FSU COP 4530 / CGS 5425 (Fall 2003, Section 4)
Data Structures, Algorithms, and Generic Programming

Introduction to UNIX Software Development Environment

Teaching assistants


Zhiqian Hu (zhiqiahu@cs.fsu.edu)
Nobuyasu Fukuhara (nff0150@garnet.acns.fsu.edu)


Office:
CS Majors Lab

Office: CS Majors Lab


Office hours:
T 3:00pm – 5:00pm
Office hours:  M 10:00am – 11:00am, W 2:00pm – 3:00pm


If you meet the prerequisites of this class, you should have had the experience compiling and debugging C or C++ programs.  Under UNIX, the tools will not be as visually pleasing as Windows tools, but they are sufficiently powerful for you to get the job done.

An Example of Compilation Process
For this class, we use the g++ compiler.  To compile a simple program, say Main.c, first type the following:


g++ –g –ansi –Wall –c –o Main.o Main.cpp

At this stage, you have created a Main.o file, which contains the object code for Main.cpp.  Now type the following:


g++ –g –ansi –Wall Main.o –o Exe

This step links all the object files to resolve references among the object files.  At the end, g++ compiler creates an executable image named Exe.  You can run this executable image by typing Exe or ./Exe.

The –g option tells the compiler to include the debugging information.  The –ansi option tells the compiler to check your code against the ANSI C standard.  The –Wall option will warn you of things like declaring unused variables and help you to clean up your code.

For our class, all user-level projects should be compiled with the –ansi and –Wall options; all kernel-level projects should be compiled with the –Wall option.   You should try to have clean compilation for all projects.  In other words, during the compilation process of your project, the compiler should not generate any warning messages.

Automation of Compilation Process

As you can see, you need to type quite a bit for compiling a simple program.  As your project grows, you may have many .cpp and .h files; you may use many library calls, and you need to specify them at the compilation time.  Things start to get tedious and messy.  One way to manage this complexity is to create a Makefile in your directory, which automates the compilation process.

The following is a sample Makefile:

SRCS = Main.cpp Example.cpp

HDRS = Main.h Example.h

OBJECTS = Main.o Example.o

INCLUDE = -I/usr/local/include

LIBS = -lm

CC = g++

CFLAGS = -g –ansi –Wall

EXEC = SampleExecutable

all:
$(EXEC)

$(EXEC):
$(OBJECTS)


$(CC) $(FLAGS) $(INCLUDE) $(LIBS) $(OBJECTS) –o $(EXEC)

.cpp.o:


$(CC) $(FLAGS) –c –o $*.o $*.cpp

clean:


rm –f $(OBJECTS) $(EXEC) core *~

depend:


makedepend -- $(CFLAGS) $(INCLUDES) $(SRCS) $(HDRS) --

# DO NOT DELETE THIS LINE – make depend depends on it.
The first few lines are fairly straightforward.  SRCS, HDRS, and OBJECTS specify the source, header, and object files; INCLUDE, the directory for include files; LIBS, the library to be linked into the compilation; CC, the type of C compiler; CFLAGS, the compilation flags; and EXEC, the name of the executable image.  

The line containing all specifies the final compilation targets: in this case, the content of EXEC, or $(EXEC).  The creation of $(EXEC) depends on the $(OBJECTS), or object files.  To create $(EXEC), the compiler needs to link the objects by running the $(CC) command.  The subsequent lines specify how .cpp files are compiled into .o files.  

Note that you need to tab the indentation of the $(CC) command.  Makefile won’t work if you use the space bar to create the indentation.

Lines starting with # denote comments.  Let’s ignore the remaining lines for now.  With this Makefile in your current project directory, all you need to type in order to compile your project is make.  

Debugging Supports

At this point, your projects should be simple enough that you can track down most bugs with printf commands.  Under UNIX, one common debugger is the GNU debugger, or gdb.  Under emacs, it is possible to split the emacs window into two windows:  one for displaying the source code and the other for the executable output.  Under gdb, you can step the code line by line to see the corresponding output.  You can begin your exploration with gdb with the on-line manual pages. 

