Elephant: TheFile System that Never Forgets

Douglas J. Santry, Michael J. Feeley, Norman C. Hutchinson

Department of Computer Science
University of British Columbia
Vancouver, Canada
{dsantry,feeley,norm} @cs.ubc.ca

Abstract

Modern file systems associate the deletion of a file with
the release of the storage associated with that file, and file
writes with the irrevocable change of file contents. \\e pro-
pose that thismodel of file system behavior isardic of the
past, when disk storage was a scarce resource. e believe
that the correct model should ensure that all user actions
are revocable. Deleting a file should change only the name
space and file writes should overwrite no old data. Thefile
system, not the user, should control storage allocation us-
ing a combination of user specified policiesandinformation
gleaned from file-edit historiesto determine which old ver-
sions of afileto retain and for how long.

This paper presents the Elephant file system, which pro-
vides users with a new contract: Elephant will automati-
cally retain all important versions of the usersfiles. Users
name previousfile versions by combining a traditional path-
name with a time when the desired version of afile or direc-
toryexisted. Elephant managesstorageat thegranularity of
a file or groups of files using user-specified retention poli-
cies. This approach contrasts with checkpointing file sys-
temssuch asPlan-9, AFS and WAFL, that periodicallygen-
erate efficient checkpoints of entire file systems and thusre-
gtrict retention to be guided by a single policy for all files
within that file system. \We also report on the Elephant pro-
totype, which isimplemented as a new Virtual File System
inthe FreeBSD kernel.

1. Introduction

Disksare becoming ever cheaper and larger. Human pro-
ductivity, however, remains constant. This affords system
designers an opportunity to re-examine theway we use disk
stores. In particular, the previous model of user-controlled
storage allocation may no longer be valid.

*This work is supported by the Natural Sciences and Engineering Re-
search Council of Canada.

Alistair C. Veitch
Hewlett Packard Laboratories
Palo Alto, California
aveitch@hlp.hp.com

The current model of most file systemsis that they store
the most recent version of afile. Users explicitly manage
files by deleting them when they are no longer needed or
when necessary to make room for new files when storage
fills. If a user wants to maintain older versions of files she
must explicitly make and maintain multiple copies.

Today, information is valuable and storage is cheap. It
thusmakes sensefor thefile systemto use some of thischeap
storageto ensure that valuablefiles are never lost due to the
failure of auser to make acopy (or make theright copy) be-
fore modifying them, or because of the accidental or unin-
formed deletion of afile that isin fact valuable.

If afileis mistakenly removed or overwritten, vauable
data can be lost and in some real sense the file system will
have failed the user. As a result, the savvy user tends to
be conservative, making many copies of data and avoiding
deleteswhenever possible. Many researchers have observed
this problem and attempted to solve it. Section 2 summa-
rizes thisrelated work.

This paper proposes anew file system model, called Ele-
phant, in which old versions of files are automatically re-
tained and storage is managed by the file system using file-
grain retention policies specified by the user. The goal of
Elephant isto present userswith afilesystem that retainsim-
portant old versions of al of their files. User actions such as
deleteand filewritearethuseasily revocable by rolling back
thefile system, a directory, or an individua fileto an earlier
pointintime. Section 3 describes thedesign of Elephant and
Section 4 describes our prototypeimplementation.

2. Related Work

The goa of keeping multiple versions of data automat-
ically, compactly, and in an organized way is reminiscent
of software version control systems[8, 12]. These systems
are implemented by application programs running on top of
atraditional file system. Users checkout a version from a
version-controlled repository, modify a local copy of that
version in the file system, and then return the modified ver-



sion to the repository, which compresses it with respect to
older versions. In essence, the goa of Elephant isto extend
thisideato all clients of the file system by moving the ver-
sioning semanticsintothefile system, which continuesto be
accessed using the traditional file system interface of open,
close, read, write, etc, and thusfreeing usersfromthe details
of version management.

While traditiona Unix file systems are single-version
explicit-del ete as we have described, other file system mod-
elshave been exploredin bothresearch and commercial sys-
tems. The idea of versioned files was first proposed for the
Cedar file system from Xerox PARC [10]. In Cedar, files
wereimmutable; writing to afile produced a new version of
the file and file names included a version number (e.g., file-
name!10). A similar ideawas found in the RSX, VMS[2],
and TOPS-10/-20 [6] operating systems from Digital.

The approach taken by these systems hastwo key limita-
tions. First, the maximum number of file versions retained
by the system was assigned as a per file parameter; when
this threshold was reached, the oldest version was deleted.
However, the deletion of the oldest versionisa poor heuris-
ticfor decidingwhichfilesarevauable. Interesting versions
of files may be discarded while undesirable or less interest-
ing versions still exist. Second, versioning did not apply to
directories. Operations such as renaming afile, creating or
destroyingadirectory, or, in some cases, deleting afile, were
thus not revocable.

Several recent file systems have taken a different ap-
proach to versioning. In systems such as AFS [5], Plan-
9 [7], and WAFL [4] an efficient checkpoint of an entire
file system can be created to facilitate backup or to provide
userswith some protection from accidental deletesand over-
writes. A checkpoint istypicaly created and maintained in
a copy-on-write fashion in parallel with the active file sys-
tem. The old version thus represents a consistent snapshot
of the file system sufficient for creating a consi stent backup
while the file system remains available for modification by
users. The snapshot also alows users to easily retrieve an
older version of afile.

These systems differ in how frequently checkpoints are
taken and in how many checkpoints are retained. In AFS
and Plan-9, checkpoints are typically performed daily. In
WAFL they can be performed as frequently as every few
hours. Plan-9 retains al checkpoints, WAFL keeps the last
32, and AFS keeps only the most recent checkpoint.

Checkpointing file systems have two major limitations.
First, checkpoints apply to dl files equaly, but files have
different usage patterns and retention requirements. While
itisnot feasibletoretain every version of every file, it may
be important to keep every version of some files. Unfortu-
nately, this dilemma cannot be solved using a file system-
grain approach to checkpointing. Elephant addresses this
limitationusing file-grain retention policiesthat can be spec-

ified by theuser. Second, changesthat occur between check-
points cannot be rolled back. For instance, users of daily-
checkpointing systems such as Plan-9 or AFS are as asvul-
nerableas UFSuserstolosingall their morning’ swork inthe
afternoon, due to an inadvertent file deletion or overwrite.

3. Elephant

In Elephant, all user operations are reversible. Deleting
afile does not release its storage and file writes are handled
in a copy-on-write fashion, creating a new version of afile
block each time it is written. Elephant’s update handling
isthus similar to the Log Structured File System[4, 9, 11],
though meta data handling and log cleaning are fundamen-
tally different as discussed below.

File versions are indexed by the time they were created
and versioning is extended to directories as well as files.
When naming afile or directory, auser can optionally spec-
ify adate and time as part of the name. The system resolves
this name-time pair to locate the version that existed at the
specified time. By rolling a directory back in time, for ex-
ample, the user will see the directory exactly asit existed at
thethat earlier time, including any files that the user subse-
quently deleted. Del etethus becomes aname space manage-
ment operation; every delete can be undone.

While modern systems have vast storage capacity, this
storageisgtill finite. It isthus still necessary to reclaim stor-
age. In Elephant, users can specify data retention policies
on a per-file or per-file-group basis, in a fashion similar to
access-protection informationin atraditional UNIX filesys-
tem. Periodically, afile system cleaner examinesthefilesys-
tem and uses these policies to decide when and which disk
blocks to reclaim, compress, or move to tertiary storage. A
variety of policies are possible and necessary to handle the
various different types of files stored in the file system.

3.1. Understanding What to Delete and When

Key tothedesign of Elephant’sversion retention policies
isan understanding of how users use thefile system to store
varioustypesof filesand how theincreasing capacity of disk
storage impacts on the decisions they make. This section
summarizes our observations taken from several UNIX file
system traces [3].

Ironically, as storage becomes larger, it becomes more
difficult for users to manage files. When storage is fairly
constrained, users are required to frequently assess thefiles
that they are maintaining, and del ete those that are no longer
necessary. Typicaly, the ability of the user to make this
assessment effectively deteriorates over time. After a few
weeks or months, the user isunlikely to remember why cer-
tain versions are being maintained. While there may be



valuein maintainingtheseoldversions, it becomesmoreand
more difficult to make sense of them.

Leaving the user to create backup copies of filesaso re-
quires that the user anticipate that she wants to duplicate
a set of files before making a change. Again, this either
leads to making excessive copies or sometimes to a Situa
tion where auser has just made a change they would liketo
reverse, but didn’'t make a copy before making the change,
and so isunable to retrieve the old data

Lastly, as storage space is finite, it will eventualy be-
come necessary to delete something. What strategy should
the user employ? Unless they have carefully remembered
what versioniswhat, their probable strategy isto delete the
oldest versions. This, however, is often the wrong strategy
because a version history typicaly contains certain land-
mark versions surrounded by other versions whose time
frame of interest is much shorter. By landmark, we simply
mean a distinguished version of afile.

Theright strategy to employ when freeing disk resources
istomaintain thelandmark versionsand del ete the other ver-
sions. Unfortunately, the user may have no good way to tell
which old version isimportant. This processis exacerbated
by the fact that these decisions are often made under atime
crunch when adisk isfull or nearly full.

Itisoften possibleto detect |landmark versionsby looking
a atime line of the updatesto afile. We have seen that for
many files, these updates are grouped into short barrages of
editsseparated by longer periodsof stability. A good heuris-
ticistotreat the newest version of each group as alandmark.
Of course thisheuristic may sometimes bewrong, so it may
also be important to allow the user to specify other versions
as landmarks.

Not al files exhibit a history of landmarks. Object files,
for example, are of littleinterest after they have been linked
to producethefina binary. We have observed that their his-
toriesare boringand thefilesare quitelarge. Object filesand
source files should thus be treated differently.

3.2. Elephant Cleaner Policies

In this section we discuss three cleaner policies we have
examined for Elephant and implemented in our prototype.
These three policies are listed bel ow.

e Keep One
. K%pAII
o Keep Landmarks

Keep One and Keep All are the simplest policiesand rep-
resent the two ends of the retention spectrum. Keep One
is equivalent to the standard file system model. There are
many classes of filesthat thispolicy suitswell. Filesthat are

unimportant (e.g., filesin /tmp, corefiles, etc.) or files that
are easily recreated (e.g., object files, filesin a Web browser
cache, etc.) are good candidates for Keep-One retention.
Similarly, Keep All isappropriatefor files for which acom-
plete history isimportant.

Keep Landmarks is a more interesting policy. The ba
sicideaisto designate certain versionsas landmarksand d -
low other versions to be freed as necessary. The key issue,
however, ishow to determinewhich versionsare landmarks.
One approach would be to require the user to designate the
landmark versions. This approach, however, would inter-
fere with our goa of freeing the user from direct involve-
ment in storageretention. Instead, we permit the user to des-
ignate landmark versions and use a heuristic to conserva-
tively tag other versionsas possiblelandmarks. The cleaner
then frees only versions that the policy determines are un-
likely to be landmarks.

This landmark designation heuristic is based on the as-
sumption that as versions of files get older without being
accessed the ability of the user to distinguish between two
neighbouring versions decreases. For example, we might
designate every version of afile generated in the past week
as alandmark. For versionsthat are a month old, however,
we might assume that versions generated within one minute
of each other are now indistinguishableto theuser. If so, we
can designate only the newest version of any such collection
of versionsto be alandmark, possibly freeing some versions
for deletion.

Freeing aversioninthisway creates an ambiguity in the
file's history as we have introduced a gap. A user may yet
request thefreed version of thefile. The presence of thisam-
biguity isimportant information to the user. We thusretain
information about freed versions of afilein its history and
allow the user to examine the history for ambiguous periods
of time. Thisinformation isimportant, for example, for the
user toroll back aset of filesto aconsistent pointin the past.
The user can only be certain that the specified point is con-
sistent if all files have an unambiguous version at that point
intime.

To assist the user in locating consistent versions of afile
group, we provide a utility for combining the version histo-
ries of agroup of files to identify unambiguous periodsin
their combined history. If, for example, a user triesto roll-
back to “Jan 15 at 11:30:00” and a file version that existed
at that time has been freed, thisrollback is ambiguous. The
user can use theversion history tool to locate an unambigu-
oustime (e.g., “Jan 15 at 11:25:00") and suitably refine her
rollback. Of coursg, if the user had known that “11:30:00”
was going to be important, she could have manually spec-
ified it as a landmark and thus prevented the system from
creating the ambiguity.

Another solutiontothisproblemisto cleanfilesingroups
specified by the user. We are investigating an extension to



the Keep Landmarks policy that alows usersto group files
for consideration by the cleaner. The cleaner then ensures
that every landmark version in the group is unambiguous
with respect to al filesin the group.

4. Implementation
4.1. Overview

We have implemented a prototype of Elephant in
FreeBSD 2.2.7, which is afreely available version of BSD
for personal computers. Elephant is fully integrated into
the FreeBSD kernd and uses BSD’s VFS/vnode interface.
The standard UNIX file interface has been augmented with
anew API to access the advanced features of Elephant, but
all UNIX utilitieswork on current aswell as older versions
of fileswithout requiring any changes.

4.2. Design

We define aversion of afile to be its state after a close
has been issued on it. Elephant’s disk blocks are protected
by copy-on-write techniques. Only the current version of a
file may be modified. The first write to afile following an
open causes itsinode to be duplicated, creating a new ver-
sion of thefile. Thefirst timean existing block iswritten af-
ter an open, the modified block isgiven anew physical disk
address and the new inode is updated accordingly. All sub-
sequent writes to that block before the close are performed
in place. When thefileis closed, the new inode is appended
to an inode log maintained for that file. Thisinodelog con-
gtitutesthefile's history and isindexed by thetime each in-
ode in the log was closed. Concurrent sharing of afileis
supported by performing copy-on-writeon thefirst open and
updating the inodelog on the last close.

4.3. Elephant Meta-Data

Traditiona file systems have oneinode per name (but the
reverse does not hold). Files can thus be uniquely and un-
ambiguously named by their inode number, an index totheir
inode’ sdisk address. Elephant departs from thismodel, be-
cause files have multipleinodes, onefor each version of the
file. To maintain the important naming properties of inode
numbers, Elephant redefines inode numberstoindex afile's
inodelog instead of itsinode. Additionally, alevel of indi-
rectionisintroducedto provideflexibility in thelocation and
size of inode logs. An inode number thusindexes an entry
intheinode map, which stores the disk address of the corre-
sponding inode log, as depicted in Figure 1.

The inode map contains the data needed to manage the
file and its inodes. The two most important fields are the

inode number Inode Map
Inode Log Adcr
| Temperature _
Flags
Y ounger Older
Ingdes

Figure 1. Inode Log

physical disk address of theinodelog, and thefile' stemper-
ature. Theinode log is atemporaly ordered list of inodes
whilethe temperature isaheuristic used to prioritizethe ac-
tions of the cleaner, as described below. The inode map is
cached in memory and thus a file's current inode, which is
always at the head of the inode log, can be retrieved with a
singledisk access.

4.4, Directories

Directories map names to inode numbers. They differ in
their usage from files in that files are explicitly opened and
closed whereas directory modifications are implicit side ef-
fects of other system calls. For thisreason Elephant handles
theversioning of directoriesdifferently fromthat of ordinary
files.

Elephant directories store versioning information explic-
itly and all versionsof adirectory are represented by asingle
inode. Each directory stores a name's creation time and, if
deleted, itsdeletiontime. Itispossiblefor multipleinstances
of the same nhameto co-exist in adirectory, provided that no
two of them existed at the same time. Directory entires are
retained aslong as at |east oneversion of the file they name
remains in the file system.

An dternative to keeping versioning information in di-
rectories isto treat directories in the same fashion as files.
The result, however, iswasteful of inodes and data blocks,
because each name creation or del etion would require anew
data block and thus a new inode for the directory.



4.5. API

Elephant allows users to add an optional timestamp tag
to any pathname they present to the file system (e.g., when
opening afile or when changing the current working direc-
tory). If thistag is present, Elephant accesses the version
of thefile that existed at the specified time. For example,
if auser types“cd #today:11:30", her working directory is
changed to the version that existed at 11:30 of the current
day.

When atimestamp tag is not specified, the selected ver-
sion is determined by either the timestamp of the current
working directory, if areative pathname is specified (eg.,
“file”), or the process's current epoch, if a complete path-
name isspecified (e.g., “/file"). Users can change thetimes-
tamp of their process's current epoch using the newly added
setepoch system call. Child processes inherit their current
epoch from their parent process when they are created.

The readinodel og system call was added to alow user-
mode applications to access a file's history. This cdl re-
turns a digest of the inodes in a file's inode log, including
key fields such as the timestamp of each inode. As men-
tioned in Section 3, information about versions that Ele-
phant’s cleaner has purged is also returned by thiscall. We
envision that this system call will be used by anew suite of
utility programs that allow users to view and navigate file
version histories; we have written some of these utilities, but
thisisan area of active research.

4.6. The Cleaner

The Elephant cleaner is responsible for reclaiming stor-
age and is directed by the policies outlined in Section 3.2.
It proceeds by picking afile to clean, reading itsinode log,
and selecting zero or more inodes to be reclaimed, com-
pressed, or moved to tertiary storage (compression and ter-
tiary storage are not supported by the current prototype, but
are planned). To guide the cleaner to files likely to have
the most reclaimable storage, Elephant maintains a temper-
ature heuristic for each file; temperatures are stored in the
memory-cached inode map. A file's temperature is recom-
puted when it is closed and when the cleaner examines the
file. In the current prototype, temperatures are assigned us-
ing a heuristic based on the size of thefile and the number of
inodesinitsinodelog. We are actively investigating policy-
specific heuristicsthat also consider thefile' shistory profile,
the time since the file was last cleaned, and other informa-
tion gathered by the cleaner when it examines thefile.

It is important to distinguish the Elephant cleaner from
and the cleaner of alLog Structured File System. An LFS
cleaner servers two roles: it frees obsolete blocks and it
coalesces free space. In contrast, the Elephant cleaner’s
roleis simply to free obsolete blocks. As aresult, the Ele-
phant cleaner has significantly lower overhead than an LFS

cleaner, because Elephant’s cleaning is performed without
reading any file data blocks, only the inode log need be ac-
cessed. In contrast, the LFS cleaner must read every data
block at least once, even obsolete blocks, and it may read
and write active blocks multiple times.

5. Conclusions

We believe current file system models are flawed. Forc-
ing the user to manage disk block reclamation and write-in-
place file policies result in many problems. Previous sys-
temsthat have attempted to sol ve these problemswith snap-
shots or the retention of a limited number of versions fall
short of what isrequired by users today.

Large cheap disk stores provide an opportunity for us
to address the limitations of previous file systems. Users
are quickly confused as multiple copies of their data ac-
cumulate, or become frustrated when they lose data in
files from misbehaved applications or accidental deletion
or overwrite. Elephant addresses these issues by provid-
ing a system where data blocks are immutable and the sys-
tem decides when to deallocate disk blocks. The user need
only manage the name space to keep their environment orga-
nized. Specifying backup policiesat the granularity of files
instead of the file system allows the file system to tailor its
treatment of files depending on their type.

5.1. Status and Future Work

Our work on Elephant is proceeding along five fronts.
First, weare extending our prototypeto add support for com-
pression and tertiary storage to the cleaner. Second, we are
building a set of new utilitiesthat exploit Elephant’s novel
functionality (we have already written afew utilitiesinclud-
ing “tgrep”, “tls’, and a history browser). Third, we are ex-
amining an aternate implementation that providesversion-
ing at thelevel of blocksand abstracted by alogical disk [1].
Fourth, we are investigating how to backup an Elephant file
system so that version histories can be recovered following
amediafailure. Finally, we are planning an extensive user
study. To facilitate this study, we are modifying our proto-
type to alow it to shadow an NFS server. Users will thus
be ableto use Elephant without therisking their datato are-
search file system. Thisstudy will alow usto evaluate vari-
ouscleaner-policy issues and to understand how user behav-
ior changes when they use afile system that never forgets.

Acknowledgments

We would like to thank Jacob Ofir and Sreelatha Reddy
who wrote some of the Elephant utilities and helped with
experiements. Thanks also to Joon Suan Ong and Yvonne
Coady who commented on earlier versions of this paper.



References

(1]

(2]
(3]

[4]

(3]

6]

(8]

(9]

[10]

[11]

[12]

W. de Jonge, M. Kaashoek, and W. C. Hsieh. The logical
disk: A new approachto improvingfile systems. In Proceed-
ings of the 14th Symposium on Operating Systems Princi
ples, pages 15-28, December 1993.

Digital. Vax/VMS System Software Handbook. Bedford,
1985.

J. Griffioen and R. Appleton. Reducing file system la-
tency using a predictive approach. In Proceedings of the
Usenix Summer Conference, pages 197-208, Boston, MA,
June 1994. Usenix.

D. Hitz, J. Lau,and M. Malcolm. File systemdesignfor afile
server appliance. In Proceedingsof the 1994 Winter USENIX
Technical Conference, pages 235-245, San Francisco, CA,
January 1994. Usenix.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale
and performancein adistributed file system. ACM Transac-
tions on Computer Systems, 6(1):51-81, Feb. 1988.

L. Moses. TOPS-20 User’s manual. USC/Information Sci-
ences Institute, Internal manual, Marina del Rey, California.
D. Presotto. Plan 9. In Proceedings of the Workshop on
Micro-kernelsand Other Kernel Architectures, pages31-38,
Seattle, WA, USA, Apr. 1992. USENIX Association.

M. J. Rochkind. The source code control system. |EEE
Transactions on Software Engineering, 1(4):364-370, Dec.
1975.

M. Rosenblum and J. K. Ousterhout. The design and imple-
mentation of alog-structured file system. ACM Transactions
on Computer Systems, 10(1):26-52, Feb. 1992.

M. D. Schroeder, D. K. Gifford, and R. M. Needham. A
cachingfile system for a programmer’s workstation. In Pro-
ceedings of the 10th ACM Symposium on Operating Sys-
tems Principles, pages 25-34, Orcas|sland WA (USA), Dec.
1985. ACM.

M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin. An
implementation of a log-structured file system for UNIX.
In USENIX Association, editor, Proceedings of the Win-
ter 1993 USENIX Conference: January 25-29, 1993, San
Diego, California, USA, pages 307-326, Berkeley, CA,
USA, Winter 1993. USENIX.

W. F. Tichy. RCS: A systemfor version control. Software—
Practice and Experience, 15(7):637—654, July 1985.



