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Abstract
We propose a fully automatic stream management tech-
nique, called PCStream, for multi-streamed SSDs. PC-
Stream is based on our observation that data lifetimes
can be reliably predicted using write program contexts.
By extracting program contexts during runtime, PC-
Stream automates the data-to-stream mapping. When
data mapped to the same stream show large differences
in their lifetimes, PCStream moves the long-lived data of
the current stream to its substream during garbage col-
lection. Our experimental results show that PCStream
can reduce the garbage collection overhead as much as a
highly-optimized manual stream management technique
while no code modification is necessary.

1 Introduction
Multi-streamed SSDs provide a special mechanism,
called streams, for a host system to prevent data with dif-
ferent lifetimes from being mixed into the same block [1,
2]. When the host system maps two data D1 and D2
to different streams S1 and S2, a multi-streamed SSD
guarantees that D1 and D2 are placed in different blocks.
Since streams, when properly managed, can be very ef-
fective in minimizing the copy cost of garbage collec-
tion (GC), they can significantly improve both the per-
formance and lifetime of flash-based SSDs [2, 3, 4, 5].

In order to achieve high performance on multi-
streamed SSDs, data with similar future update times [6]
should be allocated to the same stream, so that the copy
cost of GC can be minimized. However, since it is diffi-
cult to know the future update times a priori when they
are written, stream allocation decisions are often manu-
ally made by programmers based on their expertise on
the application [2, 3] or the file system [4]. In this paper,
our goal is to develop a fully automatic stream manage-
ment technique.

To the best of our knowledge, AutoStream [5] is the
only automatic stream management technique without
additional manual work. However, since AutoStream

predicts data lifetimes using the update frequency of the
logical block address (LBA), it does not work well with
modern append-only workloads such as RocksDB [7] or
Cassandra [8]. Unlike conventional update workloads
where data written to the same LBAs often show strong
update locality, append-only workloads make it impos-
sible to predict data lifetimes from LBA characteristics
(such as access frequency or access patterns). For ex-
ample, as shown in Fig. 1(b), data written to a fixed
LBA range over time in RocksDB show widely varying

data lifetimes, thus making it difficult to allocate streams
based on LBA characteristics.

In this paper, we propose a fully automatic stream
management technique, called PCStream, for multi-
streamed SSDs based on program contexts (PCs). Since
the key motivation behind PCStream was that data life-
times should be estimated at a higher abstraction level
than LBAs, PCStream employed a write program con-
text1 as a stream management unit. A program con-
text [9, 10], which represents a particular execution
phase of a program, is known to be an effective hint in
separating data with different lifetimes [6]. PCStream

automatically maps an identified program context to a
stream. Since program contexts can be computed during
runtime, PCStream does not need any manual work.

Although most program contexts show that their data
lifetimes are distributed with small variances, we ob-
served a few outliers whose data lifetimes have rather
large variances. In PCStream, when such a PC pID is
observed (which was mapped to a stream sID), the long-
lived data of pID are moved to the substream of sID dur-
ing GC. The substream prevents the long-lived data of
the stream sID from being mixed with future short-lived
data of the stream sID.

In order to evaluate the effectiveness of PCStream, we
have implemented PCStream in the Linux kernel (ver.
4.5) and measured write amplification factor (WAF) val-
ues using RocksDB on a Samsung PM963 SSD and an
SSD emulator. Our experimental results show that PC-
Stream can reduce the GC overhead as much as a manual
stream management technique while requiring no code
modification. Furthermore, PCStream outperformed Au-

toStream by reducing the average WAF by 35%.
The rest of this paper is organized as follows. We ex-

plain the key motivations behind PCStream in Section 2.
Section 3 describes the design of PCStream. The exper-
imental results are shown in Section 4. Finally, we con-
clude in Section 5 with a summary and future work.

2 Basic Idea

2.1 Fallacy: LBA-based lifetime prediction
Many existing data separation techniques such as [5, 11]
estimate the data lifetime based on the update frequency
of LBAs. For example, AutoStream [5] assumes that,
if some LBAs are frequently rewritten by applications,

1Since we are interested in write-related system call such as write()
in the Linux kernel, we call the related program context as write pro-
gram contexts or simply program contexts in this paper.
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(b) Lifetime patterns over time
Fig. 1: Lifetime distributions over addresses and times.

those LBAs hold hot data. This LBA-based lifetime pre-
diction approach, however, does not work well with re-
cent data-intensive applications where a majority of new
data are written in an append-only manner.

In order to illustrate a mismatch between an LBA-
based predictor and append-only workloads, we ana-
lyzed the write pattern of RocksDB [7], which is a
popular key-value store based on the LSM-tree algo-
rithm [12]. Fig. 1(a) shows how LBAs may be related to
data lifetimes2 in RocksDB [7]. As shown in Fig. 1(a),
there exists no strong correlation between the LBAs and
lifetimes in RocksDB. This scatter plot is in sharp con-
trast with one for update workloads where a few distinct
LBA regions have short lifetimes while others have very
long lifetimes.

We also analyzed if the lifetimes of LBAs change
under some predictable patterns over time although
the overall lifetime distribution shows large variances.
Fig. 1(b) shows a scatter plot of data lifetimes over the
logical time for a specific 1-MB chunk with 256 pages.
As shown in Fig. 1(b), for the given chuck, data lifetimes
vary in a random fashion (although some temporal local-
ity is observed). Our illustration using RocksDB strongly
suggests that under append-only workloads, LBAs are
not useful in deciding data lifetimes.

2.2 Program context as a lifetime predictor
In developing PCStream, our key insight was that in most
applications, a few dominant I/O activities exist and each
dominant I/O activity represents the application’s impor-
tant I/O context (e.g., for logging or for flushing). Fur-
thermore, most dominant I/O activities tend to have dis-
tinct data lifetime patterns. In order to distinguish data
by their lifetimes, therefore, it is important to effectively
distinguish dominant I/O activities from each other. For
example, in update workloads, LBAs alone were effec-
tive in separating dominant I/O activities.

In this paper, we argue that a program context is an ef-
ficient general-purpose indicator for separating dominant
I/O activities regardless of the type of I/O workloads.
Since a PC represents an execution path of an applica-
tion which invokes write-related system functions such
as write() and writev() in the Linux kernel, we rep-
resent the PC by summing program counter values of all

2The lifetime of data is defined by the logical time which is the
number of writes to the device between when the data is first written
and when the data is invalidated by an overwrite or a TRIM command.

(a) Logging (PC) (b) Logging (manual)

(c) Flushing (PC) (d) Flushing (manual)

Fig. 2: Data lifetime distributions of different PCs.

the functions along the execution path which leads to a
write system call. In RocksDB, for example, dominant
I/O activities include logging, flushing and compaction.
Since they are invoked through different function-call
paths, we can easily identify dominant I/O activities of
RocksDB using PCs. For example, Fig. 4(a) shows an
execution path for flushing in RocksDB. The sum of pro-
gram counter values of Run(), WriteLevel0Table(),
and BuildTable() is used to represent the PC for the
flushing activity. Note that using the program context
to distinguish data lifetimes is not new. For example,
Ha et al. proposed a data separation technique based on
the program context [6]. However, their work was nei-
ther designed for append-only workloads nor for modern
multi-streamed SSDs.

In order to validate our hypothesis that PCs can be
useful for predicting lifetimes by distinguishing dom-
inant I/O activities, we conducted experiments using
RocksDB, comparing the accuracy of identifying domi-
nant I/O activities using two different methods. First, we
manually identified dominant I/O activities by inspecting
the source code. Second, we automatically decided dom-
inant I/O activities by extracting PCs for write-related
system functions. Fig. 2 illustrates two dominant I/O
activities matched between two methods. As shown in
Fig. 2(a) and 2(b), the logging activity of RocksDB is
correctly identified by two methods. Furthermore, from
the logging-activity PC, we can clearly observe that data
written from the PC are short-lived. Similarly, from
Fig. 2(c) and 2(d), we observe that data written from the
flushing-activity PC behave in a different fashion. For
example, data from the flushing-activity PC remain valid
a lot longer than those from the logging-activity PC.

3 Design of PCStream
In this section, we describe in detail the proposed au-
tomatic stream management technique, PCStream. We
first explain how we automatically extract PCs during
runtime and describe how multiple PCs are mapped to
streams in an SSD. In order to mitigate the side effect
of a few outlier PCs with large lifetime variances, we
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Fig. 3: An overall architecture of PCStream.
introduce ‘substreams’ based on a two-phase stream as-
signment technique.

Fig. 3 shows an overall organization of PCStream. The
PC extractor module, which is implemented in the Linux
kernel as part of a system call handler, computes a PC
signature, which is used as a unique ID for each program
context. We use the signature program counter [9] as a
PC signature by summing program counter values along
the execution path to a write-related system function
(e.g., write()). With the PC signature, we can moni-
tor the data lifetime of each write at the program context
level. A PC signature value is stored in an inode data
structure of a file system (modified for PCStream) and is
delivered to the lifetime analyzer module which estimates
expected lifetimes of data belonging to a given PC in the
block device level. In order to efficiently detect the end
of data lifetime in append-only workloads, the lifetime
analyzer also intercepts TRIM [13] requests. Based on
the lifetime information, the PC-to-stream mapper mod-
ule clusters PCs with similar lifetimes and maps them
together to the same stream ID. This mapping is required
because the number of streams in an SSD is generally
less than the number of PCs in host applications.

3.1 Automatic PC computation
As mentioned earlier, a PC is represented by a PC sig-
nature which is defined as the sum of program counter
values along the execution path of a function call that
reaches a write-related system function. A function call
involves pushing the next program counter, which is used
as a return address, to the stack followed by pushing a
frame pointer value. In general, by using frame pointer
values, we are able to back-track the stack frames of the
process and selectively get return addresses for generat-
ing a PC signature. For example, Fig. 4(a) shows the ab-
stracted execution path for flushing data in RocksDB and
Fig. 4(b) illustrates how a PC signature is obtained by
back-tracking the stack. Since a frame pointer value in
the stack holds the address of the previous frame pointer,
the PC extractor can obtain return addresses and accu-
mulate them to compute a PC signature.

The frame pointer-based approach for computing PC
signatures, however, is not always possible because
modern C/C++ compilers often do not use the frame
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Fig. 4: An example execution path and its PC extraction.
pointer for improving the efficiency of register alloca-
tion. One example is a -fomit-frame-pointer op-
tion of GCC [14]. Although this option allows the frame
pointer to be used as a general-purpose register for high
performance, it makes very difficult for us to back-track
return addresses along the call chains.

In PCStream, we employ a simple but effective
workaround for backtracking the call stack when the
frame pointer is not used. When a write system call is
made, we scan every word in the stack and check if it be-
longs to the process’s code segment. If the scanned stack
word holds a value within the address range of the code
segment, we assume that it is a return address. Since
scanning the full stack takes too long, we stop the stack
scanning procedure when a sufficient number of return
address candidates are found. In the current version, we
stop when 5 return address candidates are found. Al-
though quite ad-hoc, a restricted scan is effective in dis-
tinguishing different PCs because two different PCs can-
not follow the same execution path to write system func-
tions. (If they do, they are the same PC.) In our evalua-
tion with a 3.4 GHz CPU machine, the performance over-
head of the restricted scan was almost negligible, taking
only 300-400 nsec per write system call.

3.2 PC lifetime prediction
The prediction of PC lifetimes is rather complicated.
The data lifetime of the append-only workload is defined
from when a write request is issued until the TRIM com-
mand [13] is issued to the corresponding address. In
order to measure the lifetime of data, the lifetime ana-
lyzer records the write time and PC value for each write
request using its LBA. Upon receiving the TRIM com-
mand, the lifetime analyzer can compute the lifetime
of the corresponding data using the recorded informa-
tion. Note that, the same PC may generate multiple data
streams with different lifetimes. We take the average life-
time as the PC’s lifetime.

3.3 Mapping PCs to SSD streams
The last step in PCStream is to map a group of PCs with
similar lifetimes to an SSD stream. This is because each
SSD supports a limited number of stream IDs. For exam-
ple, SSDs used in FStream [4] and AutoStream [5] sup-
port only 9 and 16 streams, respectively. To properly



group multiple PCs, the PC-to-stream mapper employs a
simple 1-D clustering algorithm. In order to cluster PCs
with similar lifetimes, the mapper calculates the lifetime
difference between PCs. Then, PCs with the smallest
lifetime difference are clustered into the same PC group.
The mapper repeats this clustering step until all the PCs
are assigned to their PC groups. For adapting to chang-
ing workloads, reclustering operations should be regu-
larly performed. Since the number of PCs created by ap-
plications is not limited, the clustering algorithm must be
efficient enough to quickly handle many PCs. Our goal
in this work is to confirm the feasibility of using PCs, so
we leave those issues as our future work.
3.4 Two-phase stream assignment
For most PCs, their lifetime distributions tend to have
small variances. However, we observed that a few out-
lier PCs which have large lifetime variations. For ex-
ample, when multiple I/O contexts are covered by the
same write system function, the corresponding PC may
represent several I/O contexts whose data lifetimes are
quite different. Such a case occurs in the compaction
module of RocksDB. RocksDB maintains several levels,
L1, ..., Ln, in the persistent storage, except for L0 (or
a memtable) stored in DRAM. Once one level, say L2,
becomes full, all the data in L2 is compacted to a lower
level, i.e., L3. It involves moving data from L2 to L3,
along with the deletion of the old data in L2. In the LSM
tree [12], a higher level is smaller than a lower level (i.e.,
the size of (L2) < the size of (L3)). Thus, data stored in
a higher level is invalidated more frequently than those
kept in lower levels, thereby having shorter lifetimes.

Unfortunately, in the current RocksDB implementa-
tion, the compaction step is supported by the same ex-
ecution path (i.e., the same PC) regardless of the level.
Therefore, the PC for the compaction activity cannot
effectively separate data with short lifetimes from one
with long lifetimes. Fig. 5(a) shows the lifetime distri-
bution collected from the compaction-activity PC. Since
this distribution includes lifetimes of data written from
all the levels, its variance is large. When we manually
separate the single compaction step into several per-level
compaction steps, as shown in Figs. 5(b) and 5(c), the
lifetime distributions of per-level compaction steps show
smaller variances. In particular, L2 and L3 show distinct
lifetime distributions from that of L4. Data from L2 and
L3 are likely to have shorter lifetimes, while L4 has gen-
erally long-lived data as shown in Fig. 5(d).

Since it is difficult to separate data with different life-
times within the same PC (as in the compaction-activity
PC), we devised a two-phase method that decides SSD
streams in two levels: the main stream ID in a host level
and the substream ID in an SSD level. Conceptually,
long-lived data in the main stream are moved to its sub-
stream to separate from (future) short-lived data of the

(a) compaction: all levels (b) compaction: L2

(c) compaction: L3 (d) compaction: L4
Fig. 5: Lifetime distributions of the compaction activity
at different levels.
main stream. Although moving data to the substream
may increase WAF, the overhead can be hidden if we re-
strict the substream move during GC only. Since long-
lived data (i.e., valid pages) in a victim block are moved
to a free block during GC, they can be moved to the sub-
stream by changing the target block. For instance, PC-
Stream assigns the compaction-activity PC pID to a main
stream sID for the first phase. To separate the long-lived
data of pID (e.g., L4 data) from future short-lived data of
pID (e.g., L1 data), valid pages of the sID are assigned to
its substream for the second phase during GC.

4 Experimental Results
For our experiments, we have implemented PCStream in
the Linux kernel 4.5. For an objective evaluation, we
compared PCStream with three existing schemes: Base-

line, Manual [2], and AutoStream [5]. Baseline stands for a
legacy SSD that does not support a multi-stream feature.
Manual is a RocksDB implementation which is manu-
ally optimized for multi-streamed SSDs. AutoStream is
an LBA-based data separation technique which is im-
plemented at the device driver layer. To understand
the impact of the two-phase assignment, in addition, we
compared PCStream with PCStream∗ which excluded the
two-phase assignment feature.

For benchmarks, we have used three scenarios of
db bench of RocksDB: Update-Random (UR), Append-
Random (AR), and Fill-Random (FR) scenarios. For key-
value pairs already stored in the SSD, UR updates values
for random keys, creating many read-modify-writes in
the SSD. AR is similar to UR, except that it performs the
update of values for growing keys. FR writes key-value
pairs to the SSD in a random key order.
4.1 Experiments with an SSD emulator
We carried out a set of experiments using an SSD emu-
lator which is based on the open flash development plat-
form [15]. In the SSD emulator, the internal workings
of an SSD are simulated using the host’s DRAM mem-
ory in the kernel level. For our evaluations, we extended
the SSD emulator to support a multi-streamed feature (up
to 8 streams). Furthermore, we enhanced the garbage
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collection module of the SSD firmware to support the
two-phase stream management technique. The SSD em-
ulator provided 12 GB capacity with 4 channels and 4
ways, and there were 8192 flash blocks, each of which
was composed of 384 4-KB pages.

We compared WAF of the existing techniques with
PCStream for the three scenarios, and the result is shown
in Fig. 6. PCStream was quite effective in reducing
WAF, thus achieving an equivalent level of the WAF re-
duction as in Manual. For example, both PCStream and
Manual reduced WAF by 38% over Baseline for the UR

case. PCStream outperformed AutoStream by reducing
WAF by 35% on average. Fig. 6 also indicates that the
two-phase stream assignment technique is effective. PC-
Stream outperformed PCStream∗ by 12% on average in
the WAF reduction. This additional gain of PCStream

over PCStream∗ came from isolating long- and short-
lived data in separate blocks by moving the long-lived
data to substreams during GC at the SSD.

In order to better understand how PCStream achieved
a high reduction in WAF, we measured per-stream life-
time distributions under each technique for the UR sce-
nario. Fig. 7 shows a box plot of data lifetimes from the
25th percentile to the 75th percentile. As shown in Fig.
7, streams in PCStream are divided into two groups, G1
= {0, 1, 2, 3, 4} and G2 = {5, 6}, where G1 includes
streams with short lifetimes and small variances and G2
includes streams with large lifetimes and large variances.
Since the GC copy cost is affected by how data in G1
and G2 are mixed into the same block, PCStream can
significantly reduce the GC overhead by avoiding such
data mixtures in the same block by separating G1 and G2
into different streams. On the other hand, in AutoStream,
three streams (i.e., streams 1, 2, and 3) show similar life-
time distributions with large variances without a distinct
data separation pattern. In Fig. 7, we can also observe
the effect of substreams. Streams 3 and 4 of PCStream∗,
which have large variances in lifetimes, are split into two
substreams 5 and 6 in PCStream. This split reduces vari-
ances of streams 3 and 4, thus reducing the GC copy cost.
4.2 Experiments with a real-world SSD
In order to evaluate the effect of PCStream in a real
SSD, we have conducted experiments using Samsung’s
PM963 480GB SSD that supports 8 streams. Since it
was impossible to implement the two-phase stream as-

signment in the commercial SSD firmware, we evalu-
ated PCStream∗ only. To warm up the SSD before run-
ning benchmarks, we filled up 90% of the SSD capacity
with valid data. As illustrated in Fig. 8, PCStream∗ re-
duced WAF by 28% over AutoStream on average. Note
that although PCStream∗ still outperformed AutoStream

in PM963, but a performance gap was smaller over that
in the emulated SSD environment. It was difficult to pin-
point why AutoStream worked better in PM963 over in
the emulated SSD, but we suspect that some internal fea-
tures of PM963 (such as a large block size or some im-
plementation details of streams) might have affected the
performance of AutoStream.

5 Conclusions
We have presented a new stream management technique,
PCStream, for multi-streamed SSDs. Unlike existing
stream management techniques, PCStream fully auto-
mates the process of mapping data to a stream based
on PCs, which work well for append-only workloads as
well as update workloads. By exploiting an observation
that most PCs are distinguishable from each other in their
lifetime characteristics, PCStream allocates each PC to a
different stream. When a PC has a large variance in their
lifetimes, PCStream refines its stream allocation during
garbage collection and moves the long-lived data of the
current stream to its substream. Our experimental results
show that PCStream can reduce the average WAF by 35%
over the existing automatic technique.

The current version of PCStream can be extended in
several directions. For example, we plan to optimize the
PC clustering method so that multiple PCs can be better
clustered when the number of PCs significantly outnum-
bers the number of streams.
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