
Finding a needle in Haystack:

Facebook’s photo storage

Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, Peter Vajgel

Photos @ Facebook

April 2009 Current

Total

15 billion photos

60 billion images

1.5 petabytes

65 billion photos

260 billion images

20 petabytes

Upload Rate
220 million photos / week

25 terabytes

1 billion photos / week

60 terabytes

Serving Rate 550,000 images / sec 1 million images / sec

Andy
Sticky Note
1 1/2 years later

Andy
Sticky Note
facebook generates 4 images of different sizes per photo3 replicas each....110Kbytes per photo

Andy
Sticky Note
workload: write once, read often, never modified, rarely deleted

Andy
Sticky Note
14 Gbytes/sec

NFS based Design

Browser

Web

Server

CDN

Photo Store

Server

Photo Store

Server

NAS NAS NAS

NFS

1 2

3

8

4

56

7

Andy
Sticky Note
content delivery networkscache hottest photos (e.g., profile pics)

NFS based Design

 Typical website

– Small working set

– Infrequent access of old content

– ~99% CDN hit rate

 Facebook

– Large working set

– Frequent access of old content

– 80% CDN hit rate

Andy
Sticky Note
occurs when you add a new friend

NFS based Design

 Metadata bottleneck

– Each image stored as a file

– Large metadata size severely limits the metadata hit ratio

 Image read performance

~10 iops / image read (large directories – thousands of files)

~3 iops / image read (smaller directories – hundreds of files)

~2.5 iops / image read (file handle cache)

Andy
Sticky Note
many fields are wasted (e.g., permission)

Andy
Sticky Note
caching does not work well for processing the long tail of requests (for less popular photos)

Haystack based Design

Browser

Web

Server

CDN

Haystack

Directory

Haystack Store

Haystack

Cache

Andy
Sticky Note
goals* high throughput & low latency * 1 IO per read* cost effective * 4x more reads than NAS

Andy
Sticky Note
serve popular images

Andy
Sticky Note
handle requests in the long tail

Haystack Store

Filesystem

Haystack

Storage

Haystack Photo Server

 Replaces Storage and Photo Server in NFS based Design

Haystack Store

 Storage

– 12x 1TB SATA, RAID6

 Filesystem

– Single ~10TB xfs filesystem

 Haystack

– Log structured, append only object store containing needles as

object abstractions

– 100 haystacks per node each 100GB in size

Andy
Sticky Note
files

Andy
Sticky Note
Should be XFS, optimized for large files; not xfs (serverless file system)

Haystack Store – Haystack file Layout

Superblock

Needle 1

Needle 2

Needle 3

Header Magic Number

Cookie

Key

Alternate Key

Flags

Size

Data

Footer Magic Number

Data Checksum

Padding

Andy
Sticky Note
64 bits

Andy
Sticky Note
photo 1

Andy
Sticky Note
type of image (thumbnail, full res)

Andy
Sticky Note
randomly created at upload time to avoid guessing URLs for photos

Haystack Store – Haystack Index File Layout

Superblock

Needle 1 index record

Needle 2 index record

Needle 3 index record

Key

Alternate Key

Flags

Offset

Size

Andy
Sticky Note
* a checkpoint file * maps keys to their offsets* also used to speed up reboots

Haystack Store - Photo Server

 Accepts HTTP requests and translates them to corresponding Haystack

operations

 Builds and maintains an incore index of all images in the Haystack

 32 bytes per photo (8 bytes per image vs. ~600 bytes per inode)

 ~5GB index / 10TB of images

64-bit photo key

1st scaled image 32-bit offset / 16-bit size

2nd scaled image 32-bit offset / 16-bit size

3rd scaled image 32-bit offset / 16-bit size

4th scaled image 32-bit offset / 16-bit size

 Read

– Lookup offset / size of the image in the incore index

– Read data (~1 iop)

 Multiwrite (Modify)

– Asynchronously append images one by one to the haystack file

– Flush haystack file

– Asynchronously append index records to the index file

– Flush index file if too many dirty index records

– Update incore index

Haystack Store Operations

Andy
Sticky Note
no overwrites

Andy
Sticky Note
* needles may not have the corresponding index entry after a crash * not hard to fix, since latest needles are at the end of the haystack

 Delete

– Lookup offset of the image in the incore index

– Synchronously mark image as “DELETED” in the needle header

– Update incore index

 Compaction

– Infrequent online operation

– Create a copy of haystack skipping duplicates and deleted photos

Haystack Store Operations

Andy
Sticky Note
25% of photos get deleted within a year

Haystack based Design

Browser

Web

Server

CDN

Haystack

Directory

Haystack Store

Haystack

Cache

Andy
Sticky Note
* cache requests that come directly from user * avoids duplicate caching at CDNs* cache content for write-enabled machines * so these machines can focus on writes

 Logical to physical volume mapping

– 3 physical haystacks (on 3 nodes) per one logical volume

 URL generation

– http://<CDN>/<Cache>/<Node>/<Logical volume id, Image id>

 Load Balancing

– Writes across logical volumes

– Reads across physical haystacks

 Caching strategy

– External CDN or Local cache?

Haystack Directory

Haystack based Design - Photo Upload

Browser

Web

Server

CDN

2 3

51

Haystack

Directory

Haystack Store

Haystack

Cache

4

Andy
Sticky Note
permission set at the machine granularity

Haystack based Design – Photo Download

Browser

Web

Server

CDN

2 3

41

8

6

Haystack

Directory

Haystack Store

Haystack

Cache

5

10

7

9

Conclusion

 Haystack – simple and effective storage system

– Optimized for random reads (~1 I/O per object read)

– Cheap commodity storage

– 8,500 LOC (C++)

– 2 engineers 4 months from inception to initial deployment

 Future work

– Software RAID6

– Limit dependency on external CDN

– Index on flash

Q&A

 Thanks!

