UCLA CS111
Operating Systems (Spring 2003, Section 1)

Semaphores and Bounded Buffer
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

Semaphores are a type of generalized lock, first defined by Dijkstra in the late 60s. Semaphores are the main synchronization primitive used in UNIX. Semaphores have a positive integer value, and support the following two operations:

· P(): an atomic operation that waits for semaphore to become positive, then decrements it by 1.

· V(): an atomic operation that increments semaphore by 1, waking up a thread waiting at P(), if any.

The P operation was an abbreviation for the Dutch word proberen, meaning “to test,” and the V operation was an abbreviation for verhogen, meaning “to increment.” Semaphores are like integers, except:

1. No negative values.

2. Only operations are P() and V()—can’t read or write value, except to set it initially.

3. Operations must be atomic—two P() calls that occur together can’t decrement the value below zero. Similarly, a thread that is going sleep in P() will not miss wakeup from V(), even if they both happen at about the same time.

A binary semaphore has a Boolean value, instead of an integer value. P() waits until the value is 1, then sets it to 0. V() sets the value to 1, waking up a thread waiting at P(), if any.

Two Uses of Semaphores

Mutual Exclusion

When semaphores are used for mutual exclusion, the semaphore has an initial value of 1, and P() is called before the critical section, and V() is called after the critical section.

semaphore s = 1;

P(s);

// critical section

V(s);

Scheduling Constraints

Semaphores can also be used to express generalized scheduling constraints. In other words, semaphores provide a way for a thread to wait for something. In this case, the initial value of the semaphore is usually 0 (but not always).

semaphore s1 = 0;

semaphore s2 = 0;

A() {

B() {

write(x);

P(s1);

V(s1);

read(x);

P(s2);

write(y);

read(y);

V(s2);

}

}

Producer-Consumer with a Bounded Buffer

One classic problem is the producer-consumer problem. A producer put things into a shared buffer; a consumer takes them out. Since it is inefficient to operate the producer and consumer in lockstep, a fixed-size buffer is used between them. The producer needs to wait if the buffer is full; the consumer needs to wait if the buffer is empty. The solution involves both scheduling and mutual exclusion.

There are three constraints for the solution:

(1) The consumer must wait if buffers are empty (scheduling constraint).

(2) The producer must wait if buffers are full (scheduling constraint).

(3) Only one thread can manipulate the buffer at a time (mutual exclusion).

For each constraint, we need a semaphore.

semaphore nLoadedBuffers = 0;
// consumer waits on 0

semaphore nFreeBuffers = N;
// producer waits on 0

semaphore mutex = 1;

// one thread waits when

// another thread is

// modifying the

// buffer

Producer() {

P(nFreeBuffers);

P(mutex);

// put 1 item in the buffer

V(mutex);

V(nLoadedBuffers);

}

Consumer() {

P(nLoadedBuffers);

P(mutex);

// take 1 item from the buffer

V(mutex);

V(nFreeBuffers);

}

