UCLA CS111
Operating Systems (Spring 2003, Section 1)

Introduction and History
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

Why Study Operating Systems?

An operating system is the largest and the most complicated software running on most machines. By knowing how operating systems work, we learn how to organize a large piece of software (system design), how to hide complexity (abstraction), how to tune a large system (performance), and how to share software and hardware components in a safe, efficient, and fair manner (resource coordination). The skill set obtained from this course is directly applicable to many advanced areas of computer science (e.g., software engineering, database, network, and distributed computing).

What is an Operating System?

An operating system is a virtual machine (emulated hardware) that aims to provide a simpler programming environment than the raw machine.

In some sense, the operating system is just a solution to a software engineering problem: how do you hide the complexity and limitations of hardware from application programmers?

The design of each operating system component begins with the following two questions:

1. What is the hardware interface? (the physical reality)

2. What is the application interface? (the nicer abstraction)

For different areas of the operating system, these two questions take forms in different ways: How to make a single CPU appear to be multiple CPUs? How to make limited memory capacity appear to be infinite? How to make a mechanical disk appear to be as fast as electronic memory? How to make insecure, unreliable network transmissions appear to be reliable and secure? How to make many physical machines appear to be a single machine?

Two General Functions of Operating Systems

A typical operating system provides two core sets of functions:

1. Standard services consist of common facilities, such as screen display and disk accesses.

2. Coordination allows multiple applications to work together in safe, efficient, and fair ways.

In Nutt’s textbook, he uses resource to illustrate the same point. Resources are generally required software or hardware components for a computation. Standard services provide a way to hide the complexity of hardware resources (resource abstraction), and coordination allows safe, efficient, and fair ways of resource sharing.

Standard Services

One example of standard services is accessing a disk drive. A simple conceptual model of a disk consists of a comb of a disk arm and disk platters.

Accessing a raw disk involves specifying the data, the length of data, the disk drive, the track location(s), and the sector location(s) within the corresponding track(s).

write(block, len, device, track, sector);

However, at the application level, a programmer may prefer to specify a file and the location of updates, without worrying about the underlying physical complexity of the disk.

lseek(file, file_size, SEEK_SET);

write(file, text, len);

Coordination

A simple example of coordination is protection. An operating system needs to protect different applications from crashing each other and crashing the operating system.

Preventing applications from crashing each other is mainly achieved by making instances of applications run in different address spaces. Literally, an address space defines all memory address that an instance of application can touch.

Preventing applications from crashing the operating system is commonly achieved by having dual-mode operations. When the operating system is running (e.g., the CPU is running under the kernel-mode), anything goes. When an application is running (e.g., the CPU is running under the user-mode), an application can only access states within its own address space.

Note that if the operating system is dedicated to a single application, dual-mode operations are not required.

Principles of Operating Systems

Throughout the course, you will see four recurring themes:

1. OS as illusionist—make hardware limitations go away.

2. OS as government—protect users from each other and allocate resources efficiently and fairly.

3. OS as complex system—keeping things simple is key to getting it to work.

4. OS as history teacher—learn from past to predict the future.

History of Operating Systems: Change!

Typical academic computer in 1980 and 2000

	
	
	1980
	2000
	Factor

	Speed
	CPU
	1 MIPS
	1000 MIPS
	1000

	
	Memory
	500 ns
	2 ns
	250

	
	Disk
	18 ms
	2 ms
	9

	
	Modem
	300 bits/second
	56 Kbits/second
	200

	Capacity
	Memory
	64 Kbytes
	128 Mbytes
	2000

	
	Disk
	1 Mbytes
	6 Gbytes
	6000

	Cost
	Per MIP
	$100K
	<= $1
	100000

	Other
	Address bits
	8
	64
	8

	
	Users/machine
	10s
	<=1
	.01

History Phase I: Hardware Expensive, Humans Cheap

When computers used to cost millions of dollars, operating systems aimed for more efficient use of the hardware.

Back in the transistor-based technology, early mainframes were first run by human operators. The unit of processing was a job, or predefined collection of commands that are executed without human interaction. Operators would handle one job at a time (e.g., submitting punch cards, running the program, and printing out results). Much computer time was wasted while operators were walking around the machine room.

A batch system was introduced to collect a batch of jobs before processing them and printing out results. A batch system consists of three stages—job collection, job processing, and printing out results. All three stages can occur concurrently.

Since CPU processing and I/O processing can occur concurrently, a job that is waiting for its I/O to complete can be overlapped with a job that is using CPU—the beginning of multiprogramming, or allowing multiple programs to run concurrently.

One drawback of the batch system was the lack of user interaction. The debugging turn-around time can be long. Multiprogramming requires memory protection to prevent jobs from crashing one another.

History Phase II: Hardware Cheap, Humans Expensive

With the declining price of hardware, programmers can afford to own terminals to interact with timesharing systems.

History Phase III: Hardware Very Cheap, Humans Very Expensive

Computers are cheap enough that everyone can own one or more. A modern desktop operating system can support multitasking, or running multiple programs on the same machine at the same time. With multiple processors, a modern operating system can also support multiprocessing.

History Phase IV: Distributed Systems

Networking allows different machines to share resources easily.

The Bottom Line

Designs of operating systems need to change with changing technology.

Applications

Operating system (virtual machine)

Raw machine

Virtual machine interface

Physical machine interface

Disk arm

Disk platters

A track

