout the data path.  The ID is altered at 
allocation time, so that the same page reallocated to hold versions 
of the same logical block has different IDs.   

To handle various tracking units, such as logical blocks, 
requests, physical sectors, and device-specific units, TAP tracks 
by the physical sector, because that is unique to the storage device 
and can be computed from anywhere in the data path.  The 
globally unique page ID and the physical sector number form a 
globally unique ID (GUID).  

In addition to the GUID, a write entry contains the update type 
(e.g., i-node) and the security status.  A deletion reminder contains 
a deletion list of physical sector numbers to be deleted.   

Table 2:  The TAP Interface. 
TE_report_write(GUID, block type, secure status):  Creates or updates a 

TAP write entry associated with the GUID. 

TE_report_delete(metadata GUID, metadata block type, metadata secure 

status, deletion sector number):  Creates or updates a TAP deletion 
reminder that contains the sector number.  The reminder is attached to 
the write entry (created as needed) associated with the metadata GUID.  

TE_report_copy(source GUID, destination GUID, flag):  Copies 
information from a write entry corresponding to the source GUID to a 
new entry corresponding to the destination GUID.  The flag determines 
whether deletion reminders should be transferred. 

TE_cleanup_write(GUID):  Removes the write entry with a specified 
GUID.  This call also handles the case in which a file has already been 
created, written, and deleted before being flushed to storage.   

TE_check_info(GUID):  Used to query TAP to retrieve information about 
a block layer write with a specific GUID.  �

4.2.2 TAP Interface and Event Reporting 
Through the TAP interface (Table 2), the file system must 

report all important events: file deletions and truncations, file 
updates, and certain journaling activities.   

File deletions and truncations:  Data deletion depends on the 
update of certain metadata, such as free-block bitmaps.  TAP 
allows file systems to associate deletion events with metadata 
update events via TE_report_delete().  Within TAP, write entries 
are associated with respective deletion reminders and their 
deletion lists. 

Eventually, the file system flushes the metadata update.  Once 
the block-layer interface receives a sector to write, the interface 
uses the GUID to look up information in TAP through 
TE_check_info().  If the write entry is linked to a deletion 
reminder, the storage-management layer must securely delete 
those sectors on the deletion list before writing the metadata 
update.   

 Additionally, the storage-management layer can choose a 
secure-deletion method that matches the underlying medium.  For 
NAND flash, triggering the erase command once may be 
sufficient (details in §4.3).  For a hard drive, the sectors can be 
directly overwritten with random data. 

After secure deletion has been performed and the metadata has 
been written to storage, the block-layer interface can call 
TE_cleanup_write() to remove the associated TAP write entries 
and deletion reminders. 



For data-like metadata blocks (e.g., directory content), 
deletion handling is the same as that of data blocks.   

File updates:  Performing deletion operations is not enough to 
ensure all sensitive information is securely deleted.  By the time a 
secure-deletion operation is issued for a file, several versions of 
its blocks might have been created and stored (e.g., due to flash 
optimizations), and the current metadata might not reference old 
versions.  One approach is to track all versions, so that they can be 
deleted at secure-deletion time.  However, tracking these versions 
requires persistent states, and thus recovery mechanisms to allow 
those states to survive failures. 

TrueErase avoids persistent states by tracking and deleting old 
versions along the way.  That is, secure deletion is applied for 
each update that intends to overwrite a sensitive block in place 
(secure write for short).  Therefore, in addition to deletion 
operations, TrueErase needs to track all in-transit updates of 
sensitive blocks. 

The file system can report pending writes to TAP through 
TE_report_write().  Eventually, the block-layer interface will 
receive a sector to write and can then look up information via 
TE_check_info().  If the corresponding write entry states that the 
sector is secure, the storage-management layer will write it 
securely.  Otherwise, it will be written normally.  After the sector 
is written, the block-layer interface calls TE_cleanup_write(). 

4.2.3 Journaling and Other Events  
Sometimes file blocks are copied to other memory locations 

for performance and accessibility reasons (e.g., file-system 
journal, bounce buffers, etc.).  When that happens, any write 
entries associated with the original memory location must be 
copied and associated with the new location.  If there are 
associated deletion reminders, whether they are transferred to the 
new copy is file-system-specific.  For example, in ext3, the 
deletion reminders are transferred to the memory copy in the case 
of bounce buffers or to the memory copy that will be written first 
in the case of journaling.  Memory copies are reported to TAP 
through TE_report_copy(). 

4.3 Enhanced Storage-management Layer 
TrueErase does not choose a secure-deletion mechanism until 

a storage request has reached the storage-management layer.  By 
doing so, TrueErase ensures that the chosen mechanism matches 
the characteristics of the underlying storage medium.  For 
example, the process of securely erasing flash memory (erase) is 
quite different from the process of securely erasing information on 
a disk (overwrite).  Users should be unaware of this difference. 

In addition, we can further add different secure-deletion 
methods at the storage layer in accordance with different 
requirements and government regulations [21, 37]. 

 TrueErase can work with both flash storage and traditional 
hard drives.  Due to the difficulty of secure deletion on flash, we 
concentrate on applying TrueErase to flash storage in this paper.  
However, we also provide a high-level design of a hard drive 
solution to show the generalizability of TrueErase. 

4.3.1 NAND Flash Storage Management 
NAND flash basics: NAND flash has the following 

characteristics:  (1) writing is slower than reading, and erasure can 
be more than an order of magnitude slower [3]; (2) NAND reads 
and writes are in flash pages (of 2-8 Kbytes), but erasures are 
performed in flash blocks (typically 64-512 Kbytes consisting of 
contiguous pages); (3) in-place updates are generally not 
allowed—once a page is written, the flash block containing this 
page must be erased before this page can be written again, and 

other in-use pages in the same flash block need to be copied 
elsewhere; and (4) each storage location can be erased only 10K-
1M times [3].   

As a common optimization, when flash receives a request to 
overwrite a flash page, a flash translation layer (FTL) remaps the 
write to a pre-erased flash page, stamps it with a version number, 
and marks the old page as invalid, to be cleaned later.  (Flash 
overwrites might be allowed for some special cases.)  These 
invalid pages are not accessible to components above the block 
layer; however, they can be recovered by forensic techniques [20].  
To prolong the lifespan of the flash, wear-leveling techniques are 
often used to spread the number of erasures evenly across all 
storage locations.   

NAND secure commands: We added two secure-deletion 
commands to the storage-management layer (i.e., FTL) for flash. 

Secure_delete(page numbers):� �This call specifies pages on 
flash to be deleted securely.  The call copies other in-use pages 
from the current flash block to other areas, and marks those pages 
as unused in the block.  The specified pages then can be marked 
invalid, and the current flash block can be cleared via a flash erase 
command.   

Secure_write(page numbers, data):��Generally, writing to the 
same logical page to flash would result in a new physical page 
being allocated and written, with the physical page holding old 
data versions marked invalid.  This call, on the other hand, would 
securely delete those invalid pages with Secure_delete().     

We choose this type of secure-deleting flash behavior instead 
of zero-overwriting or scrubbing [27, 38, 41] for ease of 
implementation and portability.  Alternative flash secure deletion 
schemes may have better performance on specific chips.�

NAND garbage collection: When a NAND flash device runs 
low on space, it triggers wear leveling to compact in-use pages 
into fewer flash blocks.  However, this internal storage 
reorganization does not consult with higher layers and has no 
knowledge of file boundaries, sensitive status, etc.  Thus, in 
addition to storing a file’s sensitive status in the extended 
attributes, we found it necessary to store a sensitive-status bit in 
the per-page control area. (This area also contains a page’s in-use 
status.)  With this bit, when a sensitive page is migrated to a 
different block, the old block is erased via Secure_delete().  
Consistency between the file system and the storage status is 
addressed in § 4.5.  

4.3.2 Hard Drive Storage Management 
Hard drive basics:  On a hard drive, writes can be performed 

in-place, in that a write to a logical sector will directly overwrite 
the same physical sector.   

Hard drive secure commands: Similarly to the NAND secure 
commands, we can add secure_delete(sector numbers) and 
secure_write(sector numbers, data) commands for disk.  The 
results of these commands are the same as for the flash case—
only the mechanism changes.  The secure_delete command will 
overwrite sector numbers in-place with random data, and the 
secure_write command will first overwrite sectors specified by 

sector numbers with random data before writing data.  The 
number of overwrites of random data is configurable.  These 
commands can be placed in a high-level software driver, such as 
the Linux device-mapper layer.�

4.4 File-system-consistency Properties  
We cannot guarantee the correctness of our framework if it is 

required to interact with file systems that exhibit arbitrary 
behaviors.  Therefore, we applied the consistency properties of 
file systems defined in [34] to enumerate corner cases.  (These 



properties also rule out ext2 and FAT, which are prone to 
inconsistencies due to crashes.)  By working with file systems that 
adhere to these properties, we can simplify corner-case handling 
and verify our framework systematically.   

In a simplified sense, as long as pieces of file metadata 
reference the correct data and metadata versions throughout the 
data path, the system is considered consistent.  In particular, we 
are interested in three properties in [34].  The first two are for 
non-journaling-based file systems.  In a file system that does not 
maintain both properties, a non-sensitive file may end up with 
data blocks from a sensitive file after a crash recovery.  The last 
property is needed only for journaling-based file systems.   

• The reuse-ordering property ensures that once a file’s block 
is freed, the block will not be reused by another file before its 
free status becomes persistent.  Otherwise, a crash may lead 
to a file’s metadata pointing to the wrong file’s content.  
Thus, before the free status of a block becomes persistent, the 
block will not be reused by another file or changed into a 
different block type.  With this property, we do not need to 
worry about the possibility of dynamic file ownership and 
types for in-transit blocks.  

• The pointer-ordering property ensures that a referenced data 
block in memory will become persistent before the metadata 
block in memory that references the data block.  With this 
ordering reversed, a system crash could cause the persistent 
metadata block to point to a persistent data block location not 
yet written.  This property does not specify the fate of 
updated data blocks in memory once references to the blocks 
are removed.  However, the legacy memory page cache 
prohibits unreferenced data blocks from being written.  The 
pointer-ordering property further indicates that right after a 
newly allocated sensitive data block becomes persistent, a 
crash at this point may result in the block being unreferenced 
by its file.  To cover this case, we will perform secure 
deletion on unreferenced sensitive blocks at recovery time 
(see §4.5). 

• The non-rollback property ensures that older data or 
metadata versions will not overwrite newer versions 
persistently—critical for journaling file systems with 
versions of requests in transit.  That is, we do not need to 
worry that an update to a block and its subsequent secure 
deletion will be written persistently in the wrong order.   

With these consistency properties, we can identify the 
structure of secure-deletion cases and handle them by: (1) 
ensuring that a secure deletion occurs before a block is 
persistently declared free, (2) the dual case of hunting down the 
persistent sensitive blocks left behind after a crash but before they 
are persistently referenced by file-system metadata, (3) making 
sure that secure deletion is not applied (in a sense, too late) to the 
wrong file, (4) the dual case of making sure that a secure block 
deletion is not performed too early and gets overwritten by a 
buffer update from a deleted file, and (5) handling in-transit 
versions of a storage request (mode changing, reordering, 
consolidation, merging, and splitting).  Buffering, asynchrony, 
and cancelling of requests are handled by TAP. 

4.5 Other Design Points 
Crash handling:  TAP contains no persistent states and 

requires no additional recovery mechanisms.  Persistent states 
stored as file-system attributes are protected by journal-recovery 
mechanisms.  At recovery time, a journal is replayed with all 
operations handled securely.  We then securely delete the entire 
journal.  To hunt down leftover sensitive data blocks, we 

sequentially delete sensitive blocks that are not marked as 
allocated by the file system for flash and disk [1].  Since flash 
migrates in-use pages from to-be-erased blocks by copying those 
pages elsewhere before erasing the old versions, some sensitive 
pages may have duplicates during a crash.  Given that the secure 
deletion of the page did not complete, the common journal crash-
recovery mechanism will reissue the operation, so that the other 
remaining in-use pages in the same flash block can continue the 
migration, and the block can then be erased.    

Consolidation of requests:  When consolidation is not 
permitted (e.g., consolidations of overwrites on storage), we need 
to disable storage-built-in write caches or use barriers and device-
specific flush calls to ensure that persistent updates are achieved 
[22].  When consolidation is permitted (such as in the page cache 
or journal), we interpret an update’s sensitive status during 
consolidation conservatively.  As long as one of the updates to a 
given location is sensitive, the resulting update will be sensitive.   

Dynamic sensitive-mode changes for in-transit blocks:  To 
simplify tracking the handling of a block’s sensitive status, we 
allow a non-sensitive in-transit file or directory to be marked 
sensitive, but a sensitive object is not allowed to be marked non-
sensitive.   

Shared block security status: A metadata block often stores 
metadata for many files, probably with mixed sensitive status.  
Thus, updating non-sensitive metadata may also cause the 
sensitive metadata stored on the same block to appear in the data 
path.  We simplify the handling of this case by treating a shared 
metadata block sensitively as long as one of its metadata entries is 
sensitive. 

Partial secure deletion of a metadata sector:  Securely 
deleting a file’s metadata only at the storage level is insufficient, 
since a metadata block shared by many files may still linger in the 
memory containing the sensitive metadata.  If the block is written 
again, the metadata we thought securely deleted will return to 
storage.  In these cases, we zero out the sensitive metadata within 
the block in memory, and then update the metadata as a sensitive 
write. 

5. TRUEERASE IMPLEMENTATION 
We prototyped TrueErase under Linux 2.6.25.6 and applied 

our framework to the popular ext3 and jbd journaling layer due to 
their adherence to file-system-consistency properties [34].  
Because raw flash devices and their development environments 
were not widely available when we began our research, we used 
SanDisk’s DiskOnChip flash and the associated Inverse NAND 
File Translation Layer (INFTL) kernel module as our FTL.  
Although DiskOnChip is dated, our design is applicable to 
modern flash and development environments.  As future work, we 
will explore newer environments, such as OpenSSD [39]. 

Overall, our user model required 198 lines of C code; TAP, 
939; secure-deletion commands for flash, 592; a user-level 
development environment for kernel code, 1,831; and a 
verification framework, 8,578.   

5.1 Secure-deletion Attributes 
A user can use the legacy ��������� command to mark a 

file or directory as sensitive.  However, by the time a user can set 
attributes on a file, its name may already be stored non-
sensitively.  Without modifying the OS, one remedy is to cause 
files or directories under a sensitive directory to inherit the 
attribute when they are created.  We also provide �	ABC� and 
���D�� wrapper scripts that create a file or directory with a 
temporary name, mark it sensitive, and rename it to the sensitive 
name.   



5.2 TAP Module 
TAP is implemented as a kernel module.  We will give a brief 

background on ext3 and jbd to clarify their interactions with TAP. 

5.2.1 Background on Ext3, Journaling, and Jbd 
File truncation/deletion under ext3:  Ext3 deletes the data 

content of a file via its truncate function, which involves updating 
(t1) the i-node to set the file size to zero, (t2) metadata blocks to 
remove pointers to data blocks, and (t3) the bitmap allocation 
blocks to free up blocks for reuse.  Multiple rounds of truncates 
may be required to delete the content of a large file.    

Deleting a file involves: removing the name and i-node 
reference from the directory, adding the removed i-node to an 
orphan list; truncating the entire file via (t1) to (t3); removing the 
i-node from the orphan list; and updating the i-node map to free 
the i-node. 

Journaling:  Typical journaling employs the notion of a 
transaction, so the effect of an entire group of updates is either all 
or nothing.  With group-commit semantics, the exact ordering of 
updates within a transaction (an update to an i-node allocation 
bitmap block) may be relaxed while preserving correctness, even 
in the face of crashes.  To achieve this effect, all writes within a 
transaction are (j1) journaled or committed to storage persistently; 
then (j2) propagated to their final storage destinations, after which  
(j3) they can be discarded from the journal.   

A committed transaction is considered permanent even before 
its propagation.  Thus, once a block is committed to be free (j1), it 
can be used by another file.  At recovery time, committed 
transactions in the journal are replayed to re-propagate or continue 
propagating the changes to their final destinations.  Uncommitted 
transactions are aborted. 

Jbd:  Jbd differentiates data and metadata.  We chose the 
popular ordered mode, which journals only metadata but requires 
(j0) data blocks to be propagated to their final destination before 
the corresponding metadata blocks are committed to the journal.   

5.2.2 Deployment Model 
All truncation, file deletion, and journaling operations can be 

expressed and performed as secure writes and deletions to data 
and metadata blocks.  The resulting deployment model and its 
applicability are similar to those of a journaling layer.  We 
inserted around 60 TAP-reporting calls in ext3 and jbd, with most 
collocated with block-layer interface write submission functions 
and various dirty functions (e.g., ext3_journal_dirty_data).   

Applicable block types:  Secure writes and deletions are 
performed for sensitive data, i-node, extended-attribute, indirect, 
and directory blocks, and corresponding structures written to the 
journal. Remaining metadata blocks (e.g., superblocks) are 
frequently updated and shared among files (e.g., bitmaps) and do 
not contain significant information about files.  By not treating 
these blocks sensitively, we reduce the number of secure-deletion 
operations.  

Secure data updates (Figure 2):  Ext3/jbd calls 
TE_report_write() on sensitive data block updates, and TAP 
creates per-sector write entries.  Updates to the same TAP write 
entries are consolidated via GUIDs; this behavior reflects that of 
the page cache.   

The data update eventually reaches the block-layer interface 
(via commit), which retrieves the sensitive status via 
TE_check_info().  The layer can then perform the secure-write 
operation and invoke TE_cleanup_write() to remove the 
corresponding write entries.   

Secure metadata updates:  A metadata block must be securely 
written to and deleted from the journal.  Ext3 reports pending 
journal writes to TAP via TE_report_copy().  

Jbd manages its in-use persistent journal locations through its 
own superblock allocation pointers and a clean-up function, which 
can identify locations no longer in use.  Through 
TE_report_delete(), we can put those locations on the deletion list 
and associate them with the journal superblock update.  After the 
journal superblock is securely updated, the locations on the 
deletion list can be securely wiped.  In the case of a crash, we 
securely delete all journal locations through TE_report_delete() 
once all committed updates have been securely applied. 

Secure data deletions (Figure 3):  When deleting sensitive file 
content, ext3’s truncate function informs TAP of the deletion list 
and associated file i-node via TE_report_delete().  Given the 
transactional semantics of a journal (§5.2.1), we can associate the 
content-deletion event with the file’s i-node update event instead 
of the free-block bitmap update event.  Thus, we securely delete 
data before step (t1). 
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Figure 2.  Secure data updates.  D is the data block in various 

stages of being securely written. 
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Figure 3.  Secure data deletion.  M is the updated metadata 

block; D is the data block in various stages of secure deletion; 

MJ is the metadata journal block that corresponds to the 

updated metadata block M. 

TAP will create the i-node write entry and pair it with the 
corresponding secure-deletion reminder to hold the deletion list.  
When the write entry is copied via TE_report_copy(), reminders 
are transferred to the journal copy to ensure that secure deletions 
are applied to the matching instance of the i-node update. 

When the block-layer interface receives the request to commit 
the update of the sensitive i-node to the journal, the interface calls 
TE_check_info() and retrieves the sensitive status of the i-node, 
along with the deletion list. The data areas are then securely 
deleted before the i-node update is securely written to the journal.  

Secure metadata deletions:  During a file truncation or 
deletion, ext3 also deallocates extended attribute block(s) and 
indirect block(s).  Those blocks are attached to the i-node’s list of 
secure-deletion reminders as well. 



To securely delete an i-node or a file name in a directory, the 
block containing the entry is securely updated and reported via 
TE_report_write().  Additionally, we need to zero out the i-node 
and variable-length file name in the in-memory copies, so that 
they will not negate the secure write performed at the storage-
management layer. 

If a directory is deleted, its content blocks will be deleted in 
the same way as the content from a file. 

Miscellaneous cases:  Committed transactions might not be 
propagated instantly to their final locations.  Across committed 
transactions, the same metadata entry (e.g., i-node) might have 
changed file ownership and sensitive status.  Thus, jbd may 
consolidate, say, a non-sensitive update 1, sensitive update 2, and 
non-sensitive update 3 to the same location into a non-sensitive 
update.  As a remedy, once a write entry is marked sensitive, it 
remains sensitive until securely written. 

5.3 Enhanced FTL Storage-management 

Layer  
We modified the existing Linux INFTL to incorporate secure 

deletion.  INFTL uses a stack-based algorithm to remap logical 
pages to physical ones.   

5.3.1 INFTL Extensions and Optimizations 
INFTL remaps at the flash block level, where each 16-Kbyte 

flash block contains 32 512-byte pages, with a 16-byte control 
area per page.  A remapped page always has the same offset 
within a block. 

A NAND page can be in three states:  empty, valid with data, 
or invalid.  An empty page can be written, but an invalid page has 
to be erased to become an empty page. 

INFTL in-place updates:  INFTL uses a stack of flash blocks 
to provide the illusion of in-place updates.  When a page P1 is 
first written, an empty flash block B1 is allocated to hold P1.  If 
P1 is written again (P1’), another empty flash block B2 is 
allocated and stacked on top of B1, with the same page offset 
holding P1’.  Suppose we write P2, which is mapped to the same 
block.  P2 will be stored in B2 because it is at the top of the stack, 
and its page at page offset for P2 is empty. 

The stack will grow until the device becomes full; it will then 
be flattened into one block containing only the latest pages to free 
up space for garbage collection. 

INFTL reads:  For a read, INFTL traverses down the 
appropriate stack from the top and returns the first valid page.  If 
the first valid page is marked deleted, or if no data are found, 
INFTL will return a page of zeros. 

Secure-deletion extensions:  Our added secure write 
command is similar to the current INFTL in-place update.  
However, if a stack contains a sensitive page, we set its maximum 
depth to 1 (0 is the stack top).  Once it reaches the maximum, the 
stack must be consolidated to depth 0.  When consolidating, old 
blocks are immediately erased via the flash erase command, 
instead of being left behind.   

Since the existing stack algorithm already tracks old versions, 
we also implemented the delayed-deletion optimization, which 
allows data blocks to defer the secure-write consolidation to file 
deletion time.  Basically, the maximum depth is no longer 
bounded.  Delaying secure deletion for metadata is trickier and 
will be investigated in future work.   

A secure delete is a special case of a secure write.  When a 
page is to be securely deleted, an empty flash block is allocated on 
top of the stack.  All the valid pages, minus the page to be 
securely erased, are copied to the new block.  The old block is 
then erased. 

5.3.2 Disabled storage-management optimizations 
Because jbd does not allow reordering to violate file system 

constraints and our flash has no built-in cache, we do not disable 
these optimizations.  

6. VERIFICATION  
We (1) tested the basic cases, assumptions, and corner cases 

discussed in §4.4 and (2) verified the state space of TAP.   

6.1 Basic Cases  
Sanity checks:  We verified common cases of secure writes 

and deletes for empty, small, and large files and directories using 
random file names and sector-aligned content.  After deletion, we 
scanned the raw storage and found no remnants of the sensitive 
information.  We also traced common behaviors involving 
sensitive and non-sensitive objects; when the operation included a 
source and a destination, we tested all four possible combinations.  
The operations checked included moving objects to new 
directories, replacing objects, and making and updating symbolic 
and hard links.  We also tested sparse files.  In all cases, we 
verified that the operations behaved as expected. 

Simulation of workload:  We ran the PostMark benchmark 
[16] with default settings, modified with 20% of the files marked 
sensitive, with random content.  Afterwards, we found no 
remnants of sensitive information.   

Missing updates:  To check that all update events and block 
types are reported, we looked for errors such as unanticipated 
block-type changes and unfound write entries in TAP, etc., which 
are signs of missing reports from the file system.  Currently, all 
updates are reported. 

Cases related to file-system-consistency properties:  For cases 
derived from the reuse-ordering property, we created an ext3 file 
system with most of its i-nodes and blocks allocated, to encourage 
reuse.  Then we performed tight append/truncate and file 
creation/deletion loops with alternating sensitive status.  We used 
uniquely identifiable file content to detect sensitive information 
leaks and found none. 

For pointer-ordering-related cases, we verified our ability to 
recover from basic failures and remove remnants of sensitive 
information.  We also verified that the page cache prohibits 
unreferenced data blocks from being written to the storage.  

Since the page ID part of GUIDs increases monotonically, we 
can use this property to detect illegal reordering of sensitive 
updates for the cases derived from the non-rollback property.  For 
consolidations within a transaction, we used tight update loops 
with alternating sensitive modes.  For consolidations across 
transactions, we used tight file creation/deletion loops with 
alternating sensitive modes.  We checked all consolidation 
orderings for up to three requests (e.g., non-
sensitive/sensitive/non-sensitive). 

6.2 TAP Verification  
We enumerated the TAP state-transition table and verified its 

correctness via two-version programming.   
State representation:  We exploited TAP’s properties to trim 

the state space.  First, a write entry will not consolidate with other 
write entries.  This property ensures that each sensitive update is 
carried out unless explicitly cancelled.  Various consolidation 
behaviors (e.g., page cache) are achieved by performing updates 
directly to the write entry.  Second, the next state transition is 
based on current write entries of different types within a current 
state (plus inputs).  With those two properties, we can reduce the 
representation of a state to at most one write entry of each type, 
and explore all state-generating rules.   



To illustrate, each state holds one write entry for nine block 
types:  data, i-node, other metadata, journal copy of data, journal 
copy of i-node, journal copy of other metadata, copy of data, copy 
of i-node, and copy of other metadata.  Additionally, each write 
entry has four status bits:  allocated, sensitive, having reminder 
attached, and ready to be deleted from the journal.  Thus, a state is 
a 9x4 matrix and can be represented as 36 bits, with 236 states.   

State transitions:  Each interface call triggers a state transition 
based on the input parameters.  For example, the first 
TE_report_write() on a non-sensitive i-node will transition from 
the empty state (a zero matrix), say S0, to a state S1, where the 
allocated bit for the i-node is set to 1.  If TE_report_write() is 
called again to mark the i-node as sensitive, S1 is transitioned to a 
new state S2, with allocated and sensitive bits set to 1s.   

State-space enumeration:  To enumerate states and 
transitions, we permuted all TAP interface calls with all possible 
input parameters to the same set of write entries.  A small range of 
GUIDs was used so that each write entry could have a unique 
GUID, but GUID collisions were allowed to test error conditions.  
Given that the enumeration step can be viewed as traversing a 
state-space tree in breadth-first order, the tree fanout at each level 
is the total number of interface call-parameter combinations (261).  
As an optimization, we visited only states reachable from the 
starting empty state, and avoided repeated state-space and sub-tree 
branches.  As a result, we explored a tree depth of 16 and located 
~10K unique reachable states, or ~2.7M state transitions.   

Two-version-programming verification:  Given that the state-
transition table is filled with mostly illegal transitions, we applied 
n-version programming to verify the table, where the probability 
of hitting the same bug with the same handling can be reduced as 
we add more versions.  In this work, n=2.  We wrote a user-level 
state-transition program based on hundreds of conceptual rules 
(e.g., marking a write entry of any type as sensitive will set the 
sensitive bit to 1).  The enumerated state-transition table was 
reconciled with the one generated by the TAP kernel module.   

7. PERFORMANCE EVALUATION  
We compared TrueErase to an unmodified Linux 2.6.25.6 

running ext3.  We ran PostMark [16] to measure the overhead for 
metadata-intensive small-file I/Os.  We also compiled OpenSSH 
version 5.1p1 [23] to measure the overhead for larger files.  We 
ran our experiments on an Intel® Pentium® D CPU 2.80GHz 
dual-core Dell OptiPlex GX520 with 4-GB DDR533 and 1-GB 
DoC MD2203-D1024-V3-X 32-pin DIP mounted on a PCI-G 
DoC evaluation board.  Each experiment was repeated 5 times.  
The 90% confidence intervals are within 22%.   

PostMark:  We used the default configuration with the 
following changes:  10K files, 10K transactions, 1-KB block size 
for reads and writes, and a read bias of 80%.  We also modified 
PostMark to create and mark different percentages of files as 
sensitive.  These files can be chosen randomly or with spatial 
locality, which is approximated by choosing the first x% of file 
numbers.  Before running tests for each experimental setting, we 
dirtied our flash by running PostMark with 0% sensitive files 
enough times to trigger wear leveling.  Thus, our experiments 
reflect a flash device operating at steady state.  A ���� command 
was issued after each run and is reflected in the elapsed time.   

Table 3 shows that when TrueErase operates with no sensitive 
files, metadata tracking and queries account for 3% overhead 
compared to the base case.  With 10% of files marked sensitive, 
the slowdown factor can be as high as 11, which confirmed the 
numbers in a prior study [41].  However, with 5% of files marked 
sensitive and with locality and delayed secure deletion of file data 

blocks, the slowdown factor can be reduced to 3.4, which is 
comparable to disk-based secure-deletion numbers [14].   

We noticed some feedback amplification effects.  Longer runs 
mean additional memory page flushes, which translate into more 
writes, which involve more reads and erases as well and lead to 
even longer running times.  Thus, minor optimizations can 
improve performance significantly. 

Table 3: Postmark flash operations, times, and overhead 

percentage compared to base. 
 page 

reads 
control-

area 
reads 

page 
writes 

control-
area 

writes 

erases time 
(secs) 

Base 300K 1.97M 218K 237K 4.28K 671 

0% 0.99x 1.08x 1.01x 1.01x 1.00x 1.03x 

1% random 3.69x 2.09x 2.82x 2.79x 2.58x 2.93x 

1% locality 2.95x 1.89x 2.33x 2.31x 2.16x 2.44x 

1% random, delayed deletion  3.41x 2.00x 2.61x 2.59x 2.47x 2.73x 

1% locality, delayed deletion 2.77x 1.77x 2.20x 2.19x 2.08x 2.29x 

5% random 10.3x 4.22x 6.91x 6.83x 6.67x 7.39x 

5% locality 6.69x 3.19x 4.86x 4.81x 4.32x 5.05x 

5% random, delayed deletion 7.56x 3.48x 4.99x 4.99x 5.18x 5.54x 

5% locality, delayed deletion 4.40x 2.33x 3.29x 3.29x 3.02x 3.42x 

10% random 15.3x 5.82x 9.96x 9.84x 9.75x 10.7x 

10% locality 9.96x 4.24x 7.00x 6.92x 6.23x 7.27x 

10% random, delayed deletion 9.44x 4.23x 5.91x 5.96x 6.54x 6.80x 

10% locality, delayed deletion 5.82x 2.96x 4.19x 4.22x 3.90x 4.45x 

Table 4: Compilation flash operations, times, and overhead 

percentage compared to base. 
 page 

reads 
control-area 

reads 
page 

writes 
control-

area 
writes 

erases time 
(secs) 

make + sync 

Base 25.3K 108K 22.5K 23.9K 352 89 

Random 4.79x 3.10x 3.15x 3.15x 3.13x 2.51x 

Random, delayed deletion 1.70x 1.37x 1.41x 1.43x 1.40x 1.41x 

make clean + sync 

Base 1.60K 3.73K 445 514 22 3 

Random 10.0x 10.1x 13.6x 15.0x 7.14x 8.13x 

Random, delayed deletion 8.47x 8.36x 11.0x 12.6x 6.22x 6.87x 

Total 

Base 26.9K 112K 23.0K 24.4K 374 92 

Random 5.10x 3.33x 3.35x 3.40x 3.37x 2.70x 

Random, delayed deletion 2.10x 1.60x 1.59x 1.66x 1.69x 1.59x 

 
OpenSSH compilations:  We issued 	�AD+���� and 	�AD�

��D������� to measure the elapsed times for compiling and 
cleaning OpenSSH [23].  For the TrueErase case, we marked the 
��D���B ��	��� directory sensitive before issuing 	�AD, 
which would cause all newly created files (e.g., .o files) in that 
directory to be treated sensitively.  These files account for roughly 
27% of the newly generated files (8.2% of the total number of 
files and 4.1% of the total number of bytes after compilation).  
Before running each set of tests, we dirtied the flash in the same 
manner as with PostMark and discarded the first run that warms 
up the page cache.  Table 4 shows that a user would experience a 
compilation slowdown within 1.4x under the delay-deletion mode.  
A user would experience a slowdown within 6.9x under the 
delayed-deletion mode with a deletion-intensive workload.   For 
the entire compilation cycle of 	�AD����� with 	�AD�
��D�������, a user would experience an overall slowdown 
within 60% under the delayed-deletion mode.   

Overall, we find that the overhead is within our expectations. 
Further improvements in performance are future work. 



8. RELATED WORK 
This section discusses existing cross-layer secure-deletion 

solutions. 
A semantically-smart-disk system (SDS) [36] observes disk 

requests and deduces common file-system-level information such 
as block types.  The File-Aware Data-Erasing Disk is an ext2-
based SDS that overwrites deleted files at the file-system layer.   

A type-safe disk [33] directly expands the block-layer 
interface and the storage-management layer to perform free-space 
management.  Using a type-safe disk, a modified file system can 
specify the allocation of blocks and their pointer relationships.  As 
an example, this work implements secure deletion on ext2.  
Basically, when the last pointer to a block is removed, the block 
can be securely deleted before it is reused.   

Lee et al. [18] have modified YAFFS, a log-structured file 
system for NAND flash, to handle secure file deletion.  The 
modified YAFFS encrypts files and stores each file’s key along 
with its metadata.  Whenever a file is deleted, its key is erased, 
and the encrypted data blocks remain.  Sun et al. [38] modified 
YAFFS and exploited certain types of NAND flash that allow 
overwriting of pages to achieve secure deletion.  Raerdon et al. 
[27] also modified YAFFS to use a flash-chip-specific zero-
overwriting technique.  In addition, Raerdon et al. [26] developed 
the Data Node Encrypted File System (DNEFS), which modifies 
the flash file system UBIFS to perform secure deletion at the data 
node level, which is the smallest unit of reading/writing.  DNEFS 
performs encryption and decryption of individual data nodes and 
relies on a key generation and deletion scheme to prevent access 
to overwritten or deleted data.  Since UBIFS is designed for flash 
with scaling constraints, this approach is not as applicable for 
disks and larger-scale storage settings. 

9. FUTURE WORK 
Many opportunities exist to increase TrueErase’s performance 

on NAND flash.  We can implement flash-chip-specific zero-
overwriting or scrubbing routines [27, 38, 41].  However, this 
optimization may make our solution less portable.  We can add 
encryption to our system and use TrueErase to ensure secure 
deletion of the encryption key.  We could also batch flash erasures 
for better flash performance. 

Other future work will include tracking sensitive data between 
files and applications via tainting mechanisms, expanded handling 
of other threat models, and generalizations to handle swapping, 
hibernation, RAID, and volume managers. 

10. LESSONS LEARNED/CONCLUSION 
This paper presents our third version of TrueErase.   Overall, we 
found that retrofitting security features to the legacy storage data 
path is more complex than we first expected.   

Initially, we wanted to create a solution that would work with 
all popular file systems.  However, we found the verification 
problem became much more tractable when working with file 
systems with proven consistency properties, as described in § 4.4. 

Our earlier designs experimented with different methods to 
propagate information across storage layers, such as adding new 
special synchronous I/O requests and sending direct flash 
commands from the file system.  After struggling to work against 
the asynchrony in the data path, we instead associated secure-
deletion information with the legacy data path flow.  We also 
decoupled the storage-specific secure-deletion action from the 
secure information propagation for ease of portability to different 
storage types. 

We also found it tricky to design the GUID scheme due to in-
transit versions and the placement of GUIDs.  To illustrate, using 

only the sector number was insufficient when handling multiple 
in-transit updates to the same sector with conflicting sensitive 
statuses. Placing a GUID in transient data structures such as a 
block I/O structures led to complications when these structures 
could be split, concatenated, copied, and even destroyed before 
reaching storage.  We solved this problem by associating a GUID 
with the specific memory pages that contain the data. 

Tracking-granularity issues exist throughout the datapath.  
Data is stored in memory pages.  File systems interact with 
blocks, multiples of which may exist on one memory page.  The 
block layer may concatenate blocks together to form requests, 
which may span more than one memory page.  Finally, requests 
are broken up into storage-specific granularities (e.g., flash 
pages).  Metadata entries with mixed sensitive status can collocate 
within various access units as well.  Various granularities make it 
difficult to map our solution to existing theoretical verification 
frameworks [34]. 

Finally, our work would not have been possible without direct 
access to a flash FTL.  An unfortunate trend of FTLs is that they 
are mostly implemented in hardware, directly on the flash device 
controller.  An implication is that most FTLs (and their wear-
leveling/block-management routines) cannot be seen or accessed 
by the OS.  To leave the door of software FTL research open, we 
need to create an environment that enables and eases 
experimentation, to demonstrate the benefits of software-level 
developments and controls. 

To summarize, we have presented the design, implementation, 
evaluation, and verification of TrueErase, a legacy-compatible, 
per-file, secure-deletion framework that can stand alone or serve 
as a building block for encryption- and taint-based secure deletion 
solutions.  We have identified and overcome the challenges of 
specifying and propagating information across storage layers.  We 
show we can handle common system failures.  We have verified 
TrueErase and its core logic via cases derived from file-system-
consistency properties and state-space enumeration.  Although a 
secure-deletion solution that can withstand diverse threats remains 
elusive, TrueErase is a promising step toward this goal. 
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