
Appears in Proceedings of the 23rd IEEE International Conference on Distributed Computing Systems (ICDCS ’03).

The Hash History Approach for Reconciling Mutual Inconsistency

Brent ByungHoon Kang, Robert Wilensky and John Kubiatowicz
CS Division, University of California at Berkley�

hoon, wilensky, kubitron � @cs.berkeley.edu

Abstract

We introduce the hash history mechanism for capturing
dependencies among distributed replicas. Hash histories,
consisting of a directed graph of version hashes, are in-
dependent of the number of active nodes but dependent on
the rate and number of modifications. We present the basic
hash history scheme and discuss mechanisms for trimming
the history over time. We simulate the efficacy of hash his-
tories on several large CVS traces. Our results highlight
a useful property of the hash history: the ability to recog-
nize when two different non-commutative operations pro-
duce the same output, thereby reducing false conflicts and
increasing the rate of convergence. We call these events co-
incidental equalities and demonstrate that their recognition
can greatly reduce the time to global convergence.

1. Introduction

Optimistic replication is widely used to achieve in-
creased availability and performance. Replica sites can cre-
ate and disseminate updates without expensive global coor-
dination such as locking or serialization. Updates are typi-
cally propagated epidemically, with replica sites converg-
ing to a consistent state by reconciling updates with one
another. During reconciliation, if a site’s latest version is
a revision of another site’s (i.e., this version dominates the
other version), then this fact must be efficiently recognized
so that the more recent version can be replicated. If neither
version is based on the other (i.e., they conflict), then one
site can merge deltas based on a common ancestral version
and send the merged version to the other site. Thus, the rec-
onciliation process between replicas needs a mechanism to
determine which version is a revision of another, or if two
versions have arisen via separate modifications. In addition,
sites need to maintain logs of deltas labeled with unique ids
to figure out the set of deltas that needs to be exchanged
during reconciliation.

Version vectors [6, 20] provide a mechanism for recon-
ciling replicas by detecting conflicts [6, 18, 17, 14] and for

determining the exact set of deltas to be exchanged for rec-
onciliation [15, 22]. In version vector based approaches,
each replica site maintains a vector of entries to track up-
dates generated by other sites. Then, dominance relations
between distributed replicas can be performed without a
globally synchronized clock.

Unfortunately, version vector approaches do not scale
well as the number of replica sites increases. The manage-
ment of version vectors becomes complicated since entries
for newly added sites have to be propagated to other replica
sites [2, 15, 18, 16]. This problem is especially pronounced
for peer-to-peer sharing of mutable data where it is reason-
able to assume a given object has tens of authors and thou-
sands of readers. In peer-to-peer systems, updates from any
writer can be delivered through epidemic disseminations [1]
such as anti-entropy in which each site periodically recon-
ciles with a randomly chosen site. A reader needs to deter-
mine the dominance relation among updates from multiple
writers. With dynamic version vector mechanisms, a writer
membership change has to be propagated to all the read-
ers. Depending on when the membership change informa-
tion arrives, a reader may receive two updates with vectors
of different sizes.

As an alternative, this paper proposes a hash history
scheme for reconciling replicas. In our scheme, each site
keeps a record of the hash of each version that the site has
created or received from other sites. During reconciliation,
sites exchange their lists of hashes, from which each can
determine the relationship between their latest versions. If
neither version dominates the other, the most recent com-
mon ancestral version can be found and used as a useful
hint to extract a set of deltas to be exchanged in a subse-
quent diffing/merging process.

Unlike version vectors, the size of a hash history is not
proportional to the number of replica sites. Instead, the
history grows in proportion to number of update instances.
However, the size of history can be bounded by flushing
out obsolete hashes. A version hash becomes obsolete if
every site has committed that version. The simplistic ag-
ing method based on loosely synchronized clocks can be
used to determine if a given hash history is old enough to be

1

flushed. In addition, a single complete hash history can be
shared among replica sites, whereas, using version vectors
each replica sites would have to maintain its own record.

The hash history approach is also economical in the stor-
age overhead required for labeling log entries to extract sets
of deltas that need to be exchanged during reconciliation. A
unique version id is required for labeling every delta in the
logs. Version ids in version vector based systems typically
incorporate a local site name, whose size is not bounded,
whereas using hash histories, it is possible to assign unique
identifiers of fixed size without global coordination.

We simulated anti-entropy reconciliation using a hash
history based approach with the trace data that was col-
lected from CVS logs from sourceforge.net. The
results show that the size of hash histories can be held to
acceptable level—about 122 entries—with a 32 days aging
policy and have no false conflicts due to aging. More im-
portantly, the results highlight the fact that hash histories are
able to detect the equality of versions that the version vector
reports as a conflict—reducing the number of detected con-
flicts. Our simulations demonstrate that these coincidental
equalities are remarkably prevalent, as shown by the vast
difference in convergence rate between version vectors and
hash histories.

The remainder of the paper is as follows: First, Sec-
tion 2 introduces background concepts. Then, Section 3
introduces the hash history approach and discusses its ad-
vantages. Section 4 evaluates hash histories against user
traces from sourceforge.net. Finally, Section 5 dis-
cusses related work and Section 6 concludes.

2. Background

Figure 1 shows a version history graph that tracks the
dependencies between versions. This graph shows five dif-
ferent sites at which changes can originate. In this graph,
each version is labeled with a subscripted pair indicating an
epoch number and the site at which the version was created.
Arrows indicate derivation of new versions from old ones.
Any given version dominates all of its ancestors.

Consider an example of pair-wise reconciliation as illus-
trated by this figure. Here, site A creates ����� � and sends
it out to site B and C. Then, site B transforms ����� � into
�	���
 by applying operation ��� ; concurrently site C makes
�	�� � by applying �� to ����� � and site A makes ����� � by ap-
plying ��� to ����� � . Later, site A creates �	��� � by merging
� ��� � and � ���
 (operation � �) during pair-wise reconcilia-
tion with site B. Here reconciliation is required since � ��� �
and � ���
 do not dominate one another (i.e., they conflict
with each other). Similarly, site C creates ��� � � by merging
� ��� � and � �� � (operation ���). Later, when � ���
 at site B
reconciles with � � � � at site C, both sites conclude that � � � �
dominates �����
 , so that site B can accept � � � � directly as a

Site A Site B Site C

V0,A

V1,A V2,B V3,C

V4,A

V5,C

d3
d2d1

m4

m5

Site E

V2,B

Site D

V1,A

V6,E

m6

V0,A V0,A

Figure 1. Version History: Replica sites collect ver-
sions from other sites, modify these versions, and
merge versions together. One version dominates
another version if it is derived from this version
(e.g.: ��� � � dominates � ��� �). When two versions
are equal but neither dominates the other, we call
this a coincidental equality.

newer version, without merging.
The process of reconciling diverged replicas can be ex-

pressed as the process of exchanging deltas. Since each ver-
sion is expressed by a series of operation deltas applied to
the known previous state, one can efficiently select a correct
set of deltas by maintaining some form of version history
along with deltas. Hence, as in the above example, site B
can receive operation deltas (��� , ��� , �� and � �) from site C
instead of full version ��� � � . To do so, one needs to label
each delta with a unique version id.

Occasionally, two independent chains of operations pro-
duce identical version data. We call such events coinciden-
tal equalities. As we will show in Section 4, recognizing
coincidental equalities can greatly reduce the degree of con-
flict in the system by introducing aliasing into the version
graph. When properly handled, such aliasing will increase
equality and dominance rate during anti-entropy reconcil-
iation because the equality information is conveyed to the
descendants. In general, if ��� and ��� are considered equal,
then all the versions that are based on ��� will dominate ��� .
If ��� and �	� are considered as in conflict, then all the ver-
sions that are based on ��� , will be in conflict with ��� .

It is important to note, however, that the version history
graph does not recognize coincidental equality. In Figure 1,
for instance, site E creates ��� � � by merging � ��� � and � ���

(operation ���). Since site E and site A cannot determine
whether ��� � � and � ��� � are the same or different until they
meet each other during anti-entropy reconciliation, the IDs
have to be assigned differently. Then, all the descendants
of � � � � (e.g., �� �� !) are in conflict with ����� � , although, in
fact, all the descendants of � � � � could dominate �	��� � . This

2

inability to exploit coincidental equality is a consequence of
tracking ancestry independent of content.

2.1. Causal History

The causal history of an event [20] is defined as the set
of events that causally precede a given event. The version
history of Figure 1 can be considered one restriction of this
definition: a directed graph of predecessors for each ver-
sion. Version history can be implemented by maintaining
the set of causal predecessors and the list of (parent, child)
relations between versions in the set. In general, parent-
child relations among versions are not required to determine
the dominance relation or conflict between versions. How-
ever, the parent-child relations can be used to figure out the
exact set of deltas to transform one version into another.

Let C(�) be the version history of a version � ; if ��� , � �
are unique and not equal then,

(i) � � dominates � � iff � � belongs to C(� �)
(ii) ��� and � � are in conflict iff � � does not belong to C(� �)

and � � does not belong to C(� �)
For example, in Figure 1, the versions V ��� � , V ��� � , and V ���

causally precede V ��� � ; hence, the version history of V ��� � is
the set of causal predecessors:

�
V ��� � , V ��� � , V ���
 , V ��� ���

and the set of parent-child relations:
�
(V ��� � , V ��� ��� , (V ��� � ,

V ���
 � , (V ��� � , V ��� � � , (V ���
 , V ��� � ��� . Thus, one can de-
termine that V ��� � dominates V ��� � , V ���
 and V �� � by us-
ing only the set of causal predecessors. A hash-table based
technique can make this determination efficiently.

2.2. Version Vectors

Causal histories are impractical because their size is of
the order of total number of versions in the system. More-
over, causal histories cannot uniquely name versions that
are created and merged independently at each replica site
in a partitioned network. Version vectors were designed to
overcome these challenges [6, 20].

A version vector is a vector of counters, one for each
replica site in the system. In the version vector method, each
site maintains a version vector to describe the history of its
own local replica. When generating a new local version or
merging other versions with its local version, a replica site
increments its own entry in its local version vector. Further,
when two versions are merged, every entry in the merged
version vector should have higher or equal value than the
corresponding entries in the previous two version vectors.

The dominance relation is determined by comparing all
the entries in the version vector. Let VV(�) be the version
vector of a version � ; then,

(i) Either ��� equals � � iff all the entries VV(� �) are the
same as all the corresponding entries in VV(���).

Site A Site B Site C

000
CBAV0,A

V1,A V2,B V3,C

V4,A

V5,C

001
CBA

012
CBA

counter

site_id
212
CBA

100
CBA

010
CBA

d3
d2

d1

m4

m5

Figure 2. Reconciliation using version vectors

(ii) Otherwise ��� dominates � � iff all entries in VV(� �) are
not greater than corresponding entries in VV(� �).

(iii) Otherwise, � � and � � are in conflict.

Figure 2 illustrates this process. The version vector for � ��� �
is [A:1,B:0,C:0] after site A generates a new write from
� ��� � , whose vector is [A:0,B:0,C:0]. When site A rec-
onciles with site B, the version vector for the merged re-
sult (i.e., � ��� �) might be [A:1,B:1,C:0]; however, since one
must conservatively assume that each site may apply writes
in different orders, we increment the entry of A’s merged
version from [A:1,B:1,C:0] to [A:2,B:1,C:0], since A deter-
mined the ordering of the merge.

2.3. Limitations to Version Vectors

However, using version vectors for optimistic replication
has the following limitations [15, 18, 6, 2, 3]:

(1) Replica site addition and deletion require changes in
version vector entries of all replica sites

(2) The size of version vectors grows linearly with the
number of replica sites.

(3) Each site name has to be uniquely assigned.
(4) The version vector scheme cannot accommodate coin-

cidental equality, i.e., cannot readily exploit instances
in which different schedules of semi-commutative op-
erations independently produce the same result.

(5) A unique version ID is still required for labeling each
entry in the logs to extract deltas during reconciliation.

In the case of coincidental equality (4), the content of
the versions is the same, but the version vectors would be
interpreted as requiring reconciliation. Using version vec-
tors (or a causal history approach based on timestamps—
see section 3.1), one could reduce the false conflict rate by
retroactively assigning the same id when two versions are
found to have the same content during reconciliation. How-
ever, until equal versions (say ��� and ���) meet each other

3

Site A Site B Site C

V0,A

V1,A V2,B V3,C

V4,A

V5,C

d3d2
d1

m4

m5

H0,A:0

H0,A:0

H1,A:0

H0,A :0

H2,B :0

H0,A :0

H3,C :0

H0,A:0

H1,A:0 H2,B:0

H4,A:0 H3,C:0

H5,C:0Hi,site :# = hash (Vi ,site) :epoch #

H0,A:0

H1,A:0 H2,B:0

H4,A:0

Figure 3. Reconciliation using hash history

for reconciliation, one cannot discern that descendants of
� � and � � are in fact from the same root.

To label deltas (5), one could use version vectors; how-
ever, each delta can be labeled more economically with a
[siteid,timestamp] pair, as is done in Bayou. Since each en-
try of the version vector tracks the most recent updates gen-
erated by the corresponding site, the timestamp of the lat-
est write compactly represents all the preceding writes (i.e.,
the coverage property). Thus, given a version vector from
another site, we can collect all the deltas whose version-id
(i.e., [siteid,timestamp]) is not covered by that version[15].
The storage consumption for labeling log entries using the
version vector based method is in the order of (size of ver-
sion id � number of log entries), which is approximately
the same as the storage requirement for causal histories.

3. The Hash History Approach

We now describe a scheme that overcomes the above
limitations. Basically, the idea is to take a causal history ap-
proach, which readily addresses problems of the dynamic
membership change (1) and the growth of vector size (2),
and use a hash of a version as a unique ID, thus addressing
the unique site name (3), the coincidental equality (4) and
delta labeling requirement of (5). Also, since (5) shows that
version vectors have a storage requirement of the same or-
der as causal histories do, this scheme does not impose an
additional cost penalty. We will use HH as an abbreviation
for Hash History and VV for Version Vector.

3.1. Using Hashes as Version IDs

In returning to the version history, we must identify some
mechanism for identifying replica versions. A timestamp
that is locally assigned within a site is probably unique in
practice since it is extremely rare that different users (or
sites) make an update at the same time. However, such
rare events do happen in practice, and their consequence is

prohibitive: An update may be completely lost by different
versions having the same id. Indeed, such an occurrence is
present in the CVS logs of sourceforge.net, whose granular-
ity is in seconds. Hence, we reject simple timestamps as too
risky.

If a local timestamp is prefixed by a unique site name,
then the version ID that is composed of [unique site ID,
local timestamp] is guaranteed to be unique. However pro-
ducing a unique site name in a network-partitioned environ-
ment requires a recursive naming method. For example, in
Bayou[15], a new site name is prefixed by the unique id
of the introducing site. If the sites are introduced through
linear chaining (e.g., A introduces B, B introduces C, C in-
troduces D, and so on), the total size of all site names could
grow quadratically in terms of number of sites.

Instead, we can name versions by applying a crypto-
graphic hash function (e.g., SHA-1 or MD5) over serial-
ized bytes of data content. By using the hash of a ver-
sion as a unique ID, we automatically recognize coinciden-
tal equalities since the hash would be the same if the same
results were produced from two different schedules of semi-
commutative operations. However, by itself, the hash of a
version is not necessarily unique, since a version with the
same content may appear previously in a version’s history,
and hence the latest version can be mistaken for an old one
during reconciliation with other sites. Therefore, we add an
epoch number to distinguish the hash of the latest version
from that of old versions with the same content.

When a new version is created, each site checks whether
the same hash can be found in the history; if so the epoch
number of the current version hash is assigned by increas-
ing the largest epoch number of the versions with the same
hash. It is possible, of course, that two sites generate the
same content independently with the same epoch-number.
We simply stipulate that these are the same versions, even
though they are not truly causally related.

3.2. Hash History Based Reconciliation

We use the term “hash history”(HH) to refer to schemes
in which version histories comprising hash-epoch pairs are
used to encode causal dependencies among versions in a
distributed system. Note that the hash history also contains
the set of (parent, child) pairs of the hash-epoch pairs. Fig-
ure 3 shows an example of causal history graph of hash-
epoch pairs. If

� ��� � is the same with
� ��� � , then the epoch

number for
� ��� � will be increased by 1, although the exam-

ple shows epoch number 0 for
� ��� � since

� ��� � is not the
same with

� ��� � .
Hash history based reconciliation is able to capture co-

incidental equality automatically. Using version vectors or
causal history based on a unique id (e.g., timestamp), one
could reduce the false conflict rate by assigning the same id

4

when ��� and ��� are found to have equal content during rec-
onciliation. This remedy may work to a degree; however,
until � � and � � meet each other for reconciliation, all the
descendants of � � and � � would be unable to tell they are
from the same root.

Each hash of a version in the hash history can be used as
a label for the corresponding operation delta. Given a hash
of a version from site A, site B can locate the matching hash
in the site B’s history, and then traverse the history graph
toward the most recent copy while collecting all the deltas
and all the siblings of the matched hash along the way.

Since one single hash can replace the unique version-id
(e.g., [siteid,timestamp]), the storage consumption for tag-
ging the log entries is in the order of (size of hash � number
of log entries). The actual size of hash is fixed (e.g., 160
bits for SHA1) while the site-id could grow depending on
the site creation pattern.

3.3. Truncating the Hash History

Classical techniques for truncating logs can be applied
toward pruning hash histories. The global-cutoff timestamp
(e.g.,[19]) and the acknowledgment-timestamp (e.g., [10])
can efficiently determine the committed versions; however,
these methods fundamentally require one to track the com-
mitted state per each site, and hence would not scale to thou-
sands of sites.

Instead, we use a simple aging method based on roughly
synchronized timestamps. Unlike version vectors, the hash
history for the shared data can be readily shared and ref-
erenced among many sites since it does not contain site-
specific information, but rather the history of the shared ob-
ject. Thus, one can maintain the truncated histories locally,
archiving portions of the history at primary sites to han-
dle the case in which a version that belongs to the pruned
hash history would otherwise be mistakenly considered a
new version. Note that the dominance check with pruned
hash history is conservative in a sense that it would mistak-
enly consider dominance as a conflict, thereby triggering a
merge process; hence, no updates would be lost.

4. Evaluation

To evaluate the efficacy of the hash history approach, we
implemented an event-driven simulator. Our goal was to
explore whether or not hash history schemes would con-
verge faster and with a lower conflict rate than version vec-
tor schemes. We also sought to explore the sensitivity of
hash histories to the rate at which we truncated them.

Dri Freenet Pcgen
events 10137 2281 404
users 21 64 39
Duration 4/27/1994-

5/3/2002
12/28/1999-
4/25/2002

1/17/2002-
4/12/2002

AVG interval 101.3 min 237.8 min 225.4 min
Median 0.016 min 34.6 min 2.16 min

Table 1. Trace data from sourceforge.net

4.1. Simulation Setup

The simulator performs anti-entropy reconciliation of in-
formation across a set of replica sites. It reads events in
sorted order from a trace file and generates write events.
The events are in the form of [time, user, filename]. If the
user is new, we create a new site for the user. Each site
has logs, hash histories and static version vectors. Period-
ically, the simulator performs anti-entropy by picking two
sites at random. The first site initiates the reconciliation
with the second site by getting a hash history and a version
vector. The first site determines the equality, conflict and
dominance. In case of conflict, the first site merges the con-
flicts, and then sends the merged version back to the second
site along with the updated version vector and hash history.

The simulator repeats the anti-entropy process at every
60 seconds. For example, if the interval between events
is 1200 seconds, 20 anti-entropy cycles is performed. The
conflict moving rate is defined as the number of conflict
determination results over moving window of 100 anti-
entropy cycles.

The implementation of hash history, the sim-
ulator, and other simulation results that are
not presented in this paper can be found at
http://www.cs.berkeley.edu/ � hoon/hashhistory/.

4.2. Trace Data

In optimistic replication systems, small individual writes
are aggregated until they are exported to another site.
Therefore, we would prefer trace data that shows the inter-
commit time rather than inter-write time. (Here, committing
a write means that the write needs to be propagated to other
replicas.) File system traces are not suitable for this pur-
pose since they do not carry the information that the write
is committed with the user’s intention. Thus, we created test
data based on CVS logs. CVS (Concurrent Versioning Sys-
tem) is a versioning software system that enables different
users to share mutable data by checking-in and checking-
out at a centralized server. CVS provides a serialized logs
(update history) for each file in a shared project. We treat
the project itself as under optimistic replication control and

5

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
at

e
(#

_o
f_

re
su

lts
 p

er
 c

yc
le

)

of anti-entropy cycles (1 cycle = 1 min)

VV-conflict_moving_rate
HH-conflict_moving_rate

Figure 4. Conflict rate of VV and HH from pcgen
shown between 0 to 10000 cycles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

30000 32000 34000 36000 38000 40000

R
at

e
(#

_o
f_

re
su

lts
 p

er
 c

yc
le

)

of anti-entropy cycles (1 cycle = 1 min)

VV-conflict_moving_rate
HH-conflict_moving_rate

Figure 5. Conflict rate of VV and HH from freenet
shown between 30000 to 40000 cycles

consider the individual files in the project as items of shared
document content. We treat each user as one replica site.

We collected the CVS logs of three active projects from
sourceforge.net that provides a CVS service to open
source development communities. We first combined all
the CVSlogs of the files in a project and then made the re-
sult into one serialized trace of events by sorting the events.
Table 1 shows that the writes are bursty–the median is far
smaller than the average of the inter-commit time.

4.3. Comparison with Version Vector Result

To check the correctness of our implementation, we ran
the simulation forcing the hashes of merged writes to al-
ways be unique. In this case, the results of the dominance
checks in the version vector scheme should be the same as
those of the hash history implementation, and, indeed, they
were.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

100000 102000 104000 106000 108000 110000

R
at

e
(#

_o
f_

re
su

lts
 p

er
 c

yc
le

)

of anti-entropy cycles (1 cycle = 1 min)

VV-conflict_moving_rate
HH-conflict_moving_rate

Figure 6. Conflict rate of VV and HH from dri shown
between 100000 to 110000 cycles

The hash history scheme converges faster, and with a
lower conflict rate, than the version vector scheme. Figure
4 shows that HH converged faster for the writes that was
generated around at 9000 cycles in pcgen trace data. In-
terestingly, HH converged twice during the period between
9000 and 9500 cycles, while VV converged once around
at 9500 cycle. This effect is also shown between 30000
and 34000 cycles with freenet trace data in Figure 5. HH
converged around at 31000 cycles for the writes generated
around at 30000 cycles; however, the VV could not con-
verged completely and yet had more conflicts when the next
writes were introduced. VV could not converge until the
long non-bursty period between 34000 and 39000 cycles.
Dri trace data in Figure 6 shows similar effect from 101000
to 105000 cycles.

One might wonder why there is so much difference be-
tween VV and HH. This is due to the fact that HH was able
to capture the coincidental equalities and thereby treat two
different sets of deltas that lead to the same content as the
same delta. This has cumulative effects to the dominance re-
lations among all the descendant versions. For example, let
��� and �	� are independently created with the same content
but different version histories. If ��� and ��� are considered
equal as in HH, then all the versions that are based on ���
will dominate ��� . However, using VV, all the descendants
of ��� and ��� would not be able to tell they are from the
same root. In VV, each descendant of ��� is in conflict with
��� . It is important to note that the simulation assumed the
merged results of each descendant of � � and � � will be a
new version with a different id but with the same content of
the descendant of � � itself. In contrast, the merged version
in HH will have the same id as the descendant of � � . This is
because the strict VV implementation in general conserva-
tively assigns a new id for all the merged operations with-
out looking at the content and its parents. And we simply

6

0

0.02

0.04

0.06

0.08

0.1

0.12

10 100

Fa
ls

e
co

nf
lic

t r
at

e
du

e
to

 a
gi

ng

Aging period in days

dri
freenet
pcgen

Figure 7. False conflict rate due to aging

Aging period (days) HH size (number of entries)
Dri Pcgen Freenet Average

32 146.3 159.1 61.5 122.3
64 413.9 443.9 147.5 335.1

128 551.5 591.7 612.8 585.3

Table 2. Average HH size with the aging period

assumed that the content of the merged result between a ver-
sion � and its ancestors (including coincidentally equivalent
ones) will be the same as that of the version � . That is the
reason that the Figure 4 - 6 show more drastic difference as
anti-entropy cycles increases.

4.4. Aging Policy

The results show that aging method is effective by hold-
ing the size of hash histories to an acceptable level—about
122 entries—with a 32 days aging policy and have no false
conflicts due to aging. A false conflict could occur when
the pruned part of the hash history is required for determin-
ing the version dominance. For example, � � from site A
belongs to the hash history of the site B. After the site B
pruned out the ��� from its hash history because ��� became
too old according to the aging parameter (say 30 days),
then the site B no longer be able to determine the domi-
nance when ��� is presented as a latest copy from A. Figure
7 shows that, using a pruning method based on aging, the
false conflict rate due to pruning the hash history converges
to 0 after 32 days. The average number of entries in a hash
history with an aging policy of 32 days is measured as 122.3
(in # of entries) as shown in Table 2.

5. Related Work

In the context of mobile communication and reliable
message delivery [4], it is well known that the dependency

among events can be determined by keeping a history of
all the causally preceding events. For example, Prakash et
al. [16] proposed the use of dependency sequences that con-
tain all the causal predecessors of an event as an alternative
to the version vectors for mobile communications. A causal
history based approach has also been proposed to address
the problem of scalability of version vectors. However, us-
ing causal histories, a method is required to provide unique
ids for replicas. Almeida et al. [2, 3] presented a unique id
assignment technique for replicated versions, in which the
bit vector names are expanded minimally enough to be dis-
tinguishable from other concurrent replica versions. When
the diverged versions are merged later, the names are com-
pacted into the name of their recent common ancestor.

In Coda [11, 13], the latest store id (LSID) is used to de-
termine version dominance by checking whether an LSID
appears in another replica’s history, as per causal history
approaches. Since it is impractical to maintain the entire up-
date history of a replica, a truncated version is maintained,
along with the length of the log history.

A number of recent peer-to-peer systems have used
hashes based on SHA-1 or MD5 to identify documents or
blocks of data. For instance, CFS[7], Past[9], Publius[21],
FreeHaven[8] and FreeNet[5] identify read-only objects by
a hash over the contents of those objects. OceanStore[12]
goes further and uses hashes to identify read-only data
blocks, then builds a tree of versions from these blocks.
The resulting data structure contains both a tree of version
hashes as well as pointers to all of the data from these ver-
sions.

Parker et al.[6] presented static version vectors as an effi-
cient mechanism for detecting mutual inconsistency among
mutable replicas during network partition. They also men-
tioned that extraneous conflicts may be signaled when two
replicas are equal, but did not clearly note that the false
conflict result can affect less number of dominance results
among the descendant versions. Using static version vec-
tors requires site membership to be previously determined.
Static version vectors have been used to implement opti-
mistic file replication in Locus and Ficus [17, 14].

Ratner et al.[18] noted the scalability problem of static
version vectors and proposed a dynamic version vector
mechanism. In this approach, entries of a version vector can
be dynamically modified rather than statically pre-assigned.
The method dynamically adds an active writer into a version
vector and expunges an entry from a version vector when
the corresponding writer becomes passive. This method can
alleviate the scalability problem to a degree, at the cost of
adding the complexity of tracking whether a site becomes
passive or not.

Methods for dynamic replica creation and retirement us-
ing version vector were presented in Bayou [15]. In this ap-
proach, creation and retirement events are treated as writes,

7

so that such events can have a causal accept order with other
writes in the log. However, this method may require one to
look through the write logs during dominance determina-
tion using the version vector.

6. Conclusion

In this paper, we presented the hash history approach for
detecting mutual inconsistency and reconciling conflicts.
Hash histories are causal histories that use the cryptographic
hash of version content for naming versions. The hash his-
tory approach has four primary advantages over previous
approaches: First, globally unique names can be determined
without global coordination since the hash can be computed
locally. Second, hash histories do not grow in size relative
to the number of participating sites—an extremely impor-
tant property in highly dynamic peer-to-peer environments.
Third, hash histories recognize coincidental equalities, thus
providing faster convergence with fewer conflicts than other
approaches. Finally, the hash ID can have a relatively small
fixed size, and hence the hash history approach has less or
equal amount of the storage overhead for labeling log en-
tries relative to the version vector based approach. We ex-
pect that hash history based reconciliation will be the tech-
nique of choice for highly-dynamic and global-scale Inter-
net applications.

7. Acknowledgments

We’d like to thank Eric Brewer, Anthony Joseph, Mike
Franklin, and John Chuang for their helpful discussions
in developing hash history ideas. We also like to thank
Jonathan Traupman and Byung-Gon Chun for their gen-
erous help in proof-reading this document. This research
was supported by the Digital Libraries Initiative, under
grant NSF CA98-17353, and by NSF Career Award ANI-
9985250.

References

[1] A. Demers et al. Epidemic algorithms for replicated database
maintenance. In Proc. of ACM PODC Symp., 1987.

[2] P. S. Almeida, C. Baquero, and V. Fonte. Version stamps- de-
centralized version vectors. In Proc. of IEEE ICDCS, 2002.

[3] C. Baquero and F. Moura. Improving causality logging in
mobile computing networks. ACM Mobile Computing and
Communications Review, 2(4):62–66, 1998.

[4] K. P. Birman and T. A. Joseph. Reliable communication in
the presence of failures. ACM Transactions on Computer
Systems, 5(1):47–76, 1987.

[5] I. Clark, O. Sandberg, B. Wiley, and T. Hong. Freenet: A
distributed anonymous information storage and retrieval sys-
tem. In Proc. of the Workshop on Design Issues in Anonymity
and Unobservability, Berkeley, CA, 2000.

[6] D. Stott Parker et al. Detection of mutual inconsistency in
distributed systems. IEEE Transactions on Software Engi-
neering, 9(3):240–247, May 1983.

[7] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. In Proc. of
ACM SOSP, 2001.

[8] R. Dingledine, M. Freedman, and D. Molnar. The freehaven
project: Distributed anonymous storage service. In Proc. of
the Workshop on Design Issues in Anonymity and Unobserv-
ability, 2000.

[9] P. Druschel and A. Rowstron. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility. In Proc. of ACM SOSP, 2001.

[10] R. A. Golding. A weak-consistency architecture for
distributed information services. Computing Systems,
5(4)(UCSC-CRL-92-31):379–405, 1992.

[11] J. J. Kistler and M. Satyanarayanan. Disconnected opera-
tion in the coda file system. ACM Transactions on Computer
Systems, 10(1):3–25, 1992.

[12] J. Kubiatowicz et al. Oceanstore: An architecture for global-
scale persistent storage. In Proc. of ASPLOS, 2000.

[13] M. Satyanarayanan et al. Coda: a highly available file sys-
tem for a distributed workstation environment. IEEE Trans-
actions on Computers, 39(4):447–459, 1990.

[14] P. Reiher et al. Resolving file conflicts in the ficus file system.
In USENIX Conference Proceedings, Summer 1994.

[15] K. Petersen et al. Flexible update propagation for weakly
consistent replication. In Proc. of ACM SOSP, 1997.

[16] R. Prakash and M. Singhal. Dependency sequences and hi-
erarchical clocks: efficient alternatives to vector clocks for
mobile computing systems. Wireless Networks, 3(5):349–
360, 1997.

[17] R. Guy et al. Implementation of the Ficus Replicated File
System. In USENIX Conference Proceedings, Summer 1990.

[18] D. Ratner, P. Reiher, and G. J. Popek. Dynamic version vec-
tor maintenance. Technical Report CSD-970022, University
of California, Los Angeles, June 1997.

[19] S. K. Sarin and N. A. Lynch. Discarding obsolete informa-
tion in a replicated database system. IEEE Transactions on
Software Engineering, 13(1):39–47, 1987.

[20] R. Schwarz and F. Mattern. Detecting causal relationships
in distributed computations: In search of the holy grail. Dis-
tributed Computing, 7(3):149–174, 1994.

[21] M. Waldman, A. Rubin, and L. Cranor. Publius: A ro-
bust, tamper-evident, censorship-resistant, web publishing
system. In Proc. 9th USENIX Security Symposium, 2000.

[22] H. Yu and A. Vahdat. The costs and limits of availability for
replicated services. In Proc. of ACM SOSP, 2001.

8

