
Elephant: The File System that Never Forgets

Douglas J. Santry, Michael J. Feeley, Norman C. Hutchinson
Department of Computer Science
University of British Columbia

Vancouver, Canada�
dsantry,feeley,norm � @cs.ubc.ca

Alistair C. Veitch
Hewlett Packard Laboratories

Palo Alto, California
aveitch@hlp.hp.com

Abstract

Modern file systems associate the deletion of a file with
the release of the storage associated with that file, and file
writes with the irrevocable change of file contents. We pro-
pose that this model of file system behavior is a relic of the
past, when disk storage was a scarce resource. We believe
that the correct model should ensure that all user actions
are revocable. Deleting a file should change only the name
space and file writes should overwrite no old data. The file
system, not the user, should control storage allocation us-
ing a combination of user specified policies and information
gleaned from file-edit histories to determine which old ver-
sions of a file to retain and for how long.

This paper presents the Elephant file system, which pro-
vides users with a new contract: Elephant will automati-
cally retain all important versions of the users files. Users
name previous file versions by combining a traditionalpath-
name with a time when the desired version of a file or direc-
tory existed. Elephant manages storage at the granularity of
a file or groups of files using user-specified retention poli-
cies. This approach contrasts with checkpointing file sys-
tems such as Plan-9, AFS, and WAFL, that periodically gen-
erate efficient checkpoints of entire file systems and thus re-
strict retention to be guided by a single policy for all files
within that file system. We also report on the Elephant pro-
totype, which is implemented as a new Virtual File System
in the FreeBSD kernel.

1. Introduction

Disks are becoming ever cheaper and larger. Human pro-
ductivity, however, remains constant. This affords system
designers an opportunity to re-examine the way we use disk
stores. In particular, the previous model of user-controlled
storage allocation may no longer be valid.�

This work is supported by the Natural Sciences and Engineering Re-
search Council of Canada.

The current model of most file systems is that they store
the most recent version of a file. Users explicitly manage
files by deleting them when they are no longer needed or
when necessary to make room for new files when storage
fills. If a user wants to maintain older versions of files she
must explicitly make and maintain multiple copies.

Today, information is valuable and storage is cheap. It
thus makes sense for the file system to use some of this cheap
storage to ensure that valuable files are never lost due to the
failure of a user to make a copy (or make the right copy) be-
fore modifying them, or because of the accidental or unin-
formed deletion of a file that is in fact valuable.

If a file is mistakenly removed or overwritten, valuable
data can be lost and in some real sense the file system will
have failed the user. As a result, the savvy user tends to
be conservative, making many copies of data and avoiding
deletes whenever possible. Many researchers have observed
this problem and attempted to solve it. Section 2 summa-
rizes this related work.

This paper proposes a new file system model, called Ele-
phant, in which old versions of files are automatically re-
tained and storage is managed by the file system using file-
grain retention policies specified by the user. The goal of
Elephant is to present users with a file system that retains im-
portant old versions of all of their files. User actions such as
delete and file write are thus easily revocable by rolling back
the file system, a directory, or an individual file to an earlier
point in time. Section 3 describes the design of Elephant and
Section 4 describes our prototype implementation.

2. Related Work

The goal of keeping multiple versions of data automat-
ically, compactly, and in an organized way is reminiscent
of software version control systems [8, 12]. These systems
are implemented by application programs running on top of
a traditional file system. Users checkout a version from a
version-controlled repository, modify a local copy of that
version in the file system, and then return the modified ver-



sion to the repository, which compresses it with respect to
older versions. In essence, the goal of Elephant is to extend
this idea to all clients of the file system by moving the ver-
sioning semantics into the file system, which continues to be
accessed using the traditional file system interface of open,
close, read, write, etc, and thus freeing users from the details
of version management.

While traditional Unix file systems are single-version
explicit-delete as we have described, other file system mod-
els have been explored in both research and commercial sys-
tems. The idea of versioned files was first proposed for the
Cedar file system from Xerox PARC [10]. In Cedar, files
were immutable; writing to a file produced a new version of
the file and file names included a version number (e.g., file-
name!10). A similar idea was found in the RSX, VMS [2],
and TOPS-10/-20 [6] operating systems from Digital.

The approach taken by these systems has two key limita-
tions. First, the maximum number of file versions retained
by the system was assigned as a per file parameter; when
this threshold was reached, the oldest version was deleted.
However, the deletion of the oldest version is a poor heuris-
tic for deciding which files are valuable. Interesting versions
of files may be discarded while undesirable or less interest-
ing versions still exist. Second, versioning did not apply to
directories. Operations such as renaming a file, creating or
destroyinga directory, or, in some cases, deleting a file, were
thus not revocable.

Several recent file systems have taken a different ap-
proach to versioning. In systems such as AFS [5], Plan-
9 [7], and WAFL [4] an efficient checkpoint of an entire
file system can be created to facilitate backup or to provide
users with some protection from accidental deletes and over-
writes. A checkpoint is typically created and maintained in
a copy-on-write fashion in parallel with the active file sys-
tem. The old version thus represents a consistent snapshot
of the file system sufficient for creating a consistent backup
while the file system remains available for modification by
users. The snapshot also allows users to easily retrieve an
older version of a file.

These systems differ in how frequently checkpoints are
taken and in how many checkpoints are retained. In AFS
and Plan-9, checkpoints are typically performed daily. In
WAFL they can be performed as frequently as every few
hours. Plan-9 retains all checkpoints, WAFL keeps the last
32, and AFS keeps only the most recent checkpoint.

Checkpointing file systems have two major limitations.
First, checkpoints apply to all files equally, but files have
different usage patterns and retention requirements. While
it is not feasible to retain every version of every file, it may
be important to keep every version of some files. Unfortu-
nately, this dilemma cannot be solved using a file system-
grain approach to checkpointing. Elephant addresses this
limitationusing file-grain retention policies that can be spec-

ified by the user. Second, changes that occur between check-
points cannot be rolled back. For instance, users of daily-
checkpointing systems such as Plan-9 or AFS are as as vul-
nerable as UFS users to losingall their morning’s work in the
afternoon, due to an inadvertent file deletion or overwrite.

3. Elephant

In Elephant, all user operations are reversible. Deleting
a file does not release its storage and file writes are handled
in a copy-on-write fashion, creating a new version of a file
block each time it is written. Elephant’s update handling
is thus similar to the Log Structured File System[4, 9, 11],
though meta data handling and log cleaning are fundamen-
tally different as discussed below.

File versions are indexed by the time they were created
and versioning is extended to directories as well as files.
When naming a file or directory, a user can optionally spec-
ify a date and time as part of the name. The system resolves
this name-time pair to locate the version that existed at the
specified time. By rolling a directory back in time, for ex-
ample, the user will see the directory exactly as it existed at
the that earlier time, including any files that the user subse-
quently deleted. Delete thus becomes a name space manage-
ment operation; every delete can be undone.

While modern systems have vast storage capacity, this
storage is still finite. It is thus still necessary to reclaim stor-
age. In Elephant, users can specify data retention policies
on a per-file or per-file-group basis, in a fashion similar to
access-protection information in a traditional UNIX file sys-
tem. Periodically, a file system cleaner examines the file sys-
tem and uses these policies to decide when and which disk
blocks to reclaim, compress, or move to tertiary storage. A
variety of policies are possible and necessary to handle the
various different types of files stored in the file system.

3.1. Understanding What to Delete and When

Key to the design of Elephant’s version retention policies
is an understanding of how users use the file system to store
various types of files and how the increasing capacity of disk
storage impacts on the decisions they make. This section
summarizes our observations taken from several UNIX file
system traces [3].

Ironically, as storage becomes larger, it becomes more
difficult for users to manage files. When storage is fairly
constrained, users are required to frequently assess the files
that they are maintaining, and delete those that are no longer
necessary. Typically, the ability of the user to make this
assessment effectively deteriorates over time. After a few
weeks or months, the user is unlikely to remember why cer-
tain versions are being maintained. While there may be



value in maintaining these old versions, it becomes more and
more difficult to make sense of them.

Leaving the user to create backup copies of files also re-
quires that the user anticipate that she wants to duplicate
a set of files before making a change. Again, this either
leads to making excessive copies or sometimes to a situa-
tion where a user has just made a change they would like to
reverse, but didn’t make a copy before making the change,
and so is unable to retrieve the old data.

Lastly, as storage space is finite, it will eventually be-
come necessary to delete something. What strategy should
the user employ? Unless they have carefully remembered
what version is what, their probable strategy is to delete the
oldest versions. This, however, is often the wrong strategy
because a version history typically contains certain land-
mark versions surrounded by other versions whose time
frame of interest is much shorter. By landmark, we simply
mean a distinguished version of a file.

The right strategy to employ when freeing disk resources
is to maintain the landmark versions and delete the other ver-
sions. Unfortunately, the user may have no good way to tell
which old version is important. This process is exacerbated
by the fact that these decisions are often made under a time
crunch when a disk is full or nearly full.

It is often possible to detect landmark versions by looking
at a time line of the updates to a file. We have seen that for
many files, these updates are grouped into short barrages of
edits separated by longer periods of stability. A good heuris-
tic is to treat the newest version of each group as a landmark.
Of course this heuristic may sometimes be wrong, so it may
also be important to allow the user to specify other versions
as landmarks.

Not all files exhibit a history of landmarks. Object files,
for example, are of little interest after they have been linked
to produce the final binary. We have observed that their his-
tories are boringand the files are quite large. Object files and
source files should thus be treated differently.

3.2. Elephant Cleaner Policies

In this section we discuss three cleaner policies we have
examined for Elephant and implemented in our prototype.
These three policies are listed below.

� Keep One

� Keep All

� Keep Landmarks

Keep One and Keep All are the simplest policies and rep-
resent the two ends of the retention spectrum. Keep One
is equivalent to the standard file system model. There are
many classes of files that this policy suits well. Files that are

unimportant (e.g., files in /tmp, core files, etc.) or files that
are easily recreated (e.g., object files, files in a Web browser
cache, etc.) are good candidates for Keep-One retention.
Similarly, Keep All is appropriate for files for which a com-
plete history is important.

Keep Landmarks is a more interesting policy. The ba-
sic idea is to designate certain versions as landmarks and al-
low other versions to be freed as necessary. The key issue,
however, is how to determine which versions are landmarks.
One approach would be to require the user to designate the
landmark versions. This approach, however, would inter-
fere with our goal of freeing the user from direct involve-
ment in storage retention. Instead, we permit the user to des-
ignate landmark versions and use a heuristic to conserva-
tively tag other versions as possible landmarks. The cleaner
then frees only versions that the policy determines are un-
likely to be landmarks.

This landmark designation heuristic is based on the as-
sumption that as versions of files get older without being
accessed the ability of the user to distinguish between two
neighbouring versions decreases. For example, we might
designate every version of a file generated in the past week
as a landmark. For versions that are a month old, however,
we might assume that versions generated within one minute
of each other are now indistinguishable to the user. If so, we
can designate only the newest version of any such collection
of versions to be a landmark, possibly freeing some versions
for deletion.

Freeing a version in this way creates an ambiguity in the
file’s history as we have introduced a gap. A user may yet
request the freed version of the file. The presence of this am-
biguity is important information to the user. We thus retain
information about freed versions of a file in its history and
allow the user to examine the history for ambiguous periods
of time. This information is important, for example, for the
user to roll back a set of files to a consistent point in the past.
The user can only be certain that the specified point is con-
sistent if all files have an unambiguous version at that point
in time.

To assist the user in locating consistent versions of a file
group, we provide a utility for combining the version histo-
ries of a group of files to identify unambiguous periods in
their combined history. If, for example, a user tries to roll-
back to “Jan 15 at 11:30:00” and a file version that existed
at that time has been freed, this rollback is ambiguous. The
user can use the version history tool to locate an unambigu-
ous time (e.g., “Jan 15 at 11:25:00”) and suitably refine her
rollback. Of course, if the user had known that “11:30:00”
was going to be important, she could have manually spec-
ified it as a landmark and thus prevented the system from
creating the ambiguity.

Another solution to this problem is to clean files in groups
specified by the user. We are investigating an extension to



the Keep Landmarks policy that allows users to group files
for consideration by the cleaner. The cleaner then ensures
that every landmark version in the group is unambiguous
with respect to all files in the group.

4. Implementation

4.1. Overview

We have implemented a prototype of Elephant in
FreeBSD 2.2.7, which is a freely available version of BSD
for personal computers. Elephant is fully integrated into
the FreeBSD kernel and uses BSD’s VFS/vnode interface.
The standard UNIX file interface has been augmented with
a new API to access the advanced features of Elephant, but
all UNIX utilities work on current as well as older versions
of files without requiring any changes.

4.2. Design

We define a version of a file to be its state after a close
has been issued on it. Elephant’s disk blocks are protected
by copy-on-write techniques. Only the current version of a
file may be modified. The first write to a file following an
open causes its inode to be duplicated, creating a new ver-
sion of the file. The first time an existing block is written af-
ter an open, the modified block is given a new physical disk
address and the new inode is updated accordingly. All sub-
sequent writes to that block before the close are performed
in place. When the file is closed, the new inode is appended
to an inode log maintained for that file. This inode log con-
stitutes the file’s history and is indexed by the time each in-
ode in the log was closed. Concurrent sharing of a file is
supported by performing copy-on-write on the first open and
updating the inode log on the last close.

4.3. Elephant Meta-Data

Traditional file systems have one inode per name (but the
reverse does not hold). Files can thus be uniquely and un-
ambiguously named by their inode number, an index to their
inode’s disk address. Elephant departs from this model, be-
cause files have multiple inodes, one for each version of the
file. To maintain the important naming properties of inode
numbers, Elephant redefines inode numbers to index a file’s
inode log instead of its inode. Additionally, a level of indi-
rection is introduced to provide flexibility in the location and
size of inode logs. An inode number thus indexes an entry
in the inode map, which stores the disk address of the corre-
sponding inode log, as depicted in Figure 1.

The inode map contains the data needed to manage the
file and its inodes. The two most important fields are the

inode number

Inode Log Addr

Temperature

Flags

Younger Older

Inode Map

Inodes

Figure 1. Inode Log

physical disk address of the inode log, and the file’s temper-
ature. The inode log is a temporally ordered list of inodes
while the temperature is a heuristic used to prioritize the ac-
tions of the cleaner, as described below. The inode map is
cached in memory and thus a file’s current inode, which is
always at the head of the inode log, can be retrieved with a
single disk access.

4.4. Directories

Directories map names to inode numbers. They differ in
their usage from files in that files are explicitly opened and
closed whereas directory modifications are implicit side ef-
fects of other system calls. For this reason Elephant handles
the versioningof directories differently from that of ordinary
files.

Elephant directories store versioning information explic-
itly and all versions of a directory are represented by a single
inode. Each directory stores a name’s creation time and, if
deleted, its deletion time. It is possible for multiple instances
of the same name to co-exist in a directory, provided that no
two of them existed at the same time. Directory entires are
retained as long as at least one version of the file they name
remains in the file system.

An alternative to keeping versioning information in di-
rectories is to treat directories in the same fashion as files.
The result, however, is wasteful of inodes and data blocks,
because each name creation or deletion would require a new
data block and thus a new inode for the directory.



4.5. API

Elephant allows users to add an optional timestamp tag
to any pathname they present to the file system (e.g., when
opening a file or when changing the current working direc-
tory). If this tag is present, Elephant accesses the version
of the file that existed at the specified time. For example,
if a user types “cd .#today:11:30”, her working directory is
changed to the version that existed at 11:30 of the current
day.

When a timestamp tag is not specified, the selected ver-
sion is determined by either the timestamp of the current
working directory, if a relative pathname is specified (e.g.,
“file”), or the process’s current epoch, if a complete path-
name is specified (e.g., “/file”). Users can change the times-
tamp of their process’s current epoch using the newly added
setepoch system call. Child processes inherit their current
epoch from their parent process when they are created.

The readinodelog system call was added to allow user-
mode applications to access a file’s history. This call re-
turns a digest of the inodes in a file’s inode log, including
key fields such as the timestamp of each inode. As men-
tioned in Section 3, information about versions that Ele-
phant’s cleaner has purged is also returned by this call. We
envision that this system call will be used by a new suite of
utility programs that allow users to view and navigate file
version histories; we have written some of these utilities, but
this is an area of active research.

4.6. The Cleaner

The Elephant cleaner is responsible for reclaiming stor-
age and is directed by the policies outlined in Section 3.2.
It proceeds by picking a file to clean, reading its inode log,
and selecting zero or more inodes to be reclaimed, com-
pressed, or moved to tertiary storage (compression and ter-
tiary storage are not supported by the current prototype, but
are planned). To guide the cleaner to files likely to have
the most reclaimable storage, Elephant maintains a temper-
ature heuristic for each file; temperatures are stored in the
memory-cached inode map. A file’s temperature is recom-
puted when it is closed and when the cleaner examines the
file. In the current prototype, temperatures are assigned us-
ing a heuristic based on the size of the file and the number of
inodes in its inode log. We are actively investigating policy-
specific heuristics that also consider the file’s history profile,
the time since the file was last cleaned, and other informa-
tion gathered by the cleaner when it examines the file.

It is important to distinguish the Elephant cleaner from
and the cleaner of a Log Structured File System. An LFS
cleaner servers two roles: it frees obsolete blocks and it
coalesces free space. In contrast, the Elephant cleaner’s
role is simply to free obsolete blocks. As a result, the Ele-
phant cleaner has significantly lower overhead than an LFS

cleaner, because Elephant’s cleaning is performed without
reading any file data blocks, only the inode log need be ac-
cessed. In contrast, the LFS cleaner must read every data
block at least once, even obsolete blocks, and it may read
and write active blocks multiple times.

5. Conclusions

We believe current file system models are flawed. Forc-
ing the user to manage disk block reclamation and write-in-
place file policies result in many problems. Previous sys-
tems that have attempted to solve these problems with snap-
shots or the retention of a limited number of versions fall
short of what is required by users today.

Large cheap disk stores provide an opportunity for us
to address the limitations of previous file systems. Users
are quickly confused as multiple copies of their data ac-
cumulate, or become frustrated when they lose data in
files from misbehaved applications or accidental deletion
or overwrite. Elephant addresses these issues by provid-
ing a system where data blocks are immutable and the sys-
tem decides when to deallocate disk blocks. The user need
only manage the name space to keep their environment orga-
nized. Specifying backup policies at the granularity of files
instead of the file system allows the file system to tailor its
treatment of files depending on their type.

5.1. Status and Future Work

Our work on Elephant is proceeding along five fronts.
First, we are extending our prototype to add support for com-
pression and tertiary storage to the cleaner. Second, we are
building a set of new utilities that exploit Elephant’s novel
functionality (we have already written a few utilities includ-
ing “tgrep”, “tls”, and a history browser). Third, we are ex-
amining an alternate implementation that provides version-
ing at the level of blocks and abstracted by a logical disk [1].
Fourth, we are investigating how to backup an Elephant file
system so that version histories can be recovered following
a media failure. Finally, we are planning an extensive user
study. To facilitate this study, we are modifying our proto-
type to allow it to shadow an NFS server. Users will thus
be able to use Elephant without the risking their data to a re-
search file system. This study will allow us to evaluate vari-
ous cleaner-policy issues and to understand how user behav-
ior changes when they use a file system that never forgets.

Acknowledgments

We would like to thank Jacob Ofir and Sreelatha Reddy
who wrote some of the Elephant utilities and helped with
experiements. Thanks also to Joon Suan Ong and Yvonne
Coady who commented on earlier versions of this paper.



References

[1] W. de Jonge, M. Kaashoek, and W. C. Hsieh. The logical
disk: A new approach to improving file systems. In Proceed-
ings of the 14th Symposium on Operating Systems Princi
ples, pages 15–28, December 1993.

[2] Digital. Vax/VMS System Software Handbook. Bedford,
1985.

[3] J. Griffioen and R. Appleton. Reducing file system la-
tency using a predictive approach. In Proceedings of the
Usenix Summer Conference, pages 197–208, Boston, MA,
June 1994. Usenix.

[4] D. Hitz, J. Lau, and M. Malcolm. File system design for a file
server appliance. In Proceedingsof the 1994 Winter USENIX
Technical Conference, pages 235–245, San Francisco, CA,
January 1994. Usenix.

[5] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale
and performance in a distributed file system. ACM Transac-
tions on Computer Systems, 6(1):51–81, Feb. 1988.

[6] L. Moses. TOPS-20 User’s manual. USC/Information Sci-
ences Institute, Internal manual, Marina del Rey, California.

[7] D. Presotto. Plan 9. In Proceedings of the Workshop on
Micro-kernelsand Other Kernel Architectures, pages 31–38,
Seattle, WA, USA, Apr. 1992. USENIX Association.

[8] M. J. Rochkind. The source code control system. IEEE
Transactions on Software Engineering, 1(4):364–370, Dec.
1975.

[9] M. Rosenblum and J. K. Ousterhout. The design and imple-
mentation of a log-structured file system. ACM Transactions
on Computer Systems, 10(1):26–52, Feb. 1992.

[10] M. D. Schroeder, D. K. Gifford, and R. M. Needham. A
caching file system for a programmer’s workstation. In Pro-
ceedings of the 10th ACM Symposium on Operating Sys-
tems Principles, pages 25–34, Orcas Island WA (USA), Dec.
1985. ACM.

[11] M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin. An
implementation of a log-structured file system for UNIX.
In USENIX Association, editor, Proceedings of the Win-
ter 1993 USENIX Conference: January 25–29, 1993, San
Diego, California, USA, pages 307–326, Berkeley, CA,
USA, Winter 1993. USENIX.

[12] W. F. Tichy. RCS: A system for version control. Software —
Practice and Experience, 15(7):637–654, July 1985.


