
a M 0 E 6 . a

T
he Amoeba project is a re-
search effort aimed at un-
derstanding how to con-
nect multiple computers in
a seamless way [16, 17, 26,
27, 3 11. The basic idea is to

provide the users with the illusion
of a single powerful timesharing
system, when, in fact, the system is
implemented on a collection of
machines, potentially distributed
among several countries. This re-
search has led to the design and
implementation of the Amoeba dis-
tributed operating system, which is
being used as a prototype and vehi-
cle for further research. In this arti-
cle we will describe the current state
of the system (Amoeba 4.0), and
show some of the lessons we have
learned designing and using it over
the past eight years. We will also
discuss how this experience has in-
fluenced our plans for the next ver-
sion, Amoeba 5.0.

Amoeba was originally designed
and implemented at the Vrije
Universiteit in Amsterdam, and is
now being jointly developed there
and at the Centrum voor Wiskunde
en Informatica, also in Amsterdam.
The chief goal of this work is to
build a distributed system that is
transparent to the users. This con-
cept can best be illustrated by con-
trasting it with a network operating
system, in which each machine re-
tains its own identity. With a net-
work operating system, each user
logs into one specific machine-his
home machine. When a program is
started, it executes on the home
machine, unless the user gives an
explicit command to run it else-
where. Similarly, files are local un-
less a remote file system is explicitly
mounted or files are explicitly cop-
ied. In short, the user is clearly
aware that multiple independent
computers exist, and must deal with
them explicitly.

In contrast, users effectively log
into a transparent distributed sys-
tem as a whole, rather than to any
specific machine. When a program
is run, the system-not the user-
decides upon the best place to run
it. The user is not even aware of this

choice. Finally, there is a single,
system-wide file system. The files in
a single directory may be located on
different machines, possibly in dif-
ferent countries. There is no con-
cept of file transfer, uploading or
downloading from servers, or
mounting remote file systems. A
file’s position in the directory hier-
archy has no relation to its location.

The remainder of this article will
describe Amoeba and the lessons
we have learned from building it.
In the next section, we will give a
technical overview of Amoeba as it
currently stands. Since Amoeba
uses the client-server model, we will
then describe some of the more
important servers that have been
implemented so far. This is fol-
lowed by a description of how wide-
area networks are handled. Then
we will discuss a number of applica-
tions that run on Amoeba. Mea-
surements have shown Amoeba to
be fast, so we will present some of
our data. After that, we will discuss
the successes and failures we have
encountered, so that others may
profit from those ideas that have
worked out well and avoid those
that have not. Finally we conclude
with a very brief comparison be-
tween Amoeba and other systems.

Before describing the software,
however, it is worth saying some-
thing about the system architecture
on which Amoeba runs.

mmhnlcal overvlew 06
Amoeba
Syetem Arrhltectare
The Amoeba architecture consists
of four principal components, as
shown in Figure I. First are the
workstations, one per user, on
which users can carry out editing
and other tasks that require fast in-
teractive response. The worksta-
tions are all diskless, and are pri-
marily used in intelligent terminals
that do window management,
rather than as computers for run-
ning complex user programs. We
are currently using Sun-Ss,
VAXstations and X-terminals as
workstations.

Second are the pool processors, a

group of CPUs that can be dynami-
cally allocated as needed, used, and
then returned to the pool. For ex-
ample, the make command might
need to do six compilations; so six
processors could be taken out of the
pool for the time necessary to do
the compilation and then returned.
Alternatively, with a five-pass com-
piler, 5 x 6 = 30 processors could
be allocated for the six compila-
tions, further gaining speedup.
Many applications, such as heuristic
search in artificial intelligence (AI)
applications (e.g., playing chess),
use large numbers of pool proces-
sors to do their computing. We cur-
rently have 48 single board VME-
based computers using the 68020
and 68030 CPUs. We also have 10
VAX CPUs forming an additional
processor pool.

Third are the specialized servers,
such as directory servers, file serv-
ers, database servers, boot servers,
and various other servers with spe-
cialized functions. Each server is
dedicated to performing a specific
function. In some cases, there are
multiple servers that provide the
same function, for example, as part
of the replicated file system.

Fourth are the gateways, which
are used to link Amoeba systems at
different sites and different coun-
tries into a single, uniform system.
The gateways isolate Amoeba from
the peculiarities of the protocols
that must be used over the wide-
area networks.

All the Amoeba machines run
the same kernel, which primarily
provides multithreaded processes,
communication services, I/O, and
little else. The basic idea behind the
kernel was to keep it small, to en-
hance its reliability, and to allow as
much as possible of the operating
system to run as user processes (i.e.,
outside the kernel), providing for
flexibility and experimentation.

OOJects ancl Capal8lll?les
Amoeba is an object-based system.
It can be viewed as a collection of
objects, each of which contains a set
of operations that can be per-
formed. For a file object, for exam-

CCYY”IIICITIC”CCF~“LACYIDcccmber 199O/Vo1.33, No.12

ple, typical operations are reading,
writing, appending, and deleting.
The list of allowed operations is
defined by the person who designs
the object and who writes the codes
to implement it. Eloth hardware
and software objects exist.

Associated with each object is a
capability [S], a kind of ticket or key
that allows the holder of the capa-
bility to perform some (not neces-
sarily all) operations on that object.
For example, a user process might
have a capability for a file that per-
mits it to read the tile, but not to
modify it. Capabilities are protected
cryptographically to prevent users
from tampering with them.

Each user process owns some col-
lection of capabilities, which to-
gether define the set of objects it
may access and the types of opera-
tions that may be performed on
each. Thus capabilities provide a
unified mechanism for naming,
accessing, and protecting objects.
From the user’s perspective, the
function of the operating system is
to create an environment in which
objects can be created and manipu-
lated in a protected way.

This object-based model visible
to the users is implemented using
remote procedure call [5]. Associ-
ated with each object is a server
process that manages the object.
When a user proces:s want to per-
form an operation on an object, it
sends a request message to the
server that manages the object. The
message contains the capability for
the object, a specification of the
operation to be performed, and any
parameters the operation requires.
The user, known as the client, then
blocks. After the server has per-
formed the operation, it sends back
a reply message that unblocks the
client. The combination of sending
a request message, blocking, and
accepting a reply message forms
the remote procedure call, which
can be encapsulated using stub rou-
tines, to make the entire remote
operation look like a local proce-
dure call. (For other possibilities see
w31).

The structure of a capability is

shown in Figure 2. It is 128 bits
long and contains four fields. The
first field is the senrer port, and is
used to identify the (server) process
that manages the obiect. It is in ef-
fect a 4%bit random number
chosen by the server.

The second field is the object
number, which is used by the server
to identify which of its objects is
being addressed. Together, the
server port and object number
uniquely identify the object on
which the operation is to be per-
formed.

The third field is the rights field,
which contains a bit map telling
which operations the holder of the
capability may perform. If all the
bits are Is, all operations are
allowed. However, if some of the
bits are OS, the holder of the capa-
bility may not perform the corre-
sponding operations. Since the
operations are usually coarse
grained, 8 bits is sufficient.

To prevent users from just turn-
ing all the 0 bits in the rights field
into 1 bits, a cryptographic protec-

tion scheme is used. When a server
is asked to create an object, it picks
an available slot in its internal ta-
bles, and puts the information
about the object in there along with
a newly generated 4%bit random
number. The index for the table is
put into the object number field of
the capability, the rights bits are all
set to 1, and the newly generated
random number is put into the
check field of the capability. This is
an owner capability, and can be
used to perform all operations on
the object.

The owner can construct a new
capability with a subset of the rights
by turning off some of the rights
bits and then XOR-ing the rights
field with the random number in
the check field. The result of this
operation is then run through a
(publicly known) one-way function
to produce a new 4%bit number
that is put in the check field of the
new capability.

The key property required of the
one-way function, f, is that given
the original 4%bit number, N (from

December WW”o1.33, N~.~~ICOYYUWICITIOWSO~T”LMY

the owner capability) and the un-
encrypted rights field, R, it is easy
to compute C =f(N XOR R), but
given only C it is nearly impossible
to find an argument tof that pro-
duces the given C. Such functions
are known [9].

When a capability arrives at a
server, the server uses the object
held to index into its tables to locate
the information about the object. It
then checks to see if all the rights
bits are on. If so, the server knows
that the capability is (or is claimed
to be) an owner capability, so it just
compares the original random
number in its table with the con-
tents of the check field. If they
agree, the capability is considered
valid and the desired operation is
performed.

If some of the rights bits are 0,
the server knows that it is dealing
with a derived capability, so it per-
forms an XOR of the original ran-
dom number in its table with the
rights field of the capability. This
number is then run through the
one-way function. If the output of
the one-way function agrees with
the contents of the check field, the
capability is deemed valid, and the
requested operation is performed if
its rights bit is set to 1. Due to the
fact that the one-way function can-
not be inverted, it is not possible for
a user to “decrypt” a capability to
get the original random number in
order to generate a false capability
with more rights.

Remote O~emtlons

The combination of a request from
a client to a server and a reply from
a server to a client is a remote opera-
tion. The request and reply mes-
sages consist of a header and a
buffer. Headers are 32 bytes, and
buffers can be up to 30 kilobytes. A
request header contains the capa-
bility of the object to be operated
on, the operation code, and a lim-
ited area (8 bytes) for parameters to
the operation. For example, in a
write operation on a file, the capa-
bility identifies the file, the opera-
tion code is write, and the parame-
ters specify the size of the data to be

written, and the offset in the file.
The request buffer contains the
data to be written. A reply header
contains an error code, a limited
area for the result of the operation
(8 bytes), and a capability field that
can be used to return a capability
(e.g., as the result of the creation of
an object, or of a directory search
operation).

The primitives for doing remote
operations are listed below:

get-request(req-header,
req-buffer, req-size)

put-reply(rep-header,
rep-buffet, rep-size)

do-operution(req-header,
req-buffer, req-size,
rep-header,rep-buffer,
rep-size)

When a server is prepared to accept
requests from clients, it executes a
get-request primitive, which causes it
to block. When a request message
arrives, the server is unblocked and
the formal parameters of the call to
get-request are filled in with the in-
formation from the incoming re-
quest. The server then performs
the work and sends a reply using
put-reply.

On the client side, to invoke a
remote operation, a process uses
do-operation. This action causes the
request message to be sent to the
server. The request header con-
tains the capability of the object to
be manipulated and various param-
eters relating to the operation. The
caller is blocked until the reply is
received, at which time the three
rep- parameters are filled in and a
status returned. The return status
of do-operation can be one of three
possibilities:

1. The request was delivered and
has been executed.

2. The request was not delivered or
executed (e.g., server was down).

3. The status is unknown.

The third case can arise when the
request was sent (and possibly even
acknowledged), but no reply was
forthcoming. That situation can

arise if a server crashes part way
through the remote operation.
Under all conditions of lost mes-
sages and crashed servers, Amoeba
guarantees that messages are deliv-
ered at most once. If status 3 is re-
turned, it is up to the application or
run time system to do its own fault
recovery.

Remote PrOCeUUre CU118

A remote procedure call actually
consists of more than just the re-
quest/reply exchange described
above. The client has to place the
capability, operation code, and pa-
rameters in the request buffer, and
on receiving the reply it has to un-
pack the results. The server has to
check the capability, extract the
operation code and parameters
from the request, and call the ap-
propriate procedure. The result of
the procedure has to be placed in
the reply buffer. Placing parame-
ters or results in a message buffer is
called marshalling, and has a non-
trivial cost. Different data repre-
sentations in client and server also
have to be handled. All of these
steps must be carefully designed
and coded, lest they introduce un-
acceptable overhead.

To hide the marshalling and
message passing from the users,
Amoeba uses stub routines [5]. For
example, one of the file system
stubs might start with:

int read-file(file-cap, offset,
nbytes, buffer, bytes-read)

capability-t *file-cap;
long offset;
long *nbytes;
char *buffer;
long *bytes-read;

This call read nbytes starting at off-
set from the file identified by
file-cap into buffer. If returns the
number of bytes actually read in
bytes-read. The function itself re-
turns 0 if it executed correctly or an
error code otherwise. A hand-writ-
ten stub for this code is simple to
construct: it will produce a request
header containing file-cap, the op-
eration code for readfile, offset,

COYYUNlCATlONSOFTNSACN/December 1990/Vo1.33,NdZ 49

and nbytes, and invoke the remote
operation:

do-operation(req-hdr, req-buf,
req-bytes, rep-hdr,
buf, rep-bytes);

Automatic generati,on of such a
stub from the procedure header
above is impossible. Some essential
information is missing. The author
of the handwritten stub uses several
pieces of derived infcormation to do
the job.

The buffer is used only to re-
ceive information from the file
server; it is an output parameter,
and should not be sent to the
server.

The maximum length of the
buffer is given in the nbytes pa-
rameter. The actual length of
the buffer is the returned value
if there is no error and zero
otherwise.

File-cup is special:; it defines the
service that must carry out the
remote operation.

The stub generator does not
know what the server’s opera-
tion code for read-file is. This
requires extra information. But,
to be fair, the human stub writer
needs this extra information too.

In order to be able to do auto-
matic stub generation, the inter-
faces between client and servers
have to contain the information
listed above, plus information
about type representation for all
language/machine combinations
used. In addition, the interface
specifications have to have an in-
heritance mechanism which allows
a lower-level interface to be shared
by several other interfaces. The
readfile operation, for instance,
will be defined in a low-level inter-
face which is then inherited by all
file-server interfaces, the terminal-
server interface, and the segment-
server interface.

The Amoeba Interface Lan-
guage (AIL) is a language in which
the extra information for the gen-
eration of efficient stubs can be
specified, so that the AIL compiler

can produce stub routines automat-
ically [33]. The read-jile operation
could be part of an interface (called
a class in AIL) whose definition
could look something like this:

class simple-file-server [100.. 199]{
read-file(*,

in unsigned offset,
in out unsigned nbytes,
out char buffer
[nbytes:NBYTES]);

write-file(*,...);

From this specification, AIL can
generate the client stub of the ex-
ample above with the correct mar-
shalling code. It can also generate
the server main loop, containing
the marshalling code correspond-
ing to the client stubs. The AIL
specification tells the AIL compiler
that the operation codes for the
simple-file-server can be allocated
in the range 100 to 199; it tells
which parameters are input param-
eters to the server and which are
output parameters from the server,
and it tells that the length of buffer
is at most NBYTES (which must be
a constant) and that the actual
length is nbytes.

The Bullet File Server, one of the
file servers operational in Amoeba,
inherits this interface, making it
part of the Bullet File Server inter-
face:

class bullet-server [200..299] {
inherit simple-file-server;
crest-file(*,...);

AIL supports multiple inheritance
so the Bullet server interface can
inherit both the simple file inter-
face and, for instance, a capability
management interface for restrict-
ing rights on capabilities.

Currently, AIL generates stubs
in C, but Modula stubs and stubs in
other languages are planned. AIL
stubs have been designed to deal
with different representations-
such as byte order and floating-
point representation-on client
and server machines.

mreaus
A process in Amoeba consists of

one or more threads that run in
parallel. All the threads of a process
share the same address space, but
each one has a dedicated portion of
that address space of use as its pri-
vate stack, and each one has its own
program counter. From the
programmers’s point of view, each
thread is like a traditional sequen-
tial process, except that the threads
of a process can communicate using
shared memory. In addition, the
threads can (optionally) synchro-
nize with each other using mutexes
or semaphores.

The purpose of having multiple
threads in a process is to increase
performance through parallelism,
and still provide a reasonable se-
mantic model to the programmer.
For example, a file server could be
programmed as a process with mul-
tiple threads. When a request
comes in, it can be given to some
thread to handle. That thread first
checks an internal (software) cache
to see if the needed data are pres-
ent. If not, it performs remote pro-
cedure call (RPC) with a remote
disk server to acquire the data.

While waiting for the reply from
the disk, the thread is blocked and
will not be able to handle any other
requests. However, new requests
can be given to other threads in the
same process to work on while the
first thread is blocked. In this way,
multiple requests can be handled
simultaneously, while allowing each
thread to work in a sequential way.
The point of having all the threads
share a common address space is to
make it possible for all of them to
have direct access to a common
cache-something that is not possi-
ble if each thread is its own address
space.

The scheduling of threads within
a process is done by code within the
process itself. When a thread
blocks, either because it has no
work to do (i.e., on a get-request) or
because it is waiting for a remote
reply (i.e., on a do-operation), the
internal scheduler is called, the
thread is blocked, and a new thread
can be run. Thus threads are effec-
tively co-routines. Threads are not

50 December 199O/Vo1.33, Na.l2/COMYUNICATIONS OF TNE ACM

pre-empted, that is, the currently
running thread will not be stopped
because it has run too long. This
decision was made to avoid race
conditions. There need be no worry
that a thread, when halfway
through updating some critical
shared table, will be suddenly
stopped by some other thread start-
ing up and trying to use the same
table. It is assumed that the threads
in a process were all written by the
same programmer and are actively
cooperating. That is why they are in
the same process. Thus the interac-
tion between two threads in the
same process is quite different from
the interaction between two threads
in different processes, which may
be hostile to one another and for
which hardware memory protec-
tion is required and used. Our eval-
uation of this approach is discussed
later.

Seruers
The Amoeba kernel, as we de-
scribed, essentially handles commu-
nication and some process manage-
ment, and little else. The kernel
takes care of sending and receiving
messages, scheduling processes,
and some low-level memory man-
agement. Everything else is done by
user processes. Even capability
management is done entirely in
user space, since the cryptographic
technique discussed earlier makes it
virtually impossible for users to
generate counterfeit capabilities.

All of the remaining functions
that are normally associated with a
modern operating system environ-
ment are performed by servers,
which are just ordinary user pro-
cesses. The file system, for exam-
ple, consists of a collection of user
processes. Users who are not happy
with the standard file system are
free to write and use their own.
This situation can be contrasted
with a system like Unix’“, in which
there is a single file system that all

. .
applications must use, no matter
how inappropriate it may be. In
[24] for example, the numerous
problems that Unix creates for
database systems are described at
great length.

In the following sections we will
discuss the Amoeba memory
server, process server, tile server,
and directory server, as examples
of typical Amoeba servers. Many
others exist as well.

me Memory anu Process
Server
In many applications, processes
need a way to create subprocesses.
In Unix, a subprocess is created by
the fork primitive, in which an exact
copy of the original process is
made. This process can then run
for a while, attending to house-
keeping activities, and then issue an
exec primitive to overwrite its core
image with a new program.

In a distributed system, this
model is not attractive. The idea of
first building an exact copy of the
process, possibly remotely, and
then throwing it away again shortly
thereafter is inefficient. Conse-
quently, Amoeba uses a different
strategy. The key concepts are seg-
ments and process descriptors.

A segment is a contiguous chunk
of memory that can contain code or
data. Each segment has a capability
that permits its holder to perform
operations on it, such as reading
and writing. A segment is some-
what like an in-core file, with simi-
lar properties.

A process descriptor is a data
structure that provides information
about a stunned process, that is, a
process not yet started or one being
debugged or migrated. It has four
components. The first describes the
requirements for the system where
the process must run: the class of
machines, which instruction set,
minimum available memory, use of
special instructions such as floating
point, and several more. The sec-
ond component describes the lay-
out of the address space: number of
segments and, for each segment,
the size, the virtual address, how it
is mapped (e.g., read only, read-
write, code/data space), and the
capability of a file or segment con-
taining the contents of the segment.

Unix is a registered trademark of AT&T Bell
Laboratories.

The third component describes the
state of each thread of control:
stack pointer, stack top and bottom,
program counter, processor status
word, and registers. Threads can be
blocked on certain system calls (e.g.,
get-request); this can also be de-
scribed. The fourth component is a
list of ports for which the process is
a server. This list is helpful to the
kernel when it comes to buffering
incoming requests and replying to
port-locate operations.

A process is created by executing
the following steps.

1. Get the process descriptor for
the binary from the file system.

2. Create a local segment or a file
and initialize it to the initial envi-
ronment of the new process.
The environment consists of a
set of named capabilities (a
primitive directory, as it were),
and the arguments to the pro-
cess (in Unix terms, argc and

ar.674.
3. Modify the process descriptor to

make the first segment the envi-
ronment segment just created.

4. Send the process descriptor to
the machine where it will be exe-
cuted.

When the processor descriptor
arrives at the machine where the
process will run, the memory server
there extracts the capabilities for
the remote segments from it, and
fetches the code and data segments
from wherever they reside by using
the capabilities to perform READ
operations in the usual way. In this
manner, the physical locations of all
the machines involved are irrele-
vant.

Once all the segments have been
filled in, the process can be con-
structed and the process started. A
capability for the process is re-
turned to the initiator. This capa-
bility can be used to kill the process,
or it can be passed to a debugger to
stun (suspend) it, read and write its
memory, and so on.

me File Seruer
As far as the system is concerned, a
file server is just another user pro-
cess. Consequently, a variety of file

COYU”Y,O.TlOYL OF T”E ACM/December 19901Vol.33, No.12 51

servers have been written for
Amoeba in the course of its exis-
tence. The first one, Free Univer-
sity Storage System (FUSS) [151 was
designed as an experiment in man-
aging concurrent access using opti-
mistic concurrency control. The
current one, the bullet server was
designed for extremely high per-
formance [30, 31, 321.

The decrease in the cost of disk
and RAM memories, over the past
decade has allowed us to use a radi-
cally different design from that
used in Unix and most other oper-
ating systems. In particular, we
have abandoned the idea of storing
files as a collection of fixed-size disk
blocks. All files are s.tored contigu-
ously, both on the disk and in the
server’s main memory. While this
design wastes some disk space and
memory due to fragmentation
overhead, we feel that the enor-
mous gain in performance more
than offsets the small extra cost of
having to buy, say, an 800 MB disk
instead of a 500 MB disk in order to
store 500 MB worth of files.

The bullet server is an immuta-
ble file store. Its principal opera-
tions are read-file and create-jile.
(For garbage collection purposes
there is also a delete,file operation.)
When a process issues a read@ re-
quest, the bullet server can transfer
the entire file to the client in a sin-
gle RPC, unless it is larger than the
maximum size (30,000 bytes), in
which case multiple RPCs are
needed. The client can then edit or
otherwise modify the file locally.
When it is finished, the client issues
a createfile RPC to make a new ver-
sion. The old version remains intact
until explicitly deleted or garbage
collected. It should be noted that
different versions of a file have dif-
ferent capabilities, so they can co-
exist, allowing for the straightfor-
ward implementation of source
code control systems.

The files are stored contiguously
on disk, and are cached in the file
server’s memory (Icurrently 12
Mbytes). When a relquested file is
not available in this memory, it is
loaded from disk in a single large

DMA operation and stored contig-
uously in the cache. (Unlike con-
ventional file systems, there are no
“blocks” used anywhere in the file
system.) In the treat-file operation
one can request the reply before
the file is written to disk (for speed),
or afterwards (to know that it has
been successfully written).

When the bullet server is booted,
the entire “i-node table” is read into
memory in a single disk operation
and kept there while the server is
running. When a file operation is
requested, the object number field
in the capability is extracted, which
is an index into this table. The entry
thus located gives the disk address
as well as the cache address of the
contiguous file (if present). No disk
access is needed to fetch the
“i-node” and at most one disk access
is needed to fetch the file itself, if it
is not in the cache. The simplicity of
this design trades off some space
for high performance.

The Dlrectwy Seffe
The bullet server does not provide
any naming services. To access a
file, a process must provide the rel-
evant capability. Since working with
128-bit binary numbers is not con-
venient for people, we have de-
signed and implemented a direc-
tory server to manage names and
capabilities.

The directory server manages
multiple directories, each of which
is a normal object. Stripped down
to its barest essentials, a directory
maps ASCII strings onto capabili-
ties. A process can present a string,
such as a file name, to the directory
server, and the directory server re-
turns the capability for that file.
Using this capability, the process
can then access the file.

In Unix terms, when a file is
opened, the capability is retrieved
from the directory server for use in
subsequent read and write opera-
tions. After the capability has been
fetched from the directory server,
subsequent RPCs go directly to the
server that manages the object. The
directory server is no longer in-
volved.

It is important to realize that the
directory server simply provides a
mapping function. The client pro-
vides a capability for a directory (in
order to specify which directory to
search) and a string, and the direc-
tory server looks up the string in
the specified directory and returns
the capability associated with the
string. The directory server has no
knowledge of the kind of object
that the capability controls.

In particular, it can be a capabil-
ity for another directory on the
same or a different directory
server-a file, a mailbox, a data-
base, a process capability, a segment
capability, a capability for a piece of
hardware, or anything else. Fur-
thermore, the capability may be for
an object located on the same ma-
chine, a different machine on the
local network, or a capability for an
object in a foreign country. The
nature and location of the object is
completely arbitrary. Thus the ob-
jects in a directory need not all be
on the same disk, for example, as is
the case in many systems that sup-
port “remote mount” operations.

Since a directory may contain
entries for other directories, it is
possible to build up arbitrary direc-
tory structures, including trees and
graphs. As an optimization, it is
possible to give the directory server
a complete path, and have it follow
it as far as it can, returning a single
capability at the end.

Actually, directories are slightly
more general than just simple map-
pings. It is commonly the case that
the owner of a file may want to have
the right to perform all operations
on it, but may want to permit others
read-only access. The directory
server supports this idea by struc-
turing directories as a series of
rows, one per object, as shown in
Figure 3.

The first column gives the string
(e.g., the file name). The second
column gives the capability that
goes with that string. The remain-
ing columns each apply to one user
class. For example, one could set up
a directory with different access
rights for the owner, the owner’s

December 199O/Vo1.33, No.l2/COYYUNl~TIOYSOCT”EliCY

group, and others, as in Unix, but
other combinations are also possi-
ble.

The capability for a directory
specifies the columns to which the
holder has access as a bit map in
part of the rights field (e.g., 3 bits).
Thus in Figure 3, the bits 001 might
specify access to only the other col-
umn. Earlier we discussed how the
rights bits are protected from tam-
pering by use of the check field.

To see how multiple columns are
used, consider a typical access. The
client provides a capability for a
directory (implying a column) and a
string. The string is looked up in
the directory to find the proper
row. Next, the column is checked
against the (singleton) bit map in
the rights field, to see which col-
umn should be used. Remember
that the cryptographic scheme pre-
viously described prevents users
from modifying the bit map, hence
accessing a forbidden column.

Then the entry in the selected
row and column is extracted. Con-
ceptually this is just a capability,
with the proper rights bits turned
on. However, to avoid having to
store many capabilities, few of
which are ever used, an optimiza-
tion is made, and the entry is just a
bit map, b. The directory server can
then ask the server that manages
the object to return a new capability
with only those rights in b. This new
capability is returned to the user
and also cached for future use, to
reduce calls to the server.

The directory server supports a
number of operations on directory
objects. These include looking up
capabilities, adding new rows to a
directory, removing rows from di-
rectories, listing directories, inquir-
ing about the status of directories
and objects, and deleting direc-
tories. There is also provision for
performing multiple operations in
a single atomic action, to provide
for fault tolerance.

Furthermore, there is also sup-
port for handling replicated ob-
jects. The capability field in
Figure 3 can actually hold a set of
capabilities for multiple copies of

each object. Thus when a process
looks up an object, it can retrieve
the entire set of capabilities for all
the copies. If one of the objects is
unavailable, the others can be tried.
The technique is similar to the one
used by Eden [20]. In addition, it is
possible to instruct the system to
automatically generate replicas and
store them in the capability set, thus
freeing the user from this adminis-
tration.

In addition to supporting repli-
cation of user objects, the directory
server is itself duplicated. Among
other properties, it is possible to
install new versions of the directory
server by killing off one instance of
it, installing a new version as the
replacement, killing off the other
(original) instance, and installing a
second replacement also running
the new code. In this way bugs can
be repaired without interrupting
service.

Wide-Area Amoeba
Amoeba was designed with the idea
that a collection of machines on a
local area network (LAN) would be
able to communicate over a wide-
area network with a similar collec-
tion of remote machines. The key
problem here is that wide-area net-
works are slow and unreliable, and
use protocols such as X.25, TCP/IP,
and 0%; they do not use RPC. The
primary goal of the wide-area net-
working in Amoeba has been to
achieve transparency without sacri-

ficing performance [29]. In partic-
ular, it is undesirable that the fast
local RPC be slowed down due to
the existence of wide-area commu-
nication. We believe this goal has
been achieved.

The Amoeba world is divided
into domains, each domain being an
interconnected collection of local
area networks. The key aspect of a
domain (e.g., a campus), is that
broadcasts done from any machine
in the domain are received by all
other machines in the domain, but
not by machines outside the do-
main.

The importance of broadcasting
has to do with how ports are located
in Amoeba. When a process does an
RPC with a port not previously
used, the kernel broadcasts a locate
message. The server responds to
this broadcast with its address,
which is then used and also cached
for future RPCs.

This strategy is undesirable with
a wide-area network. Although
broadcast can be simulated using a
minimum spanning tree [7] it is
expensive and inefficient. Further-
more, not every service should be
available worldwide. For example, a
laser printer server in the physics
building at a university in Califor-
nia may not be of much use to cli-
ents in New York.

Both of these problems are dealt
with by introducing the concept of
publishing. When a service wishes to
be known and accessible outside its

COYYUN~TlONSOCTNC~N/Dccembcr 19901Vol.33, No.12

own domain, it contacts the Service
for Wide-Area Networks (SWAN)
and asks that its port be published
in some set of domains. The SWAN
publishes the port by doing RPCs
with SWAN processes in each of
those domains.

When a port is published in a
domain, a new process called a
server agent is created in that do-
main. The process typically runs on
the gateway machine, and does a
get-request using the remote server’s
port. It is quiescent until its server is
needed, at which time it comes to
life and performs an RPC with the
server.

Now let us consider what hap-
pens when a process tries to locate a
remote server whose port has been
published. The process’ kernel
broadcasts a locate, which is re-
trieved by the server agent. The
server agent then builds a message
and hands it to a link process on the
gateway machine. The link process
forwards it over the wide-area net-
work to the server’s domain, where
it arrives at the gateway, causing a
client agent process to be created.
This client agent then makes a nor-
mal RPC to the server. The set of
processes involved here is shown in
Figure 4.

The beauty of this scheme is that
it is completely transparent. Nei-
ther user processes nor the kernel
know which processes are local and
which are remote. The communica-
tion between the chent and the
server agent is completely local,
using the normal RPC. Similarly,
the communication between the cli-
ent agent and the server is also
completely normal. Neither the cli-
ent nor the server knows that it is
talking to a distant process.

Of course, the two agents are
well aware of what is going on, but
they are automatically generated as
needed, and are not visible to users.
The link processes .are the only
ones that know about the details of
the wide-area network.. They talk to
the agents using RPC, but to each
other using whatever protocol the
wide-area network requires. The
point of splitting off the agents

from the link processes is to com-
pletely isolate the technical details
of the wide-area network in one
kind of process, and to make it eas-
ier to have multiway gateways,
which would have one type of link
process for each wide-area network
type to which the gateway is at-
tached.

It is important to note that this
design causes no performance deg-
radation for local communication.
An RPC between a client and a
server on the same LAN proceeds
at full speed, with no relaying of
any kind. Clearly there is some per-
formance loss when a client is talk-
ing to a server located on a distant
network, but the limiting factor is
normally the bandwidth of the
wide-area network, so the extra
overhead of having messages being
relayed several times is negligible.

Another useful aspect of this
design is its management. To start
with, services can only be published
with the help of the SWAN server,
which can check to see if the system
administration wants the port to be
published. Another important con-
trol is the ability to prevent certain
processes (e.g., those owned by stu-
dents) from accessing wide-area
services, since all such traffic must
pass through the gateways, and var-
ious checks can be made there. Fi-
nally, the gateways can do account-
ing, statistics gathering, and
monitoring of the wide-area net-
work.

nppllcatlonr
Amoeba has been used to program
a variety of applications. We will
now describe several of them, in-
cluding Unix emulation, parallel
make, traveling salesman, and
alpha-beta search.

Unix Emulatlen
One of the goals of Amoeba was to
make it useful as a program devel-
opment environment. For such an
environment, one needs editors,
compilers, and numerous other
standard software. It was decided
that the easiest way to obtain this
software was to emulate Unix and

then to run Unix and MINIX [25]
compilers and other utilities on top
of it.

Using a special set of library pro-
cedures that do RPCs with the
Amoeba servers, it has been possi-
ble to construct an emulation of the
Unix system call interface-which
was dubbed Ajax-that is good
enough that about 100 of the most
common utility programs have
been ported to Amoeba. The
Amoeba user can now use most of
the standard editors, compilers, file
utilities and other programs in a
way that looks very much like Unix,
although in fact it is really Amoeba.
A session server has been provided to
handle state information and do
fork and exec in a Unix-like way.

Parallel Make
As shown in Figure 1, the hardware
on which Amoeba runs contains a
processor pool with several dozen
processors. One obvious applica-
tion for these processors in a Unix
environment is a parallel version of
make [lo]. The idea here is that
when make discovers that multiple
compilations are needed, they are
run in parallel on different proces-
sors.

Although this idea sounds sim-
ple, there are several potential
problems. For one, to make a single
target file, a sequence of several
commands may have to be exe-
cuted, and some of these may use
files created by earlier ones. The
solution chosen is to let each com-
mand execute in parallel, but block
when it needs a file being made but
not yet fully generated.

Other problems relate to techni-
cal limitations of the make program.
For example, since it expects com-
mands to be run sequentially,
rather than in parallel, it does not
keep track of how many processes it
has forked off, which may exceed
various system limits.

Finally, there are programs, such
as yacc [1 l] that write their output
on fixed name files, such as y.tab.c.
When multiple yacc’s are running in
the same directory, they all write to
the same file, thus producing gib-

December 199O/Vo1.33, No.~~/COYLIUNIWTIONSOFT”EICY

berish. All of these problems have
been dealt with by one means or
another, as described in [Z].

The parallel compilations are
directed by a new version of make,
called amake. Amake does not use
traditional makefiles. Instead, the
user tells it which source files are
needed, but not their dependen-
cies. The compilers have been mod-
ified to keep track of the observed
dependencies (e.g., which files they
in fact included). After a compila-
tion, this information goes into a
kind of minidatabase that replaces
the traditional makefile. It also keeps
track of which flags were used,
which version of the compiler was
used, and other information. Not
having to even think about
makefiles, not even automatically
generated ones, has been popular
with the users. The overhead due
to managing the database is negligi-
ble, but the speedup due to paral-
lelization depends strongly on the
input. When making a program
consisting of many medium-sized
files, considerable speedup can be
achieved. However, when a pro-
gram has one large source file and
many small ones, the total time can
never be smaller than the compila-
tion time of the large one.

Wte mavellng SaIesman
PPoRlem

In addition to various experiments
with the Unix software, we have
also tried programming some ap-
plications in parallel. Typical appli-
cations are the traveling salesman
problem [131 and alpha-beta search
[141 which we briefly describe here.
More details can be found in [3].

In the traveling salesman prob-
lem, the computer is given a start-
ing location and a list of cities to be
visited. The idea is to find the
shortest path that visits each city
exactly once, and then return to the
starting place. Using Amoeba we
have programmed this application
in parallel by having one pool pro-
cessor act as coordinator, and the
rest as slaves.

For example, suppose the start-
ing place is London, and the cities

to be visited include New York,
Sydney, Nairobi, and Tokyo. The
coordinator might tell the first slave
to investigate all paths starting with
London-New York; the second
slave to investigate all paths starting
with London-Sydney; the third
slave to investigate all paths starting
with London-Nairobi; and so on.
All of these searches go on in paral-
lel. When a slave is finished, it re-
ports back to the coordinator and
gets a new assignment.

The algorithm can be applied
recursively. For example, the first
slave could allocate a processor to
investigate paths starting with Lon-
don - New York - Sydney, another
processor to investigate London-
New York-Nairobi, and so forth. At
some point, of course, a cutoff is
needed at which a slave actually
does the calculation itself and does
not try to farm it out to other proc-
essors.

The performance of the algo-
rithm can be greatly improved by
keeping track of the best total path
found so far. A good initial path
can be found by using the “closest
city next” heuristic. Whenever a
slave is started up, it is given the
length of the best total path so far.
If it ever finds itself working on a
partial path that is longer than the
best-known total path, it immedi-
ately stops what it is doing, reports
back failure, and asks for more
work. Initial experiments have
shown that 75% of the theoretical
maximum speedup can be achieved
using this algorithm. The rest is lost
to communication overhead.

AlpRa-Beta sea?eR

Another application that we have
programmed in parallel using
Amoeba is game playing using the
alpha-beta heuristic for pruning
the search tree. The general idea is
the same as for the traveling sales-
man. When a processor is given a
board to evaluate, it generates all
the legal moves possible starting at
that board, and hands them off to
others to evaluate in parallel.

The alpha-beta heuristic is com-
monly used in two-person, zero-
sum games to prune the search
tree. A window of values is estab-
lished, and positions that fall out-
side this window are not examined
because better moves are known to
exist. In contrast to the traveling
salesman problem, in which much
of the tree has to be searched,
alpha-beta allows a much greater
pruning if the positions are evalu-
ated in a well-chosen order.

For example, on a single ma-
chine, we might have three legal
moves A, B, and C at some point. As
a result of evaluating A we might
discover that looking at its siblings
in the tree, B and C was pointless.
In a parallel implementation, we
would do all at once, and ultimately
waste the computing power de-
voted to B and C. The result is that
much parallel searching is wasted,
and the net result is not that much
better than a sequential algorithm
on a single processor. Our experi-
ments running Othello (Reversi) on
Amoeba have shown that we were
unable to utilize more than 40% of
the total processor capacity avail-

COYYUNlCATlONSOFTREAC,CY/December 199O/Vo1.33, No.12

able, compared to 75% for the trav-
eling salesman problem.

PerFormance
Amoeba was designed to be fast.
Measurements show that this goal
has been achieved. In this section,
we will present the results of some
timing experiments we have done.
These measurements were per-
formed on Sun 3/6Os (20 MHz
68020s) using a 10 Mbps Ethernet.
We measured the performance for
three different configurations:

Two user processes running on
Amoeba.
Two user processes running on
Sun OS 4.0.3 but using the
Amoeba primitives, which were
added to the Sun Kernel.
Two user processes running on
Sun OS 4.0.3 and using Sun
RPC.

The latter two were for comparison
purposes only. We ran tests for the
local case (both processes on the
same machine) and for the remote
case (each process on a separate
machine, with communication over
the Ethernet). In all cases commu-
nication was from process to pro-
cess, all of which were running in
user mode outside tbe kernel. The
measurements represent the aver-
age values of 100,000 trials and are
highly reproducible.

For each configuration (pure
Amoeba, Amoeba primitives on
Unix, Sun RPC on IJnix), we tried
to run three test cases: a 4-byte
message (1 integer), an 8 Kbyte
message, and a 30 Kbyte message.
The 4-byte message test is typical
for short control messages, the
8-Kbyte message is typical for read-
ing a medium-sized file from a
remote file, and the 30-Kbyte test is
the maximum the current imple-
mentation of Amoeba can handle.
Thus, in total we should have nine
cases (three configurations and
three sizes). However, the standard
Sun RPC is limited to 8K, so we
have measurements for only eight
of them. It should also be noted
that the standard Amoeba header
has room for 8 bytes of data, so in

the test for 4 bytes, only a header
was sent and no data buffer. On the
other hand, on the Sun, a special
optimization is available for the
local case, which we used.

In Figure 5 we illustrate the
delay and the bandwidth of these
eight cases, both for local processes
(two distinct processes on the same
machine) and remote processes
(processes on different machines).
The delay is the time as seen from
the client, running as a user pro-
cess, between the calling of, and
returning from, the RPC primitive.
The bandwidth is t.he number of
data bytes per second that the client
receives from the server, excluding
headers. The measurements were
done for both local RPCs, where
the client and server processes were
running on the same processor,
and for remote RPCs over the
Ethernet.

The interesting comparisons in
these tables are the comparisons of
pure Amoeba RPC and pure Sun
OS RPC both for short communica-
tions, where delay is critical, and
long ones, where bandwidth is the
issue. A 4-byte Amoeba RPC takes
1.1 msec, v. 6.7 msec for Sun RPC.
Similarly, for 8 Kbyte RPCs, the
Amoeba bandwidth is 721 Kbytes/
set, v. only 325 Kbytes for the Sun
RPC. The conclusion is that Amoe-
ba’s delay is six times better and its
throughput is twice as good.

While the Sun is obviously not
the only system of interest, its wide-
spread use makes it a convenient
benchmark. We have looked in the
literature for performance figures
from other distributed systems and
have shown the null-RPC latency
and maximum throughput in Fig-
ure 6.

The RPC numbers for the other
systems listed in Figure 6 are taken
from the following publications:
Cedar [5], x-Kernel [19], Sprite
[18], V [6], Topaz [22], and Mach
1191.

The numbers shown here cannot
be compared without knowing
about the systems from which they
were taken, since the speed of the
hardware on which the tests were

made varies by about a factor of 3.
On all distributed systems of this
type running on fast LANs, the
protocols are largely CPU bound.
Running the system on a faster
CPU (but the same network) deft-
nitely improves performance, al-
though not linearly with CPU MIPS
because at some point the network
saturates (although none of the sys-
tems quoted here even come close
to saturating it). As an example, in
[3 l] we reported a null RPC time of
1.4 msec, but this was for Sun 3/5Os.
The current figure of 1.1 set is for
the faster Sun 3/6Os.

In Figure 6 we have not cor-
rected for machine speed, but we
have at least made a rough estimate
of the raw total computing power
of each system, given in the fifth
column of the table in MIPS (Mil-
lions of Instructions Per Second).
While we realize that this is only a
crude measure at best, we see no
other way to compensate for the
fact that a system running on a 4
MIPS machine (Dorado) or on a 5
CPU multiprocessor (Firefly) has a
significant advantage over slower
workstations. As an aside, the Sun
3/60 is indeed faster than the Sun
3175; this is not a misprint.

Cedar’s RPC is about the same as
Amoeba’s although it was imple-
mented on hardware that is 33%
faster. Its throughput is only 30%
of Amoeba’s, but this is partly due
to the fact that it used an early ver-
sion of the Ethernet running at 3
megabitsjsec. Still, it does not even
manage to use the full 3 megabits/
sec.

The x-Kernel has a 10% better
throughput than Amoeba, but the
published measurements are
kernel-to-kernel, whereas Amoeba
was measured from user process to
user process. If the extra overhead
of context switches from kernel to
user and copying from kernel buff-
ers to user buffers are considered,
(to make them comparable to the
Amoeba numbers), the x-kernel
performance figures would be re-
duced to 2.3 msec for the null RPC
with a throughput of 748 kbytes/sec
when mapping incoming data from

j ._.

~,-n n.

rjuie Amoeba looal

#re fitioeba remote

UNIX driver local

UNfX driver remote

:
&ay (msec) 8, I_ *

base 1. .case 2 case3 ;

Sun RPC local

Sun RPC remote

(a)

:. BaricjiMth (KbyteS/S8c)

case 1 ease 2
f4’bvtesf~ f8 Kbl

case 3
(30 Kb)

(b)

FlGUR6 5. RK bchrecn USer RrO@Sses in three wmnOn aScS for three diffennt SVStemS. local RKS are RKS In nhidi the dlent and
setwr are running as different gmcesses but on the same processor. Remote RKs are bmmn different machines. (1) Dclav in msec. (b) Band-
width In Rbytevsr. The Unir dfiver ImPIemeItts RmoelIa RKS and Rmoebl protocol under Sun Unix.

System

Amoeba
Cedar
x- Kernel
v
Topaz
Sprite
Mach

Hardware

Sun 3f60
Dorado
Sun 3l75
Sun 3/75
Firefly
Sun 3l75
Sun 3/60

Null RPC
in msec.

1.1
1.1
1.7
2.5
2.7
2.6

11.0

Throughput
in Kbytesls

620
250
660
546
587
720

?

Estimated
CPU WPS

implementation
Notes

Measured user-to-user
Custom microcode
Measured kernel-to-kernel
Measured user-to-user
Consists of 5 VAX CPUs
Measured kernel-to-kernel
Throughput not reported

FlGURE 6. latency and thmugllput nttll arlous distributed ogerating svstems.

kernel to user and 575 kbyteslsec
when copying it (L. Peterson, pri-
vate communication).

Similarly, the published Sprite
figures are also kernel-to-kernel.
Sprite does not support RPC at the
user level, but a close equivalent is
the time it takes to send a null mes-
sage from one user process to an-
other and get a reply, which is
4.3 msec. The user-to-user band-
width is 170 kbytes/sec [34].

V uses a clever technique to im-
prove the performance for short
RPCs: the entire message is put in
the CPU registers by the user pro-

cess and taken out by the kernel for
transmission. Since the 68020 pro-
cessor has eight 4-byte data regis-
ters, up to 32 bytes can be trans-
ferred this way.

Topaz RPC was obtained on
Fireflies, which are VAX-based
multiprocessors. The performance
obtained in Figure 6 can only be
obtained using several CPUs at
each end. When only a single CPU
is used at each end, the null RPC
time increases to 4.8 msec and the
throughput drops to 313 kbytes/
sec.

The null RPC time for Mach was

obtained from a paper published in
May 1990 [191 and applies to Mach
2.5, in which the networking code is
in the kernel. The Mach RPC per-
formance is worse than any of the
other systems by more than a factor
of 3 and is 10 times slower than
Amoeba. A more recent measure-
ment on an improved version of
Mach gives an RPC time of
9.6 msec and a throughput of
250,000 bytes/set (R. Draves, pri-
vate communication).

Like Amoeba itself, the bullet
server was designed with fast per-
formance as a major objective. Next

CCYYUYICATICYS CCTnE ACM/December 199OlVo1.33, No.12 57

we present some measurements of
what has been achieved. The mea-
surements were made between a
Sun 3/60 client talking to a remote
Sun 3160 file server equipped with a
SCSI disk. Figure 7 gives the per-
formance of the bullet server for
tests made with files of 1 Kbyte, 16
Kbytes, and 1 Mbyte. In the first
column the delay and bandwidth
for read operations is shown. Note
that the test file will. be completely
in memory, and no disk access is
necessary. In the second column a
create and a delete operation to-
gether is measured. ln this case, the
file is written to disk. Note that both
the create and the delete operations
involve disk requests.

The careful reader may have
noticed that user process can pull
813 kbytes/sec from the bullet
server (from Figure 7), even
though the user-to-user bandwidth
is only 783 kbytes/sec (from Figure
5). The reason for this apparent
discrepancy is as follows: As far as
the clients are concerned, the bullet
server is just a black box. It accepts
requests and gives replies. No user
processes run on its machine.
Under these circumstances, we de-
cided to move the bullet server code
into the kernel, since the users
could not tell the difference any-
way, and protection is not an issue
on a free-standing file server with
only one process. ‘Thus the 813
kbyte/sec figure is user-to-kernel
for access to the file cache, whereas
the 783 kbytelsec one is user-to-
user, from memory-to-memory
without involving any files. The
pure user-to-kernel bandwidth is
certainly higher than 813 kbytes/
set, but some of it is lost to file
server overhead.

To compare the Amoeba results
with the Sun NFS file system, we
have measured readling and creat-
ing files on a Sun 3!60 using a re-
mote Sun 3160 file server with a 16
Mbyte of memory running Sun OS
4.0.3. Since the file server had the
same type of disk as the bullet
server, the hardware configura-
tions were, with the exception of
extra memory for NFS, identical to

those used to measure Amoeba.
The measurements were made at
night under a light load. To disable
local caching on the Sun 3/60 we
locked the file using the Sun Unix
lockf primitive while doing the read
test. The timing of the read test
consisted of repeated measurement
of an lseek followed by a read system
call. The write test consisted of con-
secutively executing treat, write and
close. (The m-eat has the effect of
deleting the previous version of the
file.) The results are depicted in
Figure 8.

Observe that reading and creat-
ing 1 Mbvte files results in lower
bandwidths than for reading and
creating 16 Kbyte files. This effect
is due to the Bullet server’s need to
do more complex buffer manage-
ment with large files. The Bullet
file server’s performance for read
operations is two to three times bet-
ter than the Sun NFS file server.
For create operations, the Bullet
file server has a constant overhead
for producing capabilities, which
gives it a relatively better perfor-
mance for large files.

q raluatlon
In this section we will take a critical
look at Amoeba and its evolution
and point out some aspects that we
consider successful and others that
we consider less successful. In areas
where Amoeba 4.0 was found want-
ing, we will make improvements in
Amoeba 5.0, which is currently
under development. The following
discussion lists these improvements.

One area where little improve-
ment is needed is portability.
Amoeba started out. on the 680x0
CPUs, and has been easily moved to
the VAX, and Intel 80386. SPARC
and MIPS ports are underway. The
Amoeba RPC protocol has also
been implemented as part of
MINIX [25] and as such is in wide-
spread use around the world.

OtaIects ranu Ce~a&llltles
On the whole, the basic idea of an
object-based system has worked
well. It has given us a framework
which makes it easy to think about

the system. When new objects or
services are proposed, we have a
clear model to deal with and spe-
cific questions to answer. In partic-
ular, for each new service, we must
decide what objects will be sup-
ported and what operations will be
permitted on these objects. The
structuring technique has been val-
uable on many occasions.

The use of capabilities for nam-
ing and protecting objects has also
been a success. By using cryp-
tographically protected capabilities,
we have a unique system-wide fixed
length name for each object, yield-
ing a high degree of transparency.
Thus it is simple to implement a
basic directory as a set of (ASCII
string, capability) pairs. As a result,
a directory may contain names for
many kinds of objects, located all
over the world and windows can be
written on by any process holding
the appropriate capability, no mat-
ter where it is. We feel this model is
conceptually both simpler and
more flexible than models using
remote mounting and symbolic
links such as Sun’s NFS. Further-
more, it can be implemented just as
efficiently.

We have no experience with ca-
pabilities on huge systems (thou-
sands of simultaneous users). On
one hand, with such a large system,
some capabilities are bound to leak
out, compromising security. On the
other hand, capabilities provide a
kind of firewall, since a compro-
mised capability only affects the
security of one object. It is difficult
at this point to say whether such
fine-grained protection is better or
worse in practice than more con-
ventional schemes for huge sys-
tems.

We are also satisfied with the
low-level user primitives. In effect
there are only three principal sys-
tem calls-get-request, put-reply,
and do-operation-each easy to
understand. All communication is
based on these primitives, which
are much simpler than, for exam-
ple, the socket interface in Berkeley
Unix, with its myriad of system
calls, parameters, and options.

December 199O/Vol.33, No.12ICOYMUNICITIONSOFTWEWY

Amoeba 5.0 will use 256-bit ca-
pabilities, rather than the 12%bit
capabilities of Amoeba 4.0. The
larger Check field will be more se-
cure against attack. Other security
aspects will also be tightened, in-
cluding the addition of secure, en-
crypted communication between
client and server. Also, the larger
capabilities will have room for a lo-
cation hint which can be exploited
by the SWAN servers for locating
objects in the wide-area network.
Third, all the fields of the new 256-
bit capability will be aligned at 32-
bit boundaries, which potentially
may give better performance.

For the most part, RPC communi-
cation is satisfactory, but sometimes
it gives problems [28]. In particular,
RPC is inherently master-slave and
point-to-point. Sometimes both of
these issues lead to problems. In a
UNIX pipeline, such as:

pit file 1 eqn 1 tbl 1 troff >outfile

for example, there is no inherent
master-slave relationship, and it is
not at all obvious if data movement
between the elements of the pipe-
line should be read driven or write
driven.

In Amoeba 4.0, when an RPC
transfers a long message it is actu-
ally sent as a sequence of packets,
each of which is individually ac-
knowledged at the driver level
(stop-and-wait protocol). Although
this scheme is simple, it slows the
system down. In Amoeba 5.0 we
will only acknowledge whole mes-
sages, which will allow us to achieve
higher bandwidths than shown in
Figure 5.

Because RPC is inherently point-
to-point, problems arise in parallel
applications like the traveling sales-
man problem. When a process dis-
covers a path that is better than the
best known current path, what it
really wants to do is send a multicast
message to a large number of pro-
cesses to inform all of them imme-
diately. At present this is impossi-
ble, and must either be simulated
with multiple RPCs or finessed.

FIGURE 7. Perfom~ance of the Bullet file scm for read opmtlons, and mat8 and de-
lete opefatlons together. (a) Delay In msec. (bl Banduidth In KbrteS/sK.

HGURE 8. Performance of the Sun IFS file seruer for read and Create OpKttiOnS.
(al Delay In msec. lb) Blndwldth In KbvWSK.

Amoeba 5.0 will fully support
group communication using multi-
cast. A message sent to a group will
be delivered to all members, or to
none at all. A higher-level protocol
has been devised to implement
100% reliable multicasting on unre-
liable networks at essentially the
same price as RPC (two messages
per reliable broadcast). This proto-
col is described in [12]. There are
many applications (e.g., replicated
databases of various kinds) which
are simplified by reliable broadcast-
ing. Amoeba 5.0 will use this repli-
cation facility to support fault toler-
ance.

Although not every LAN sup-
ports broadcasting and multicasting
in hardware, when it has this capa-
bility (e.g., Ethernet), it can provide
an enormous performance gain for
many applications. For example, a
simple way to update a replicated
database is to send a reliable multi-

cast to all the machines holding
copies of the database. This idea is
obvious and we should have real-
ized it earlier and put it in from the
start.

Although it has long since been
corrected, we made a truly dreadful
decision in having asynchronous
RPC in Amoeba 2.0. In that system
the sender transmitted a message to
the receiver and then continued
executing. When the reply came in,
the sender was interrupted. This
scheme allowed considerable paral-
lelism, but it was impossible to pro-
gram correctly. Our advice to fu-
ture designers is to avoid
asynchronous messages like the
plague.

Memory aml PWteSS

Management

Probably the worst mistake in the
design of Amoeba 4.0 process man-
agement mechanisms was the deci-

CCYUUWICITICIICCCTRLliCYIDecember 199O/Vol.33, No.12 59

sion to have threads run to comple-
tion, that is, not be preemptable.
The idea was that once a thread
started using some critical table, it
would not be interrupted by an-
other thread in the same process
until it logically blocked. This
scheme seemed simple to under-
stand, and it was certainly easy to
program.

Problems arose because pro-
grammers did not have a very good
concept of when a process blocked.
For example, to debug some code
in a critical region, a programmer
might add some print statements in
the middle of the critical region
code. These print statements might
call library procedures that per-
formed RPCs with a remote termi-
nal server. While blocked waiting
for the acknowledgement, a thread
could be interrupted, and another
thread could access the critical re-
gion, wreaking havoc. Thus the
sanctity of the critical region could
be destroyed by putting in print
statements. Needless to say, this
property was very confusing to
naive programmers.

The run-to-completion seman-
tics of thread scheduling in
Amoeba 4.0 also prevents a multi-
processor implementation from
exploiting parallelism and shared
memory by allocating different
threads in one process to different
processors. Amoeba 5.0 threads will
be able to run in parallel. No prom-
ises are made by the scheduler
about allowing a thread to run until
it blocks before another thread is
scheduled. Thread.s sharing re-
sources must explicitly synchronize
using semaphores or mutexes.

Another problem concerns the
lack of timeouts on the duration of
remote operations. \Nhen the mem-
ory server is starting up a process, it
uses the capabilities in the process
descriptor to download the code
and data. It is perfectly legal for
these capabilities to be for
somebody’s private file server,
rather than for the bullet server.
However, if this server is malicious
and simply does not respond at all,
a thread in the memory server will

just hang forever. We probably
should have included service time-
outs, although doing so would in-
troduce race conditions.

Finally, Amoeba does not sup-
port virtual memory. It has been
our working assumption that mem-
ory is becoming so cheap that the
saving derived from using virtual
memory with its added complexity
is not worthwhile. Most worksta-
tions have at least 4M RAM these
days, and will have 32M within a
couple of years. Simplicity of design
and implementation and high
speed have always been our goals,
so we really have not yet decided
whether to implement virtual mem-
ory in Amoeba 5.0.

In a similar vein, we do not sup-
port process migration at present,
even though the mechanisms
needed for supporting it already
exist. Whether process migration
for load balancing is an essential
feature or just another frill is still
under discussion.

CllC systwn
One area of the system which we
think has been eminently successful
is the design of the file server and
directory server. We have separated
it into two distinct parts: the bullet
server, which just handles storage,
and the directory server, which
handles naming and protection.
The bullet server design allows it to
be extremely fast, while the direc-
tory server design gives a flexible
protection scheme and also sup-
ports file replication in a simple and
easy-to-understand way. The key
element here is the fact that files
are immutable, so they can be repli-
cated at will, and copies regener-
ated if necessary.

The entire replication process
takes place in the background (lazy
replication), and is entirely auto-
matic, not bothering the user at all.
We regard the file system as the
most innovative part of the Amoeba
4.0 design, combining high perfor-
mance with reliability, robustness,
and ease of use.

An issue that we are becoming
interested in is how one could han-

dle databases in this environment.
We envision an Amoeba-based
database system that would have a
very large memory for an essen-
tially “in-core” database. Updates
would be done in memory. The
only function of the disk would be
to make checkpoints periodically.
In this way, the immutability of files
would not pose any problems.

A problem that has not arisen
yet, but might arise if Amoeba were
scaled to thousands of users, is
caused by the splitting of the direc-
tory server and file server. Creating
a file and then entering its capabil-
ity into a directory are two separate
operations. If the client should
crash between them, the file exists
but is inaccessible. Our current
strategy is to have the directory
server access each file it knows
about once every k days, and have
the bullet server automatically gar-
bage collect all files not accessed by
anyone in ?z days (n >> k). With
our current setup and reliable
hardware, this is not a problem, but
in a huge, international Amoeba
system it might become one.

mmmmtwoUrln~
We are also pleased with the way
wide-area networking has been
handled, using server agents, client
agents, and the SWAN. In particu-
lar, the fact that the existence of
wide-area networking does not af-
fect the protocols or performance
of local RPCs at all is crucial. Many
other designs (e.g., TCP/IP, OSI)
start out with the wide-area case,
and then use this locally as well.
This choice results in significantly
lower performance on a LAN than
the Amoeba design, and no better
performance over wide-area net-
works.

One configuration that was not
adequately dealt with in Amoeba
4.0 is a system consisting of a large
number of local area networks in-
terconnected by many bridges and
gateways. Although Amoeba 4.0
works on these systems, its perfor-
mance is poor, partly due to the
way port location and message han-
dling is done. In Amoeba 5.0, we

60 December 199O/Vo1.33, No.I~/COYYUNIUTIO~OFTN~~:Y

have designed and implemented a
completely new low-level protocol
called the Fast Local Internet Pro-
tocol (FLIP), that will greatly im-
prove the performance in complex
internets. Among other features,
entire messages will be acknowl-
edged instead of individual packets,
greatly reducing the number of in-
terrupts that must be processed.
Port location is also done more effi-
ciently, and a single server agent
can now listen to an arbitrary num-
ber of ports, enormously reducing
the number of quiescent server
agents required in the gateways for
large systems.

One unexpected problem that
we had was the poor quality of the
wide-area networks that we had to
use, especially the public X.25 ones.
Also, to access some machines we
often had to traverse multiple net-
works, each with their own prob-
lems and idiosyncracies. Our only
insight to future researchers is not
to blindly assume that public wide-
area networks will actually function
correctly until this has been experi-
mentally verified.

URIX Pnlulatlen
The Amoeba 4.0 Unix emulation
consists of a library and a session
server. It was written with the goal
of getting most of the Unix soft-
ware to work without having to
expend much effort on our part.
The price we pay for this approach
is that we will never be able to pro-
vide 100% compatibility. For exam-
ple in a capability-based system, it is
very difficult to get the whole con-
cept of user-ids and group-ids
right. Our view of protection is to-
tally different.

Furthermore, Amoeba is essen-
tially a stateless system. This means
that it is virtually impossible to get
right the various subtle properties
of Unix relating to how files are
shared between parent and child.
In practice we can live with this, but
for someone who demands binary
compatibility, our approach has
some shortcomings.

wmllel bmpmaehns
Although Amoeba was originally

conceived as a system for distrib-
uted computing, the existence of
the processor pool with dozens of
CPUs close together has made it
quite suitable for parallel comput-
ing as well. That is, we have become
much more interested in using the
processor pool to achieve large
speedups on a single problem. To
program these parallel applica-
tions, we are currently engaged in
implementing a language called
Orca [4].

Orca is based on the concept of
globally shared objects. Program-
mers can define operations on
shared objects, and the compiler
and run-time system take care of all
the details of making sure they are
carried out correctly. This scheme
gives the programmer the ability to
atomically read and write shared
objects that are physically distrib-
uted among a collection of ma-
chines without having to deal with
any of the complexity of the physi-
cal distribution. All the details of
the physical distribution are com-
pletely hidden from the program-
mer. Initial results indicate that
close to linear speedup can be
achieved on some problems involv-
ing branch and bound, successive
overrelaxation, and graph algo-
rithms. For example, we have re-
done the traveling salesman prob-
lem in Orca and achieved a ten-fold
speedup with 10 processors (com-
pared to 7.5 using the non-Orca
version described earlier). Alpha-
beta search in Orca achieves a fac-
tor of six speedup with 10 proces-
sors (compared to four without
Orca). It appears that using Orca
reduces the communication over-
head, but it remains true that for
problems with many processes and
a high interaction rate (i.e., small
grain size), there will always be a
problem.

Performance, in general, has been a
major success story. The minimum
RPC time for Amoeba is 1.1 msec
between two user-space processes
on Sun 3/6Os, and interprocess
throughput is over 800 kbytes/sec.

The file system lets us read and
write files at about the same rate.

user InteHace
Amoeba originally had a homebrew
window system. It was faster tlian
X-windows and, in our view,
cleaner. It was also much smaller
and easier to understand. For these
reasons we thought it would be easy
to get people to accept it. We were
wrong. Technical factors sometimes
play second fiddle to political and
marketing ones. We have aban-
doned our window server and
switched to X windows.

Security
An intruder capable of tapping the
network on which Amoeba runs
can discover capabilities and do
considerable damage. In a produc-
tion environment some form of link
encryption is needed to guarantee
better security. Although some
thought has been given to a security
mechanism [26] it was not imple-
mented in Amoeba 4.0.

Two potential security systems
have been designed for Amoeba
5.0. The first version can only be
used in friendly environments
where the network and operating
system kernels can be assumed se-
cure. This version uses one-way
ciphers and, with caching of argu-
ment/result pairs, can be made to
run virtually as fast as the current
Amoeba. The other version makes
no assumptions about the security
of the underlying network or the
operating system. Like MIT’s Ker-
beros [23] it uses a trusted authenti-
cation server for key establishment
and encrypts all network traffic.

We hope to install both versions
and investigate the effects on per-
formance of the system. We are re-
searching the problems of authenti-
cation in very large systems
spanning multiple organizations
and national boundaries.

Comparlmon With Other
Symtemm
Amoeba is not the only distributed
system in the world. Other well-
known ones include Mach [11, Cho-

COYYUNIUTIONSOCTNSliCYlDecember 199O/Vo1.33, No.12

rus [21], V [6], and Sprite [18]. Al-
though a comprehensive compari-
son of Amoeba withL these would no
doubt be very interes:ing, it is be-
yond the scope of this article. Nev-
ertheless, we would like to make a
few general remarks.

The main goal of the Amoeba
project differs somewhat from the
goals of most of the other systems.
It was our intention to develop a
new operating system from scratch,
using the best ideas currently avail-
able, without regartd for backward
compatibility with systems designed
20 years ago. In particular, while
we have written a library and server
that provide enough Unix compati-
bility that over 100 Unix utilities
run on Amoeba (after relinking
with a special library), total compat-
ibility has never been a goal. Al-
though from a marketing stand-
point, not aiming for complete
compatibility with the latest version
of Unix may scare off potential cus-
tomers with large existing software
bases, from a research point of
view, having the freedom to selec-
tively use the good ideas from Unix
and reject the bad ones is a plus.
Some other systems take a different
viewpoint.

Another difference between
Amoeba and other systems is our
emphasis on Amoeba as a distributed
system. It was intended from the
start to run on a large number of
machines. One co,mparison with
Mach is instructive on this point.
Mach uses a clever optimization to
pass messages between processes
running on the same machine. The
page containing the message is
mapped from the sender’s address
space to the receiver’s address
space, thus avoiding copying.
Amoeba does not do this because
we consider the key issue in a dis-
tributed system to be the communi-
cation speed between processes
running on different machines. That
is the normal case. Only rarely will
two processes happen to be on the
same physical processor in a true
distributed system, especially if
there are hundreds of processors;
therefore we have put a lot of effort

into optimizing the distributed case,
not the local case. ‘This is clearly a
philosophical difference.

Conclurlon
The Amoeba project has clearly
demonstrated that it is possible to
build an efficient, high-perfor-
mance distributed operating system
on current hardware. The object-
based nature of the system, and the
use of capabilities provides a unify-
ing theme that holds the various
pieces together. By making the ker-
nel as small as possible, most of the
key features are implemented as
user processes, which means that
the system can evolve gradually as
needs change and we learn more
about distributed computing.

Amoeba has been operating sat-
isfactorily for several years now,
both locally and to a limited extent
over a wide-area network. Its de-
sign is clean and its performance is
excellent. By and large we are satis-
fied with the results. Nevertheless,
no operating system is ever fin-
ished, so we are continually work-
ing to improve it. Amoeba is now
available. For information on how
to obtain it, please contact Tanen-
baum, preferably by electronic mail
at AST@CS.VU.NL. q

References
Accetta, M., Baron, R., Bolosky W.,
Golub, D., Rashid, R., Tevanian, A.,
and Young, M. Mach: A new kernel
foundation for Unix Development.
In Proceedings of the Summer Usenix
Conference (Atlanta, GA, July 1986).
Baalbergen, E.H., Verstoep, K., and
Tanenbaum, A.S. On the design of
the Amoeba configuration man-
ager. In Proceedings of the 2d Interna-
tional Workshop on Software Configu-
ration Management ACM, N.Y.,
(1989).
Bal, H.E., Van Renesse, R., and
Tanenbaum, A.S. Implementing
distributed algorithms using remote
procedure call. In Proceedings of the
National Computer Conference, AFIPS
(1987), pp. 499-505.
Bal, H.E., and Tanenbaum, A.S.
Distributed programming with
shared data. IEEE Conference on
Computer Languages, IEEE (1988),
pp. 82-91.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Birrell, A.D., and Nelson, B.J. Im-
plementing remote procedure calls.
ACM Trans. Comput. Syst. 2 (Feb.
1984), 39-59.
Cheriton, D.R. The V distributed
system. Commun. ACM 31 (March
1988), 314-333.
Dalal, Y.K. Broadcast protocols in
packet switched computer net-
works. Ph.D. dissertation, Stanford
Univ., 1977.
Dennis, J., and Van Horn, E. Pro-
gramming semantics for mul-
tiprogrammed computation. Com-
mun. ACM 9 (March 1966), 143-
155.
Evans, A., Kantrowitz, W., and
Weiss, E. A user authentication
scheme not requiring secrecy in the
computer. Commun. ACM 17 (Aug.
1974), 437-442.
Feldman, S.I. Make-A program
for maintaining computer pro-
grams. Software-Practice and Expe-
rience 9 (April 1979), 255-265.
Johnson, S.C. Yacc-yet another
compiler compiler. B,ell Labs Tech.
Rep., Bell Labs, Murray Hill, N.J.,
1978.
Kaashoek, M.F., Tanenbaum, AS.,
Flynn Hummel, S., and Bal, H.E.
An efficient reliable broadcast pro-
tocol. Oper. Syst. Rev. 23 (Ott 1989),
5-19.
Lawler, E.L., and Wood, D.E.
Branch and bound Methods A Sur-
vey. Oper. Res. 14 (July 1966), 699-
719.

Marsland, T.A., and Campbell, M.
Parallel search of strongly ordered
game trees. Comput. Surv. 14 (Dec.
1982). 533-55 I.

Mullender, S.J., and Tanenbaum,
A.S. A distributed file service based
on optimistic concurrency control.
In Proceedings of the Tenth Symposium
Operating System Principles (Dec.
1985), pp. 51-62.

Mullender, S.J., and Tanenbaum,
A.S. The design of a capability-
based distributed operating system.
Comput. J. 29 (Aug. l986), 289-299.
Mullender, S.J., van Rossum, G.,
Tanenbaum, A..%, van Renesse, R.,
van Staveren, J.M. Amoeba-A dis-
tributed operating system for the
1990s. IEEE Comput. 23 (May 1990).
44-53.
Ousterhout, J.K., Cherenson, A.R.,
Douglis, F., Nelson, M.N., and
Welch, B.B. The sprite network
operating system. IEEE Comput. 2f
(Feb. l988), 23-26.

December 199O/Vo1.33, No.lZICO*IYUNICITIONSOCTNEliCY

19. Peterson, L., Hutchinson, N.,
O’Malley, S., and Rao, H. The x-
kernel: A platform for accessing
Internet resources. IEEE Comput.
23 (May 1990), 23-33.

20. Pu, C., Noe, J.D., Proudfoot, A.

21.

22<

23.

24.

25.

26.

27.

28.

29.

30.

Regeneration of replicated objects:
A technique and its Eden imple-
mentation. In Proceedings of the 2nd
International Conference on Data En-
gineering (Feb. 1986), pp. 175-187.
Rozier, M., Abrossimov, V., Ar-
mand, F., Bottle, I., Gien, M., Guil-
lemont, M., Hermann, F., Kaiser,
C., Langlois, S., Leonard, P., and
Neuhauser, W. CHORUS distrib-
uted operating system. Comput. Syst.
I (Fall 1988), 299-328.
Schroeder, M.D., and, Burrows, M.
Performance of the firefly RPC. In
Proceedings of the Twelfth ACM Sym-
posium of Operating System Principles,
ACM, N.Y. (Dec. 1989), 83-90.
Steiner, J.G., Neuman, C., and
Schiller, J.I. Kerberos An Authenti-
cation Service for Open Network
Systems. In Proceedings of the Usenix
Winter Conference, USENIX Assoc.
(1988), pp. 191-201.
Stonebraker, M. Operating system
support for database management.
Commun. ACM 24 (July 1981) 412-
418.
Tanenbaum, A.S. A Unix clone
with source code for operating sys-
tems courses. Oper. Syst. Rev. 21
(Jan. 1987), 20-29.
Tanenbaum, AS., Mullender, S.J.,
and Van Renesse, R. Using sparse
capabilities in a distributed operat-
ing system. In Proceedings of the Sixth
International Conference on Distributed
Computer Systems, IEEE (1986), 558-
563.
Tanenbaum, AS., and Van
Renesse, R. Distributed operating
systems. Comput. Surv. 17 (Dec.
1985), 419-470.
Tanenbaum, A.S., and Van
Renesse, R. A critique of the remote
procedure call paradigm. In Pro-
ceedings of Euteco ‘88 (1988), pp.
775-783.
Van Renesse, R., Tanenbaum, A.S.,
Van Staveren, H., and Hall, J. Con-
necting RPC-based distributed sys-
tems using wide-area networks. In
Proceedings of the Seventh Interna-
tional Conference on Distributed Com-
puting Systems, IEEE (1987), pp. 28-
34.
Van Renesse, R. Tanenbaum, AS.,
and Wilschut, A. The design of a
high-performance tile server. In

31.

32.

33.

34.

Proceedings of the Ninth International
Conference on Distributed Computer
Systems, IEEE (1989), pp. 22-27.
Van Renesse, R., Van Staveren, H.,
and Tanenbaum, A.S. Performance
of the world’s fastest distributed
operating system. Oper. Syst. Rev. 22
(Oct. 1988), 25-34.
Van Renesse, R., Van Staveren, H.,
and Tanenbaum, A.S. Performance
of the Amoeba-distributed operat-
ing system. Software-Practice and
Experience 19 (March 1989) 223-
234.
Van Rossum, G. AIL-A class-
oriented stub generator for
Amoeba. In Proceedings of the Work-
shop on Experience with Distributed Sys-
tems, J. Nehmer, Ed., Springer Ver-
lag, N.Y., 1990. To be published.
Welch, B.B. and Ousterhout, J.K.
Pseudo devices: User-level exten-
sions to the Sprite ftle system. In
Proceedings of Summer USENIX Con-
ference (June 1988), pp. 37-49.

CR Categories and Subject Descript-
ors: C.2.4 [Computer-Communications
Networks]: Distributed Systems-
distributed applications, distributed data-
bases, network operating systems; D.4.8
[Operating Systems]: Performance-
measurements.

General Terms: Design, Experimen-
tation, Performance

Additional Key Words and Phrases:
Computer networks, experience

About the Authors:
ANDREW S. TANENBAUM is the
principal architect of three operat-
ing systems-TSS-11, MINIX, and
Amoeba, as well as the chief designer of
the Amsterdam Compiler Kit. He is cur-
rently a professor of computer science
at the Vrije Universiteit in Amsterdam
where he does research in the areas of
operating systems, networks, and dis-
tributed systems. He is also the author
of 3 widely used textbooks and over 60
published papers.

ROBBERT van RENESSE is a re-
searcher in the computer science de-
partment at the Vrije Universiteit as well
as a fellow of the Royal Dutch Academy
of Sciences. He is presently working on
management of distributed systems to
improve their robustness, performance,
and scalability.

HANS van STAVEREN is one of the
implementors of the Amoeba-distrib-
uted operating system. His primary re-

~01s and kernel efficiency,

GREGORY J. SHARP has spent the
past five years working on the Amoeba
project, first developing a window sys-
tem, then its kernel and file system. His
research interests include operating sys-
tems and user interfaces.

SAPE J. MULLENDER heads the dis-
tributed systems and computer net-
works research group at the Centrum
voor Wiskunde en lnformatica. He is
also one of the designers of the
Amoeba-distributed operating system.
Mullender’s research interests include
high performance distributed comput-
ing and the design of scalable fault-
tolerant services.

JACK JANSEN joined the distributed
systems group at CWI in 1985 after
teaching computer science for several
years. His professional interests include
kernel programming and process man-
agement.

GUIDO van ROSSUM joined the
Amoeba project three years ago, creat-
ing its RPC interface specification lan-
guage (AIL), its Unix emulation facility
(Ajax), and worked on system integra-
tion and user interface issues. His cur-
rent research topics include prototyping
languages and user interfaces for power
users.

Authors’ Present Address for Tanen-
baum, van Renesse, van Staveren, and
Sharp: Department of Mathematics and
Computer Science, Vrije Universiteit,
De Boelelaan 1081a, 1081 HV Amster-
dam, The Netherlands, ast@cs.vu.nl,
cogito@cs.vu.nl, sater@cs.vu.nl, gregor’-
@cs.vu.nl.

For Mullender, Jansen and van Ros-
sum: Centrum voor Wiskunde en lnfor-
matica, Kruislaan 413, 1098 SJ Amster-
dam, The Netherlands. sape@cwi.nl,
jack@cwi.nl, guido@cwi.nl.

VAX is a trademark of Digital Equipment
Corporation.

This research was supported in part by the
Netherlands Organization for Scientific Re-
search (NWO) under grant 125-30-10. The
research at Centrum voor Wiskunde en In-
formatica was supported in part by a grant
from Digital Equipment Corporation.

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advan-
tage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given
that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

search interests include network proto- 0 1990 ACM OOOl-0782/90/1200-0046 $1.50

63

