UCLA CS111
Operating Systems (Spring 2003, Section 1)

Network Protocols
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

A protocol is an agreement between two parties as to how information is to be transmitted. For example, system calls are the protocol between the operating system and applications. A network protocol abstracts the physical reality of packets into messages. This abstraction is achieved through the use of a layered architecture, where a more complicated service is built on the top of a simpler service.

	Physical reality: packets
	Abstraction: messages

	Limited size
	Arbitrary size

	Unordered
	Ordered

	Unreliable
	Reliable

	Machine-to-machine
	Process-to-process

	Only on local area net
	Routed anywhere

	Asynchronous
	Synchronous

	Insecure
	Secure

Arbitrary-Size Messages

Arbitrary-size messages can be easily built on the top of limited-size ones, by splitting up a message into fixed-size packets. Checksum can be computed on each fragment, or on the whole message.

Internet Protocol (IP)

IP provides unreliable, unordered, machine-to-machine transmissions of arbitrary-size messages from one machine to another.

Process-to-Process Communications

Process-to-process communications are built on the top of machine-to-machine communications through the use of port addresses. Each message contains the destination port to allow a process to communicate with the correct process.

Unreliable Data Protocol (UDP)

UDP provides unreliable, unordered, user-to-user communication, built on the top of IP.

Ordered Messages

Ordered messages are built on the top of unordered ones. Since IP can shuffle the ordering of packets at times, each packet is assigned a sequence number to indicate the order of arrival (i.e., 0, 1, 2, 3). For example, if packet 3 arrives before packet 2, a network protocol should not deliver packet 3 to the user application until receiving and delivering packet 2. (Note that the sequence number is specific to a connection.)

Reliable Message Delivery

Reliable message delivery is built on the top of unreliable delivery. The network infrastructure can garble messages in a number of ways. At the physical level, network controllers try to transmit close to the maximum rate to get more throughputs, even if some packets can get lost. At network switches, if a sender sends faster than a receiver can process, packets may get dropped.

As a countermeasure, a network protocol can perform the following steps:

1. Detect garbling at receiver via checksum, discard if the checksum is incorrect.

2. A receiver acknowledges if a packet is received properly.

3. Timeout at the sender. If a sender does not receive the acknowledgement, the sender retransmits the packet.

Note that the sender may send a packet twice, if the first corresponding acknowledgement is dropped. Therefore, the receiver also needs to check the sequence number to discard duplicate packets. The avoidance of duplicate packets also has the following implications:

1. The sender must keep a copy of every message that has not been acknowledged.

2. The receiver must keep track of every message that could be a duplicate.

Transmission Control Protocol (TCP)

TCP provides reliable byte stream between two processes on different machines over the Internet. TCP fragments the byte stream into packets and hands packets to IP. A TCP sender has three message categories: (1) sent and acknowledged, (2) sent and not acknowledged, and (3) not yet sent. A TCP receiver also has three message categories: (1) given to application, (2) received and buffered, and (3) not yet received.

More on the Sequence Number

Since the use of sequence numbers is crucial for in-order deliveries and detecting duplicate packets, a network protocol needs to have a way to recycle sequence numbers. There are two popular solutions:

1. Each TCP packet has a time-to-live field. If the packet is not delivered in X seconds, the packet is dropped. Thus, sequence numbers can be reused.

2. An epoch number to uniquely identify which set of sequence numbers are being used. The epoch number is incremented at each boot, or when the sequence numbers are running out. The epoch number is stored on disk.

Congestion

Configuring the timeout period at a sender has serious performance implications. If the timeout is too long, the sender may wait too long even if the message is dropped. If the timeout is too short, a message is retransmitted while the acknowledgement is still in transit.

The timeout period also has stability implications on network congestion. If a delayed acknowledgement means unnecessary timeout, it means more data retransmission, which furthers the delay of acknowledgements.

The TCP solution is to have a slow start. It starts by sending a small amount of data. If no timeout, more data is sent. If timeout (network is congested), the TCP reduces the amount of data being sent.

The Byzantine Generals’ Problem

Two generals are on the top of two mountains. They can only communicate through messengers, and messengers can be captured. They need to coordinate the attack. If they attack at the same time, they win. If they attack at different times, they will all die. The question is whether they can guarantee a synchronized attack.

Remarkably, the answer turned out to be no, even if all messengers could get through.

General X

General Y

Even if all messages are delivered, a general cannot be sure that the last message is delivered.

In other words, over an unreliable network, we cannot guarantee that two computers will synchronize.

Two Phase Commit

Although the Byzantine problem has no solution, there is a solution to a closely related problem. The concept is to have distributed transaction—multiple machines agree to do something atomically, but not necessarily at exactly the same time.

The two-phase protocol does the following, using log on each machine to keep track of whether commit has occurred.

	X
	Y

	Phase 1: ask if each can commit

	1. Writes “begin transaction” to log
	

	
	(X, transfer money to me

	(Y, enough cash
	

	
	2. Writes “Y account balance” to log

	
	(X, OK, I can commit

	
	

	Phase 2: X can decide for both, whether they will commit

	3. Writes “X account balance” to log
	

	4. Writes “commit”
	

	(Y, commit has occurred
	

	
	5. Writes “got commit” to log

If X crashes before step 4, X will wake up and abort the transaction. If X crashes between steps 4 and 5, Y will timeout and ask X for the transaction. Since X has already committed, X will tell Y to commit, and Y will commit.

If Y crashes between 1 and 2, Y wakes up and does nothing, X will timeout and aborts the transaction.

If Y crashes between 2 and 5, Y will wake up to check the log, so when A sends it the commit message, Y will commit. If Y times out, Y will ask X for the status of the transaction, and then X will tell Y whether the transaction has been committed.

Yeah, what if you don’t get this ack?

So, 11am it is.

11am sounds good.

11am OK?

