UCLA CS111
Operating Systems (Spring 2003, Section 1)

Demand Paged Virtual Memory
Instructor

Andy Wang (awang@cs.ucla.edu)

Office: 3732J Boelter Hall

Office Hours: M1-3, W1-2, Th2-3, and by appointment

__

Demand Paging

Up to this point in the course, we assumed that all of a process’s virtual address space must be in the physical memory to run. However, a typical process does not use all of its memory all of the time. In fact, a process spends 90% of its time running only 10% of the program code. Therefore, a more efficient way is to use memory as a cache for disk. Demand paging allows the pages that are being referenced actively to be stored in memory; the remaining pages, on disk. Overall, demand paging allows bigger virtual address spaces and provides the illusion of infinite physical memory. Demand paging also allows more processes to fit in the physical memory, and to be running at the same time.

Demand Paging Mechanism

Demand paging means that page tables need to sometimes point to the disk locations as opposed to memory locations. A page table now needs an additional present or valid bit. If present, the page table entry points to a page in memory.

If not present, a reference to an invalid page (page fault) will cause the hardware to trap, and the OS performs the following steps while running another process in the meantime.

1. Choose an old page in memory to replace

2. If the old page has been modified, write contents back to disk

3. Change the corresponding page table entry and TLB entry

4. Load new page into memory from disk

5. Update page table entry

6. Continue the thread

Software-Loaded TLB

Instead of having the hardware load the TLB when a translation does not match, TLB can be software loaded. The idea is that since the TLB hit rate is high, it is okay to trap to software to fill the TLB, even if it is a bit slower.

The implementation also involves a present or valid bit for the TLB. If present, the TLB entry points to a page in memory. If not present, hardware traps to the OS on reference not in the TLB. The OS software performs the following steps:

1. Checks to see if the page is in memory through the translation tables.

2. If yes, loads the page table entry into TLB.

3. If not, performs page-fault operations.

4. Continues the thread.

Both paging to disk and software loading the TLB are transparent (invisible) to a process—it does not know it happened.

Transparent Page Faults

To provide transparent page faults, the hardware needs to save the faulting instruction and the processor state. If an instruction has an side effect, the hardware needs to think about how to either unwind the side effects or finish off the side effects.

For example, if a delay load is in progress while the next instruction is causing a page fault, the hardware needs to save enough states to allow the CPU to restart.

ld r1, x

// page fault

Hardware designers need to know about the virtual memory, since unwinding instructions may not always be possible. One example is the block transfer instruction. Source and destination blocks can overlap, and a part of the source may be overwritten as instruction proceeds.

[image: image1.bmp]

Page Replacement Policies

There are a handful of replacement policies.

Random Replacement

TLBs use random replacement because this policy is easy to implement in hardware.

FIFO

The FIFO policy throws out the oldest page. The policy is fair in the sense of letting every page live in memory for the same amount of time. However, this policy may throw out pages that are heavily used, instead of those that are not frequently used.

MIN

The ideal strategy is to replace a page that will not be used for the longest time in the future. However, we do not know the future….

LRU

The least-recently used (LRU) policy replaces a page that has not been used for the longest time. If the past is a good predictor of the future, LRU is a good approximation to MIN. In real implementations, people do not even use LRU; they approximate it.

LFU

Another similar policy is to replace the least frequently used page (LFU). Since LFU tracks the usage count of pages, it will take longer to replace pages with high count values, even if those pages are no longer in use.

Examples

Suppose that a cache can hold three pages. A process makes references to four pages: ABCABDADBCB. Under FIFO, we have the following page fault pattern. The page faults with the asterisk mark are compulsory misses.

	Cache slot
	A
	B
	C
	A
	B
	D
	A
	D
	B
	C
	B

	1
	*A
	
	
	
	
	*D
	
	
	
	C
	

	2
	
	*B
	
	
	
	
	A
	
	
	
	

	3
	
	
	*C
	
	
	
	
	
	B
	
	

Under MIN, we have the following page fault pattern.

	Cache slot
	A
	B
	C
	A
	B
	D
	A
	D
	B
	C
	B

	1
	*A
	
	
	
	
	
	
	
	
	C
	

	2
	
	*B
	
	
	
	
	
	
	
	
	

	3
	
	
	*C
	
	
	*D
	
	
	
	
	

Under LFU, we have the following page fault pattern. The grayed out numbers indicate the number of times a page is referenced.

	Cache slot
	A
	B
	C
	A
	B
	D
	A
	D
	B
	C
	B

	1
	*A
	
	
	2
	
	
	3
	
	
	
	

	2
	
	*B
	
	
	2
	
	
	
	3
	
	4

	3
	
	
	*C
	
	
	*D
	
	2
	
	C
	

Under LRU, we have the following page fault pattern. The grayed-out X marks how recently a page is referenced.

	Cache slot
	A
	B
	C
	A
	B
	D
	A
	D
	B
	C
	B

	1
	*A
	
	
	X
	
	
	X
	
	
	C
	

	2
	
	*B
	
	
	X
	
	
	
	X
	
	X

	3
	
	
	*C
	
	
	*D
	
	X
	
	
	

Although LRU seems to work as well as MIN, LRU does not work well when the next reference is the least recently used page (i.e., a reference string of ABCDABCDABCD).

	Cache slot
	A
	B
	C
	D
	A
	B
	C
	D
	A
	B
	C
	D

	1
	*A
	
	
	*D
	
	
	C
	
	
	B
	
	

	2
	
	*B
	
	
	A
	
	
	D
	
	
	C
	

	3
	
	
	*C
	
	
	B
	
	
	A
	
	
	D

In fact, FIFO is as bad as LRU. However, MIN still works pretty well.

	Cache slot
	A
	B
	C
	D
	A
	B
	C
	D
	A
	B
	C
	D

	1
	*A
	
	
	
	
	
	
	
	
	B
	
	

	2
	
	*B
	
	
	
	
	C
	
	
	
	
	

	3
	
	
	*C
	*D
	
	
	
	
	
	
	
	

Does Adding Memory Always Reduce The Number of Page Faults?

For the LRU and MIN replacement policies, the answer is yes, since the memory content for using X cache pages is a subset of the memory content for using X + 1 cache pages.

For the FIFO replacement policy, the answer is no. Since the memory content can be completely different with a different number of cache pages. In other words, it is possible for the FIFO replacement policy to get more page faults by increasing the cache size (Belady’s anomaly). The following two tables demonstrate the Belady’s anomaly.

	Cache slot
	A
	B
	C
	D
	A
	B
	E
	A
	B
	C
	D
	E

	1
	*A
	
	
	*D
	
	
	*E
	
	
	
	
	

	2
	
	*B
	
	
	A
	
	
	
	
	C
	
	

	3
	
	
	*C
	
	
	B
	
	
	
	
	D
	

	Cache slot
	A
	B
	C
	D
	A
	B
	E
	A
	B
	C
	D
	E

	1
	*A
	
	
	
	
	
	*E
	
	
	
	D
	

	2
	
	*B
	
	
	
	
	
	A
	
	
	
	E

	3
	
	
	*C
	
	
	
	
	
	B
	
	
	

	4
	
	
	
	*D
	
	
	
	
	
	C
	
	

Implementing LRU

A perfect implementation of LRU requires a timestamp on each reference to a cache page, and the OS needs to keep a list of pages ordered by the timestamp. However, this implementation is too expensive considering the frequency of memory references. The common practice is to approximate the LRU behavior.

Clock Algorithm

The idea of approximating the LRU replacement policy is to replace an old page, not the oldest page. The clock algorithm arranges physical pages in a circle, with a clock hand. The hardware keeps a use bit for each physical page. The hardware sets the use bit to 1 on each reference. If the user bit is not set, it means that the page has not been referenced for some time.

On page fault, the clock hand starts to sweep clock-wise. If it encounters a use bit that is set to 1, it sets it to 0 and moves on. If the use bit is 0, the page is chosen for replacement.

The clock cannot tick indefinitely, since all each use bit is eventually cleared. A slow moving hand means that pages are either found quickly, or there are few page faults. A quick moving hand means lots of page faults, or lots of use-bit sets. One simple way to view the clocking algorithm is that of a crude partitioning of pages into young and old categories.

Nth Chance

The nth chance algorithm is a variant of the clocking algorithm, which does not throw a page out until the hand had swept by n times. With a large n, the nth chance algorithm has a better approximation of the LRU. A smaller n is more efficient. A common implementation is to use n = 1 for clean pages, n = 2 for dirty (modified) pages. After flushing the updates to the disk, n is set to 1.

States for A Page Table Entry

Many page table implementations maintain a four-bit per page table entry.

· use bit: set when a page is referenced, cleared by the clock algorithm

· modified bit: set when page is modified, cleared when a page is written to disk

· valid bit: set when a program can make legitimate use of this page table entry

· read-only: set for a program to read the page, but not to modify it (e.g., code pages)

Thrashing

Thrashing occurs when the memory is over committed, and pages are tossed out while still needed. For example, a program may have a hash table of 50 pages, while the physical memory has only 40 pages. Since the effective cache hit rate is 80%, the effective access time is computed as the following, assuming 2 nsec to make a memory reference and 2 msec to make a disk reference.

T
= 80%*2 nsec + 20%*(2 nsec + 2 msec)

~= 400 micro seconds

The OS should avoid thrashing, but the problem is that the system does not know what it is getting into. There are two ways to avoid thrashing.

1. At the level of a single process, a program should be written in a way that the memory requirement is small at a given time, so a process has better locality. For example, a matrix multiplication can be split into smaller sub-matrix multiplications.

2. At the level of multiple processes, the OS needs to figure out the memory needs per process, and run only the computations that fit in the physical RAM.

Working Set

A working set is a set of pages that a process has referenced in the last T seconds. If the T is infinite, the working set is the entire process. If T is smaller than the time to perform the page fault, the size of working set is one page and we have thrashing. A working-set-based algorithm is modeled on the observation that the number of page faults will not decrease significantly once the size of the working set has reached a threshold. Also, the threshold can be adjusted dynamically according to the rate of page faults. The goal is to use a minimum number of pages to get the fewest page faults.

For example, the LRU scheme results in many page faults with a cache of three pages, if we have the reference stream: ABCDABCDEFGH

	Cache slot
	A
	B
	C
	D
	A
	B
	C
	D
	E
	F
	G
	H

	1
	*A
	
	
	*D
	
	
	C
	
	
	*F
	
	

	2
	
	*B
	
	
	A
	
	
	D
	
	
	*G
	

	3
	
	
	*C
	
	
	B
	
	
	*E
	
	
	*H

With the cache size of four pages, the same reference stream causes only compulsory misses.

	Cache slot
	A
	B
	C
	D
	A
	B
	C
	D
	E
	F
	G
	H

	1
	*A
	
	
	
	
	
	
	
	*E
	
	
	

	2
	
	*B
	
	
	
	
	
	
	
	*F
	
	

	3
	
	
	*C
	
	
	
	
	
	
	
	*G
	

	4
	
	
	
	*D
	
	
	
	
	
	
	
	*H

However, if we further increase the cache size to hold eight pages, we can no longer reduce cache misses.

	Cache slot
	A
	B
	C
	D
	A
	B
	C
	D
	E
	F
	G
	H

	1
	*A
	
	
	
	
	
	
	
	
	
	
	

	2
	
	*B
	
	
	
	
	
	
	
	
	
	

	3
	
	
	*C
	
	
	
	
	
	
	
	
	

	4
	
	
	
	*D
	
	
	
	
	
	
	
	

	5
	
	
	
	
	
	
	
	
	*E
	
	
	

	6
	
	
	
	
	
	
	
	
	
	*F
	
	

	7
	
	
	
	
	
	
	
	
	
	
	*G
	

	8
	
	
	
	
	
	
	
	
	
	
	
	*H

A 2nd chance clocking algorithm can be modified to implement the working-set-based replacement policy.

1. If n = 1, record the current time.

2. If n = 0, and if the age (current time – timestamp) of the page is greater than the threshold (no longer in the working set), the page is replaced.

3. If n = 0, and if the age of the page is younger than the threshold (still in the working set), find the oldest page and evict.

Global vs. Local Replacement Policies

For a global replacement policy (UNIX), all pages are in one pool for all processes. This policy is more flexible in the sense that if one process needs more memory, it can grab some from processes that do not require as much memory. The downside is that one misbehaving program can potentially drag down the whole system.

For the per-process replacement policy, each process has its own pool of pages (i.e., a separate clock for each process).

0

1

1

0

0

0

1

0

Destination end

Destination begin

Source end

Source begin

